Ratios of Naruse-Newton Coefficients Obtained from Descent Polynomials

Andrew Cai
Mentor: Pakawut Jiradilok

October 18, 2020
MIT PRIMES Conference

Descent Polynomials

- Descent set of a permutation $\pi \in S_{n}$ is the set of positions i such that $\pi_{i}>\pi_{i+1}$.

Descent Polynomials

- Descent set of a permutation $\pi \in S_{n}$ is the set of positions i such that $\pi_{i}>\pi_{i+1}$.
- For example, the descent set of the permutation 623145 is the positions $\{1,3\}$.

Descent Polynomials

- Descent set of a permutation $\pi \in S_{n}$ is the set of positions i such that $\pi_{i}>\pi_{i+1}$.
- For example, the descent set of the permutation 623145 is the positions $\{1,3\}$.
- A descent polynomial is the unique polynomial $d_{l}(n)$ such that $d_{l}(n)=\#$ of $\left\{\pi \in S_{n} \mid I\right.$ is the descent set of $\left.\pi\right\}$ for all $n>\max (I \cup\{0\})$.

Descent Polynomials

- Descent set of a permutation $\pi \in S_{n}$ is the set of positions i such that $\pi_{i}>\pi_{i+1}$.
- For example, the descent set of the permutation 623145 is the positions $\{1,3\}$.
- A descent polynomial is the unique polynomial $d_{l}(n)$ such that $d_{l}(n)=\#$ of $\left\{\pi \in S_{n} \mid I\right.$ is the descent set of $\left.\pi\right\}$ for all $n>\max (I \cup\{0\})$.
- For example, if $I=\{1\}$, then the value $d_{l}(n)$ counts the number of permutations $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ of $[n]=\{1,2, \ldots, n\}$ such that $w_{1}>w_{2}<w_{3}<\cdots<w_{n}$. Then, $d_{l}(n)=n-1$.

Ribbons and Ribbon Tableaux

- A ribbon is defined as a path of adjacent cells going up and to the right without a 2×2 square.

Ribbons and Ribbon Tableaux

- A ribbon is defined as a path of adjacent cells going up and to the right without a 2×2 square.
- Examples of ribbons (white cells only):

Ribbons and Ribbon Tableaux

- A ribbon is defined as a path of adjacent cells going up and to the right without a 2×2 square.
- Examples of ribbons (white cells only):

- Given a ribbon, a ribbon tableau is a filling of its n cells with [n] such that each cell's value is less than those immediately below it or to its right.

Ribbons and Ribbon Tableaux

- A ribbon is defined as a path of adjacent cells going up and to the right without a 2×2 square.
- Examples of ribbons (white cells only):

- Given a ribbon, a ribbon tableau is a filling of its n cells with [n] such that each cell's value is less than those immediately below it or to its right.
- Three ribbon tableaux of the same ribbon shape:

		4
	1	6
2	3	
5		

		3
	2	5
1	6	
4		

		5
	3	6
1	4	
2		

Two Important Bijections

- There exists a bijection between ribbon tableaux and permutations, and a bijection between ribbon shapes of exactly n cells and descent sets $I \subseteq[n-1]=\{1,2, \ldots, n-1\}$.

Two Important Bijections

- There exists a bijection between ribbon tableaux and permutations, and a bijection between ribbon shapes of exactly n cells and descent sets $I \subseteq[n-1]=\{1,2, \ldots, n-1\}$.
- Each fixed descent set I and fixed integer n such that $I \subseteq[n-1]$ corresponds to the ribbon $\operatorname{rib}_{n}(I)$ with n cells.

Two Important Bijections

- There exists a bijection between ribbon tableaux and permutations, and a bijection between ribbon shapes of exactly n cells and descent sets $I \subseteq[n-1]=\{1,2, \ldots, n-1\}$.
- Each fixed descent set I and fixed integer n such that $I \subseteq[n-1]$ corresponds to the ribbon $\operatorname{rib}_{n}(I)$ with n cells.
- Define t as the number of cells to the right of the second row of $\operatorname{rib}_{n}(I)$. Note that $n=t+m$, where $m:=\max (I)+1$.

