# Optimal solutions and ranks in the max-cut SDP

### Daniel Hong, David Lee, Alex Wei Mentor: Diego Cifuentes

Skyline High School, Interlake High School, Interlake High School

October 17-18, 2020 MIT PRIMES Conference

Max-cut SDP

### Max-cut Problem

### Cut

Consider a graph G = (V, E) with vertex set V = [n] and fixed weights  $\{w_{ij}\}_{ij \in E}$  assigned to the edges. A *cut* is a partition of the vertex set  $V = V_1 \sqcup V_2$ .

### Example

This partitions the graph into  $\{C,\,E\}$  and  $\{A,\,B,\,D\},$  cutting across edges with a total sum of 10.



### Max-cut Problem

The max-cut problem asks to split the vertex set of a graph into two groups to maximize the sum of edge weights between the two groups. In other words, we wish to find the maximum possible value of a cut  $V_1 \sqcup V_2$ .

### Applications

Applications of the max-cut problem:

- Theoretical/Statistical physics
- Circuit design

# Max-cut Problem

### Example



Above shows the max cut possible for this graph; it has a value of 23.

| Daniel I | Hong, | David | Lee, | Alex | Wei |  |
|----------|-------|-------|------|------|-----|--|
|----------|-------|-------|------|------|-----|--|

#### Properties of max-cut problem

- The max-cut problem is *NP-complete*.
- However, the problem can be approximated in polynomial time up to a factor of 0.87854.
- This uses a technique known as *semidefinite programming* (SDP).

### Representing Graphs

#### Laplacian Matrix

Consider a graph G = (V, E) with vertex set  $V = [n] = \{1, 2, ..., n\}$  and weights w. We define the Laplacian matrix L(G, w) as the  $n \times n$  matrix with entries

$$L(G, w)_{ij} := \begin{cases} -w_{ij} & \text{if } ij \in E \\ \sum_k w_{ik} & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

# Representing Graphs

Example

The Laplacian matrix of the graph below is

$$\begin{bmatrix} \mathbf{3} & -1 & -2 & 0 \\ -1 & \mathbf{6} & -5 & 0 \\ -2 & -5 & \mathbf{14} & -7 \\ 0 & 0 & -7 & \mathbf{7} \end{bmatrix}$$



< 47 →

# PSD Matrices and Semidefinite programming

#### Positive Semidefinite Matrices

A *d*-by-*d* symmetric matrix *M* is *positive semidefinite* (PSD), or  $M \succeq 0$ , if and only if there exists a square root matrix *B* such that  $B^T B = M$ .

# PSD Matrices and Semidefinite programming

#### Positive Semidefinite Matrices

A *d*-by-*d* symmetric matrix *M* is *positive semidefinite* (PSD), or  $M \succeq 0$ , if and only if there exists a square root matrix *B* such that  $B^T B = M$ .

### Frobenius Inner Product

• represents the Frobenius inner product, which is the entry-wise product summed over all entries.

$$\begin{bmatrix} 2 & 2 \\ 0 & 3 \end{bmatrix} \bullet \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix} = (2)(-1) + (2)(0) + (0)(2) + (3)(1) = 1.$$

# Semidefinite Programs

#### Semidefinite Program

Let C be a  $n \times n$  cost matrix. Consider m constraint matrices  $A_1, A_2, \ldots, A_m \in \mathbb{S}^n$ , as well as a constraint vector  $b \in \mathbb{R}^m$ . A semidefinite program is an optimization problem of the form

$$\begin{array}{ll} \max_{X \in \mathbb{S}^n} & C \bullet X \\ \text{s.t.} & A_i \bullet X = b_i \quad \forall 1 \le i \le m \\ & X \succeq 0 \end{array}$$

Note that this optimization is *linear* in the entries of X. In fact, there are known algorithms to solve it in polynomial time.

< □ > < □ > < □ > < □ > < □ > < □ >

# Example of an SDP

### Example

$$\max_{X \in \mathbb{S}^n} X \bullet \begin{bmatrix} 1 & 8 \\ 8 & -1 \end{bmatrix}$$
  
s.t. 
$$X \bullet \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = 1$$
$$X \succeq 0.$$

Given  $X = \begin{bmatrix} z & y \\ y & x \end{bmatrix}$ , the constraints become z = 1 and  $x \ge y^2$ , and we must maximize 1 + 16y - x. The maximum is 65.

