# Optimal solutions and ranks in the max-cut SDP 

Daniel Hong, David Lee, Alex Wei Mentor: Diego Cifuentes

Skyline High School, Interlake High School, Interlake High School

October 17-18, 2020
MIT PRIMES Conference

## Max-cut Problem

Cut
Consider a graph $G=(V, E)$ with vertex set $V=[n]$ and fixed weights $\left\{w_{i j}\right\}_{i j \in E}$ assigned to the edges. A cut is a partition of the vertex set $V=V_{1} \sqcup V_{2}$.

## Example

This partitions the graph into $\{\mathrm{C}, \mathrm{E}\}$ and $\{\mathrm{A}, \mathrm{B}, \mathrm{D}\}$, cutting across edges with a total sum of 10 .


## Max-cut Problem

## Max-cut Problem

The max-cut problem asks to split the vertex set of a graph into two groups to maximize the sum of edge weights between the two groups. In other words, we wish to find the maximum possible value of a cut $V_{1} \sqcup V_{2}$.

Applications
Applications of the max-cut problem:

- Theoretical/Statistical physics
- Circuit design


## Max-cut Problem

## Example



Above shows the max cut possible for this graph; it has a value of 23 .

## Max-cut Problem

Properties of max-cut problem

- The max-cut problem is NP-complete.
- However, the problem can be approximated in polynomial time up to a factor of 0.87854 .
- This uses a technique known as semidefinite programming (SDP).


## Representing Graphs

Laplacian Matrix
Consider a graph $G=(V, E)$ with vertex set $V=[n]=\{1,2, \ldots, n\}$ and weights $w$. We define the Laplacian matrix $L(G, w)$ as the $n \times n$ matrix with entries

$$
L(G, w)_{i j}:= \begin{cases}-w_{i j} & \text { if } i j \in E \\ \sum_{k} w_{i k} & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

## Representing Graphs

## Example

The Laplacian matrix of the graph below is

$$
\left[\begin{array}{cccc}
\mathbf{3} & -1 & -2 & 0 \\
-1 & \mathbf{6} & -5 & 0 \\
-2 & -5 & \mathbf{1 4} & -7 \\
0 & 0 & -7 & \mathbf{7}
\end{array}\right]
$$



## PSD Matrices and Semidefinite programming

Positive Semidefinite Matrices
A $d$-by- $d$ symmetric matrix $M$ is positive semidefinite (PSD), or $M \succeq 0$, if and only if there exists a square root matrix $B$ such that $B^{T} B=M$.

## PSD Matrices and Semidefinite programming

## Positive Semidefinite Matrices

A $d$-by- $d$ symmetric matrix $M$ is positive semidefinite (PSD), or $M \succeq 0$, if and only if there exists a square root matrix $B$ such that $B^{T} B=M$.

## Frobenius Inner Product

- represents the Frobenius inner product, which is the entry-wise product summed over all entries.

$$
\left[\begin{array}{ll}
2 & 2 \\
0 & 3
\end{array}\right] \bullet\left[\begin{array}{cc}
-1 & 0 \\
2 & 1
\end{array}\right]=(2)(-1)+(2)(0)+(0)(2)+(3)(1)=1
$$

## Semidefinite Programs

## Semidefinite Program

Let $C$ be a $n \times n$ cost matrix. Consider $m$ constraint matrices $A_{1}, A_{2}, \ldots, A_{m} \in \mathbb{S}^{n}$, as well as a constraint vector $b \in \mathbb{R}^{m}$. A semidefinite program is an optimization problem of the form

$$
\begin{array}{rl}
\max _{X \in \mathbb{S}^{n}} & C \bullet X \\
\text { s.t. } & A_{i} \bullet X=b_{i} \quad \forall 1 \leq i \leq m \\
& X \succeq 0
\end{array}
$$

Note that this optimization is linear in the entries of $X$. In fact, there are known algorithms to solve it in polynomial time.

## Example of an SDP

Example

$$
\begin{array}{ll}
\max _{X \in \mathbb{S}^{n}} & X \bullet\left[\begin{array}{cc}
1 & 8 \\
8 & -1
\end{array}\right] \\
\text { s.t. } & X \bullet\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=1 \\
& X \succeq 0 .
\end{array}
$$

Given $X=\left[\begin{array}{ll}z & y \\ y & x\end{array}\right]$, the constraints become $z=1$ and $x \geq y^{2}$, and we must maximize $1+16 y-x$. The maximum is 65 .

