The Sperner Property for 132-Avoiding Intervals in the

Weak Order

Katherine Tung
MIT PRIMES Conference
Joint work with Christian Gaetz

October 18, 2020

Weak order interval $[e, 4213]_{R}$

The weak order on permutations

Let S_{n} be the n ! permutations of $\{1,2,3, \ldots, n\}$.
Weak Bruhat order on S_{n} :

- Least element $e=\left[\begin{array}{lll}1 & 2 & \ldots\end{array}\right]$
- Covering: $\sigma \lessdot \sigma(i \quad i+1)$ if $\sigma_{i}<\sigma_{i+1}$.
- [15243] $\lessdot[15423]$.

The weak order on permutations

Let S_{n} be the n ! permutations of $\{1,2,3, \ldots, n\}$.
Weak Bruhat order on S_{n} :

- Least element $e=\left[\begin{array}{lll}1 & 2 & \ldots\end{array}\right]$
- Covering: $\sigma \lessdot \sigma(i \quad i+1)$ if $\sigma_{i}<\sigma_{i+1}$.
- [15243] $\lessdot[15423]$.

The weak order on permutations

Let S_{n} be the n ! permutations of $\{1,2,3, \ldots, n\}$.
Weak Bruhat order on S_{n} :

- Least element $e=\left[\begin{array}{lll}1 & 2 & \ldots\end{array}\right]$

- Rank function $\ell(\sigma)=\#$ inversions of σ
- $\ell([312])=2$.
- Greatest element $w_{0}=\left[\begin{array}{llll}n & n-1 & \ldots & 2\end{array} 1\right]$ with rank $\binom{n}{2}$.

Multisets

132-avoiding permutations

A permutation π avoids the pattern 132 if for no indices $i<j<k$ is $\pi_{i}<\pi_{k}<\pi_{j}$. So 4312 avoids 132, but 2143 does not avoid 132.

Any permutation corresponding to a greatest permutation of a multiset is 132-avoiding.
There are 2^{n-1} multisets and $C_{n}=\binom{2 n}{n} /(n+1) \sim 4^{n} /\left(n^{3 / 2} \sqrt{\pi}\right)$ 132-avoiding permutations.

We studied intervals $[e, \pi]_{R}$ with π 132-avoiding, which generalizes the study of permutations of multisets.

Questions about $[e, \pi]_{R}$

- Are these posets self-dual?
- Is there an order-reversing self-bijection?

Questions about $[e, \pi]_{R}$

- Are these posets self-dual?
- Is there an order-reversing self-bijection?
- Are these posets rank unimodal?
- Does the rank function increase up to a peak and then fall?

Questions about $[e, \pi]_{R}$

- Are these posets self-dual?
- Is there an order-reversing self-bijection?
- Are these posets rank unimodal?
- Does the rank function increase up to a peak and then fall?
- Are these posets Sperner?
- Is the size of the largest antichain (pairwise incomparable set) equal to the maximum number of elements with a particular rank?

Lie algebras

Lie algebra L

- Lie bracket $[x, y]$

Lie algebras

- Lie algebra L
- Lie bracket $[x, y]$
- Bilinear

Lie algebras

- Lie algebra L
- Lie bracket $[x, y]$
- Bilinear
- $[x, x]=0$ for all $x \in L$

Lie algebras

Lie algebra L

- Lie bracket $[x, y]$
- Bilinear
- $[x, x]=0$ for all $x \in L$
- $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$ for all $x, y, z \in L$

The Lie algebra $\mathfrak{s l}_{2}(\mathbb{C})$

- Bracket operation $[a, b]=a b-b a$
- Basis elements

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Relations $[e, f]=h,[h, e]=2 e,[h, f]=-2 f$

The Lie algebra $\mathfrak{s l}_{2}(\mathbb{C})$

- Bracket operation $[a, b]=a b-b a$
- Basis elements

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Relations $[e, f]=h,[h, e]=2 e,[h, f]=-2 f$
- Proctor, Stanley: if there is an $\mathfrak{s l}_{2}$ representation on $\mathbb{C} P$ respecting the order of P, then P is
- rank symmetric
- rank unimodal
- Sperner

$\mathfrak{s l}_{2}$ representations

We want a lowering operator F and a raising operator E on $\mathbb{C}[e, \pi]_{R}$ so that

- $F(\sigma)$ is a linear combination of permutations covered by σ
- $E(\sigma)$ is a linear combination of permutations of rank $\ell(\sigma)+1$
- $[E, F]=H$ is diagonal with $H(\sigma)=(2 \ell(\sigma)-\ell(\pi)) \sigma$.

Given F, there is at most one E that works (Jacobson and Morozov).

Strong order on S_{n}

Another related order on S_{n} is the strong order, which has the same rank function with more relations.

The covering relation is that $\sigma \prec \tau$ if $\tau=\sigma(i j)$ and $\ell(\tau)=\ell(\sigma)+1$.

$\mathfrak{s l}_{2}$ repr. on S_{n}, weak order (Gaetz and Gao)

$$
\begin{gathered}
F \sigma=\sum_{i: \sigma(i i+1)<\sigma} i \sigma(i i+1) . \\
E \sigma=\sum_{\sigma \prec \sigma(i j)} w t(\sigma, \sigma(i j)) \sigma(i j) \\
H \sigma=\left(2 \ell(\sigma)-\ell\left(w_{0}\right)\right) \sigma
\end{gathered}
$$

where

$$
\mathrm{wt}(\sigma, \sigma(i j)):=1+2\left|\left\{k>j \mid \sigma_{i}<\sigma_{k}<\sigma_{j}\right\}\right| .
$$

$\mathfrak{s l}_{2}$ repr. on S_{n}, weak order (Gaetz and Gao)

Above are edge weights for order raising operator E (left) and lowering operator F (right). Example: $E[132]=[231]+3[312]$ and $F[132]=2[123]$.