イロト 不得下 イヨト イヨト 二日

### Primal max-cut SDP

The following is the SDP relaxation of the max-cut problem:

$$\begin{array}{ll} \max_{X \in \mathbb{S}^n} & \frac{1}{4}L(G,w) \bullet X \\ \text{s.t.} & X_{ii} = 1 \text{ for } i \in [n] \\ & X \succeq 0. \end{array}$$

We denote the optimal primal solution by  $\bar{X}$ .

• • • • • • • • • • • • •

### Dual max-cut SDP

The following is the dual of the primal max-cut SDP:

We similarly denote the dual optimal solution by  $\overline{S}$ .

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

# Rank of Max-cut SDP

### Primal max-cut SDP

$$\begin{array}{ll} \max_{X \in \mathbb{S}^n} & \frac{1}{4}L(G, w) \bullet X \\ \text{s.t.} & X_{ii} = 1 \text{ for } i \in [n] \\ & X \succeq 0. \end{array}$$

- When we write the max-cut problem algebraically, a vector x ∈ ℝ<sup>n</sup> represents a cut, and we write X = xx<sup>T</sup>.
- The condition  $X = xx^T \iff \operatorname{rank} X = 1$ . Furthermore, all symmetric rank-1 matrices are positive semidefinite.
- All rank-1 primal optimal solutions to the SDP must be exact solutions to the max-cut problem.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Rank-1 solutions for cycles

### Theorem (Rank 1 solutions of cycles)

The cycle graph exhibits a rank 1 solution if and only if at least one of the following holds:

- There are an even number of positively weighted edges
- Take the list of the absolute values of the reciprocal of every edge weight (with repetition). Then there is a value in this list that is at least the sum of the rest.
- Rank 1 solutions:  $\{-4, 2, 3, -1\}, \{-2, -3, 8\}.$
- Rank 2 solutions:  $\{4, 2, 3, -1\}, \{-2, -3, 5\}.$



# Max-Cut Problem on cycles

- Ideally, the cut of a graph should split the edges with positive weights and not split those with negative weights.
- Using this, we can attempt to do this for every edge. From this, we can solve for the best solution for the max-cut SDP.

< □ > < □ > < □ > < □ > < □ > < □ >

This theorem is presented without proof:

Theorem (Primal-dual feasibility for optimal solutions)

Let matrices  $\bar{X}$  and  $\bar{S}$  be optimal primal and dual matrices for the max-cut problem on a graph G, respectively. Then  $\bar{X}\bar{S} = 0$  (all entries are 0).

This theorem tells us that every column of  $\overline{S}$  is in the nullspace of every column of  $\overline{X}$ . Since  $\overline{S}$  is known on all off-diagonal values, given a  $\overline{X}$ , one can find all entries of  $\overline{S}$  (and  $\overline{S}$  is thus unique).

# Identifying rank 1 solutions using $\bar{S}$

### Theorem (Rank 1 solutions of cycles)

The cycle graph exhibits a rank 1 solution if and only if at least one of the following holds:

- There are an even number of positively weighted edges
- Take the list of the absolute values of the reciprocal of every edge weight (with repetition). Then there is a value in this list that is at least the sum of the rest.

# Identifying rank 1 solutions using $\bar{S}$

### Theorem (Rank 1 solutions of cycles)

The cycle graph exhibits a rank 1 solution if and only if at least one of the following holds:

- There are an even number of positively weighted edges
- Take the list of the absolute values of the reciprocal of every edge weight (with repetition). Then there is a value in this list that is at least the sum of the rest.
- Identify possible rank 1 primal optimal matrix solutions to the max-cut problem
- Identify possible dual matrices resulting from these primal matrices
- Impose the positive semi-definite constraint.

< □ > < 同 > < 三 > < 三 >

### Ranks and Solutions for Clique Sums

We provide two examples of clique sums for illustration.

The butterfly graph below is the *vertex sum* of two  $K_3$  graphs joined at vertex C.



The diamond graph below is the *edge sum* of two  $K_3$  graphs joined at edge AB.



## Ranks and Solutions for Clique Sums

Given two graphs and optimal solutions to their max-cut SDP, we show that we can *find an optimal solution* to the max-cut SDP of their *vertex sum*.

Given two  $K_3$  graphs, we can find an optimal solution given certain conditions on the weights in terms of the optimal solutions of the  $K_3$  graphs' SDPs.

Future work:

- General result for edge sums
- Extension to more families of graphs

# Acknowledgements

- MIT PRIMES
- Our mentor, Diego Cifuentes
- Our parents

- 2

・ロト ・四ト ・ヨト ・ヨト