Two Important Bijections

- There exists a bijection between ribbon tableaux and permutations, and a bijection between ribbon shapes of exactly n cells and descent sets $I \subseteq[n-1]=\{1,2, \ldots, n-1\}$.
- Each fixed descent set I and fixed integer n such that $I \subseteq[n-1]$ corresponds to the ribbon $\operatorname{rib}_{n}(I)$ with n cells.
- Define t as the number of cells to the right of the second row of $\operatorname{rib}_{n}(I)$. Note that $n=t+m$, where $m:=\max (I)+1$.
- Examples of rib ${ }_{n}(I)$ when $I=\{1,4,5\}$, where t is represented by the number of bolded cells:

$n=6$

$n=7$

$n=8$

Naruse's Formula

- Let $f^{r i b_{n}(I)}$ denote the number of ribbon tableaux of n cells with ribbon shape corresponding to I.

Naruse's Formula

- Let $f^{r i b_{n}(I)}$ denote the number of ribbon tableaux of n cells with ribbon shape corresponding to I.
- By the bijection described previously between descent sets $I \subseteq[n-1]$ and ribbons with n cells, we know $d_{l}(n)=f^{r i b_{n}(I)}$.

Naruse's Formula

- Let $f^{\text {rib }}{ }_{n}(I)$ denote the number of ribbon tableaux of n cells with ribbon shape corresponding to I.
- By the bijection described previously between descent sets $I \subseteq[n-1]$ and ribbons with n cells, we know $d_{l}(n)=f^{r i b_{n}(I)}$.
- We have from Naruse's Hook Length Formula that

$$
\begin{gathered}
d_{l}(n)=f^{r i b_{n}(I)}=f^{r i b_{t+m}(I)}= \\
\underbrace{\frac{(m+t)!}{(t-1)!}\left(\prod \frac{1}{h(c)}\right)\left(\prod \frac{1}{t+\alpha_{i}}\right)}_{P(t)} \cdot E(t) .
\end{gathered}
$$

Expansion of $d_{l}(n)$

- Hence, we have

$$
d_{l}(t+m)=\underbrace{\frac{(m+t)!}{(t-1)!}\left(\prod \frac{1}{h(c)}\right)\left(\prod \frac{1}{t+\alpha_{i}}\right)}_{P(t)} \cdot E(t)
$$

Expansion of $d_{l}(n)$

- Hence, we have

$$
d_{l}(t+m)=\underbrace{\frac{(m+t)!}{(t-1)!}\left(\prod \frac{1}{h(c)}\right)\left(\prod \frac{1}{t+\alpha_{i}}\right)}_{P(t)} \cdot E(t)
$$

- Naruse's Formula gives us the trivial product of monomials of $P(t)$.

Figure: The hook length (defined as the number of cells weakly below or to the right of a cell) of a cell is denoted $h(c)$, while the hook length of the i th position of the first row is $t+\alpha_{i}-1$.

Expansion of $d_{l}(n)$

- Hence, we have

$$
d_{l}(t+m)=\underbrace{\frac{(m+t)!}{(t-1)!}\left(\prod \frac{1}{h(c)}\right)\left(\prod \frac{1}{t+\alpha_{i}}\right)}_{P(t)} \cdot E(t)
$$

- Naruse's Formula gives us the trivial product of monomials of $P(t)$.
- Meanwhile, $E(t)$ has more combinatorial significance given its mystery, so it is the subject of our interest.

Figure: The hook length (defined as the number of cells weakly below or to the right of a cell) of a cell is denoted $h(c)$, while the hook length of the i th position of the first row is $t+\alpha_{i}-1$.

Naruse-Newton Coefficients

- For fixed descent set I, let $s+1$ be the width of $\operatorname{rib}_{m}(I)=\operatorname{rib}(I)$, and α_{i} be as shown previously.

Naruse-Newton Coefficients

- For fixed descent set I, let $s+1$ be the width of $\operatorname{rib}_{m}(I)=\operatorname{rib}(I)$, and α_{i} be as shown previously.

Definition

The Naruse-Newton coefficients $C_{0}, C_{1}, \ldots, C_{s}$ are positive integers defined such that

$$
E(t)=C_{0}\left(t+\alpha_{1}\right) \cdots\left(t+\alpha_{s}\right)+\cdots+C_{s-1}\left(t+\alpha_{1}\right)+C_{s}
$$

Naruse-Newton Coefficients

- For fixed descent set I, let $s+1$ be the width of $\operatorname{rib}_{m}(I)=\operatorname{rib}(I)$, and α_{i} be as shown previously.