## Primal Max-cut SDP

## Primal max-cut SDP

The following is the SDP relaxation of the max-cut problem:

$$
\begin{aligned}
\max _{X \in \mathbb{S}^{n}} & \frac{1}{4} L(G, w) \bullet X \\
\text { s.t. } & X_{i i}=1 \text { for } i \in[n] \\
& X \succeq 0 .
\end{aligned}
$$

We denote the optimal primal solution by $\bar{X}$.

## Dual Max-cut SDP

Dual max-cut SDP
The following is the dual of the primal max-cut SDP:

$$
\begin{aligned}
\min _{y \in \mathbb{R}^{n}, S \in \mathbb{S}^{n}} & \sum y_{i} \\
\text { s.t. } & S=\operatorname{Diag}(y)-C \\
& S \succeq 0 .
\end{aligned}
$$

We similarly denote the dual optimal solution by $\bar{S}$.

## Rank of Max-cut SDP

## Primal max-cut SDP

$$
\begin{aligned}
\max _{X \in \mathbb{S}^{n}} & \frac{1}{4} L(G, w) \bullet X \\
\text { s.t. } & X_{i i}=1 \text { for } i \in[n] \\
& X \succeq 0 .
\end{aligned}
$$

- When we write the max-cut problem algebraically, a vector $x \in \mathbb{R}^{n}$ represents a cut, and we write $X=x x^{\top}$.
- The condition $X=x x^{\top} \Longleftrightarrow \operatorname{rank} X=1$. Furthermore, all symmetric rank-1 matrices are positive semidefinite.
- All rank-1 primal optimal solutions to the SDP must be exact solutions to the max-cut problem.


## Rank-1 solutions for cycles

Theorem (Rank 1 solutions of cycles)
The cycle graph exhibits a rank 1 solution if and only if at least one of the following holds:

- There are an even number of positively weighted edges
- Take the list of the absolute values of the reciprocal of every edge weight (with repetition). Then there is a value in this list that is at least the sum of the rest.
- Rank 1 solutions: $\{-4,2,3,-1\},\{-2,-3,8\}$.
- Rank 2 solutions: $\{4,2,3,-1\},\{-2,-3,5\}$.



## Max-Cut Problem on cycles

- Ideally, the cut of a graph should split the edges with positive weights and not split those with negative weights.
- Using this, we can attempt to do this for every edge. From this, we can solve for the best solution for the max-cut SDP.


## Motivating theorem

This theorem is presented without proof:
Theorem (Primal-dual feasibility for optimal solutions)
Let matrices $\bar{X}$ and $\bar{S}$ be optimal primal and dual matrices for the max-cut problem on a graph $G$, respectively. Then $\bar{X} \bar{S}=0$ (all entries are 0 ).

This theorem tells us that every column of $\bar{S}$ is in the nullspace of every column of $\bar{X}$. Since $\bar{S}$ is known on all off-diagonal values, given a $\bar{X}$, one can find all entries of $\bar{S}$ (and $\bar{S}$ is thus unique).

## Identifying rank 1 solutions using $\bar{S}$

Theorem (Rank 1 solutions of cycles)
The cycle graph exhibits a rank 1 solution if and only if at least one of the following holds:

- There are an even number of positively weighted edges
- Take the list of the absolute values of the reciprocal of every edge weight (with repetition). Then there is a value in this list that is at least the sum of the rest.


## Identifying rank 1 solutions using $\bar{S}$

Theorem (Rank 1 solutions of cycles)
The cycle graph exhibits a rank 1 solution if and only if at least one of the following holds:

- There are an even number of positively weighted edges
- Take the list of the absolute values of the reciprocal of every edge weight (with repetition). Then there is a value in this list that is at least the sum of the rest.
- Identify possible rank 1 primal optimal matrix solutions to the max-cut problem
- Identify possible dual matrices resulting from these primal matrices
- Impose the positive semi-definite constraint.


## Ranks and Solutions for Clique Sums

We provide two examples of clique sums for illustration.
The butterfly graph below is the vertex sum of two $K_{3}$ graphs joined at vertex $C$.


The diamond graph below is the edge sum of two $K_{3}$ graphs joined at edge $A B$.


## Ranks and Solutions for Clique Sums

Given two graphs and optimal solutions to their max-cut SDP, we show that we can find an optimal solution to the max-cut SDP of their vertex sum.

Given two $K_{3}$ graphs, we can find an optimal solution given certain conditions on the weights in terms of the optimal solutions of the $K_{3}$ graphs' SDPs.

Future work:

- General result for edge sums
- Extension to more families of graphs


## Acknowledgements

- MIT PRIMES
- Our mentor, Diego Cifuentes
- Our parents