$\mathfrak{s l}_{2}$ representation on $[e, \pi]_{R}$

Theorem

We can construct an $\mathfrak{s l}_{2}$ representation on $[e, \pi]_{R}$ by

$$
\begin{gathered}
\left.F \sigma=\sum_{i: \sigma(i} i+1\right)<\sigma \\
E \sigma=\sum_{\sigma \nless \sigma(i j) \leq \pi} w t^{\pi}(\sigma, \sigma(i j)) \sigma(i j) \\
H \sigma=(2 \ell(\sigma)-\ell(\pi)) \sigma
\end{gathered}
$$

where

$$
\begin{aligned}
\mathrm{wt}^{\pi}(\sigma, \sigma(i j)):=1 & +\left|\left\{k>j \mid \sigma_{i}<\sigma_{k}<\sigma_{j}\right\}\right| \\
& +\left|\left\{k>j \mid \pi^{-1}\left(\sigma_{j}\right)<\pi^{-1}\left(\sigma_{k}\right)<\pi^{-1}\left(\sigma_{i}\right)\right\}\right| .
\end{aligned}
$$

$\mathfrak{S L}_{2}$ representation on $[e, \pi]_{R}$

Above are edge weights for order raising operator E (left) and lowering operator F (right).

Schubert polynomials

$$
\mathfrak{S}_{w_{0}}=x_{1}^{n-1} x_{2}^{n-2} \ldots x_{n-1}^{1}
$$

Let N_{i} act on a polynomial f by:

$$
N_{i} f=\frac{f-s_{i} \cdot f}{x_{i}-x_{i+1}}
$$

We have the recursive relation $\mathfrak{S}_{s_{i} \sigma}=N_{i} \mathfrak{S}_{\sigma}$ if $\ell\left(s_{i} \sigma\right)=\ell(\sigma)-1$.

Schubert polynomials

$\mathfrak{S}_{w_{0}}=x_{1}^{n-1} x_{2}^{n-2} \ldots x_{n-1}^{1}$
Let N_{i} act on a polynomial f by:

$$
N_{i} f=\frac{f-s_{i} \cdot f}{x_{i}-x_{i+1}}
$$

We have the recursive relation $\mathfrak{S}_{s_{i} \sigma}=N_{i} \mathfrak{S}_{\sigma}$ if $\ell\left(s_{i} \sigma\right)=\ell(\sigma)-1$.
Examples:
$-\mathfrak{S}_{3412}=x_{1}^{2} x_{2}^{2}$.
$-\mathfrak{S}_{1432}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{2}^{2} x_{3}$.

Principal evaluations of Schubert polynomials

Corollary

If $\sigma \in[e, \pi]_{R}$ with π 132-avoiding, then

$$
\mathfrak{S}_{\sigma}(1,1,1, \ldots, 1)=\frac{1}{(\ell(\pi)-\ell(\sigma))!} \sum_{\sigma \prec \sigma^{1} \prec \ldots \prec \pi} \prod_{i} w t^{\pi}\left(\sigma^{i}, \sigma^{i+1}\right) .
$$

If σ is 132 -avoiding, we can use $\pi=\sigma$ which makes the product empty, so $\mathfrak{S}_{\sigma}(1,1,1, \ldots, 1)=1$.

Principal evaluations of Schubert polynomials

Corollary

If $\sigma \in[e, \pi]_{R}$ with π 132-avoiding, then

$$
\mathfrak{S}_{\sigma}(1,1,1, \ldots, 1)=\frac{1}{(\ell(\pi)-\ell(\sigma))!} \sum_{\sigma \prec \sigma^{1} \prec \ldots \prec \pi} \prod_{i} w t^{\pi}\left(\sigma^{i}, \sigma^{i+1}\right) .
$$

If σ is 132 -avoiding, we can use $\pi=\sigma$ which makes the product empty, so $\mathfrak{S}_{\sigma}(1,1,1, \ldots, 1)=1$.

Examples:

- $\mathfrak{S}_{3412}(1,1,1,1)=1$.
- $\mathfrak{S}_{1432}(1,1,1,1)=5$.

Acknowledgements

- MIT PRIMES USA
- My mentor Christian Gaetz
- My parents

Bibliography

[1] R. A. Proctor, "Representations of $\mathfrak{s l}(2, \mathbb{C})$ on posets and the Sperner property," SIAM J. Algebraic Discrete Methods, vol. 3, no. 2, pp. 275-280, 1982, ISSN: 0002-9890. DOi: 10.1137/0603026. [Online]. Available: https://doi.org/10.1137/0603026.
[2] R. P. Stanley, "Weyl groups, the hard Lefschetz theorem, and the Sperner property," SIAM J. Algebraic Discrete Methods, vol. 1, no. 2, pp. 168-184, 1980, ISSN: 0196-5212. DOI: 10.1137/0601021. [Online]. Available: https://doi.org/10.1137/0601021.
[3] V. V. Morozov, "On a nilpotent element in a semi-simple Lie algebra," C. R. (Doklady) Acad. Sci. URSS (N.S.), vol. 36, pp. 83-86, 1942.
[4] C. Gaetz and Y. Gao, "A combinatorial $\mathfrak{s l}_{2}$-action and the Sperner property for the weak order," Proc. Amer. Math. Soc., vol. 148, no. 1, pp. 1-7, 2020, ISSN: 0002-9939. DOI: $10.1090 /$ proc/14655. [Online]. Available: https://doi-org.libproxy.mit.edu/10.1090/proc/14655.