Definition

The Naruse-Newton coefficients $C_{0}, C_{1}, \ldots, C_{s}$ are positive integers defined such that

$$
E(t)=C_{0}\left(t+\alpha_{1}\right) \cdots\left(t+\alpha_{s}\right)+\cdots+C_{s-1}\left(t+\alpha_{1}\right)+C_{s}
$$

- We know the Naruse-Newton coefficients $C_{0}, C_{1}, \ldots, C_{s}$ must be positive integers because Jiradilok and McConville have given their combinatorial interpretation.

Naruse-Newton Coefficients

- For fixed descent set I, let $s+1$ be the width of $\operatorname{rib}_{m}(I)=\operatorname{rib}(I)$, and α_{i} be as shown previously.

Definition

The Naruse-Newton coefficients $C_{0}, C_{1}, \ldots, C_{s}$ are positive integers defined such that

$$
E(t)=C_{0}\left(t+\alpha_{1}\right) \cdots\left(t+\alpha_{s}\right)+\cdots+C_{s-1}\left(t+\alpha_{1}\right)+C_{s}
$$

- We know the Naruse-Newton coefficients $C_{0}, C_{1}, \ldots, C_{s}$ must be positive integers because Jiradilok and McConville have given their combinatorial interpretation.
- What are some properties of these coefficients?

Previous Research

- Throughout the past decade, mathematicians have studied properties of the peak polynomial, and many have later used the motivation from these results to study descent polynomials.

Previous Research

- Throughout the past decade, mathematicians have studied properties of the peak polynomial, and many have later used the motivation from these results to study descent polynomials.
- Diaz-Lopez et al. have produced results, including an important conjecture regarding the location of roots of descent polynomials.

Previous Research

- Throughout the past decade, mathematicians have studied properties of the peak polynomial, and many have later used the motivation from these results to study descent polynomials.
- Diaz-Lopez et al. have produced results, including an important conjecture regarding the location of roots of descent polynomials.
- They studied descent polynomials written in the falling-factorial basis in order to search for patterns and bounds. This was followed by Bencs, who studied the descent polynomial in two other bases.

Previous Research

- Throughout the past decade, mathematicians have studied properties of the peak polynomial, and many have later used the motivation from these results to study descent polynomials.
- Diaz-Lopez et al. have produced results, including an important conjecture regarding the location of roots of descent polynomials.
- They studied descent polynomials written in the falling-factorial basis in order to search for patterns and bounds. This was followed by Bencs, who studied the descent polynomial in two other bases.
- Jiradilok and McConville later examined ratios between Naruse-Newton coefficients (constructed through Naruse's extension of the Hook Length Formula). They used analytic properties to prove the aforementioned conjecture.

Previous Research

- Throughout the past decade, mathematicians have studied properties of the peak polynomial, and many have later used the motivation from these results to study descent polynomials.
- Diaz-Lopez et al. have produced results, including an important conjecture regarding the location of roots of descent polynomials.
- They studied descent polynomials written in the falling-factorial basis in order to search for patterns and bounds. This was followed by Bencs, who studied the descent polynomial in two other bases.
- Jiradilok and McConville later examined ratios between Naruse-Newton coefficients (constructed through Naruse's extension of the Hook Length Formula). They used analytic properties to prove the aforementioned conjecture.
- Our research seeks to determine more properties about these Naruse-Newton coefficients.

Ratios of Naruse-Newton Coefficients

Proposition 2.4 (Jiradilok, McConville 2019)
For a fixed non-empty descent set I with the width of rib(I) equal to $s+1$,

$$
\frac{C_{0}}{0!} \geq \frac{C_{1}}{1!} \geq \cdots \geq \frac{C_{s}}{s!}
$$

Ratios of Naruse-Newton Coefficients

Proposition 2.4 (Jiradilok, McConville 2019)

For a fixed non-empty descent set I with the width of rib(I) equal to $s+1$,

$$
\frac{C_{0}}{0!} \geq \frac{C_{1}}{1!} \geq \cdots \geq \frac{C_{5}}{s!} .
$$

- Note that for $i<j$, this is equivalent to

$$
C_{i, j}:=\frac{C_{i}}{C_{j}} \geq \frac{i!}{j!} .
$$

Ratios of Naruse-Newton Coefficients

Proposition 2.4 (Jiradilok, McConville 2019)

For a fixed non-empty descent set I with the width of rib(I) equal to $s+1$,

$$
\frac{C_{0}}{0!} \geq \frac{C_{1}}{1!} \geq \cdots \geq \frac{C_{s}}{s!}
$$

- Note that for $i<j$, this is equivalent to

$$
C_{i, j}:=\frac{C_{i}}{C_{j}} \geq \frac{i!}{j!} .
$$

- Natural next question: What are the equality cases?

Equality Cases

Theorem (C.)

Let I be a non-empty descent set of positive integers, and let k be the number of columns of rib(I) with height 2. Then, for positive integers $i<j$, we have $C_{i, j}=\frac{i!}{j!}$ if and only if $i, j \leq k$.

Equality Cases

Theorem (C.)

Let I be a non-empty descent set of positive integers, and let k be the number of columns of rib(I) with height 2. Then, for positive integers $i<j$, we have $C_{i, j}=\frac{i!}{j!}$ if and only if $i, j \leq k$.

- This theorem implies that

$$
\frac{C_{0}}{0!}=\frac{C_{1}}{1!}=\cdots=\frac{C_{k-1}}{(k-1)!}=\frac{C_{k}}{k!}>\frac{C_{k+1}}{(k+1)!}>\cdots>\frac{C_{s}}{s!} .
$$

Equality Cases

Theorem (C.)

Let I be a non-empty descent set of positive integers, and let k be the number of columns of rib(I) with height 2. Then, for positive integers $i<j$, we have $C_{i, j}=\frac{i!}{j!}$ if and only if $i, j \leq k$.

- This theorem implies that

$$
\frac{C_{0}}{0!}=\frac{C_{1}}{1!}=\cdots=\frac{C_{k-1}}{(k-1)!}=\frac{C_{k}}{k!}>\frac{C_{k+1}}{(k+1)!}>\cdots>\frac{C_{s}}{s!} .
$$

- An extension of Jiradilok and McConville's Cor. 3.5, which proved

$$
\frac{C_{0}}{0!}=\frac{C_{1}}{1!}=\cdots=\frac{C_{k-1}}{(k-1)!} \geq \frac{C_{k}}{k!} \geq \frac{C_{k+1}}{(k+1)!} \geq \cdots \geq \frac{C_{s}}{s!} .
$$

Equality Cases

Theorem (C.)

Let I be a non-empty descent set of positive integers, and let k be the number of columns of rib(I) with height 2. Then, for positive integers $i<j$, we have $C_{i, j}=\frac{i!}{j!}$ if and only if $i, j \leq k$.

- This theorem implies that

$$
\frac{C_{0}}{0!}=\frac{C_{1}}{1!}=\cdots=\frac{C_{k-1}}{(k-1)!}=\frac{C_{k}}{k!}>\frac{C_{k+1}}{(k+1)!}>\cdots>\frac{C_{s}}{s!} .
$$

- An extension of Jiradilok and McConville's Cor. 3.5, which proved

$$
\frac{C_{0}}{0!}=\frac{C_{1}}{1!}=\cdots=\frac{C_{k-1}}{(k-1)!} \geq \frac{C_{k}}{k!} \geq \frac{C_{k+1}}{(k+1)!} \geq \cdots \geq \frac{C_{s}}{s!} .
$$

- Sketch of Proof:

Adding Cells

Proposition (C.)

Let I be a non-empty set of positive integers, and let rib(J) be rib(I) with a cell appended to the left of its lower left cell. Then, if positive integers a and b are defined such that $s \geq b>k$ and $b>a \geq 0$, and k is the number of columns of rib (I) with height 2 , then $C_{a, b}(I)>C_{a, b}(J)$.

Adding Cells

Proposition (C.)

Let I be a non-empty set of positive integers, and let rib(J) be rib(I) with a cell appended to the left of its lower left cell. Then, if positive integers a and b are defined such that $s \geq b>k$ and $b>a \geq 0$, and k is the number of columns of rib(I) with height 2 , then $C_{a, b}(I)>C_{a, b}(J)$.

Figure:
Appending a cell to the lower left of a ribbon.

- From this proposition, we have proven that $C_{a, b}>\frac{a!}{b!}$ if $b>k$. Proving equality for $k \geq b$ comes down to simple computation. \square

Values of $C_{a, b}$

- We've now determined the minimum possible value of $C_{a, b}$ for fixed $a<b$. This leads us to wonder, what is the maximum value $C_{a, b}$ can obtain?

Values of $C_{a, b}$

- We've now determined the minimum possible value of $C_{a, b}$ for fixed $a<b$. This leads us to wonder, what is the maximum value $C_{a, b}$ can obtain?
- Define $R_{a, b}=\left\{C_{a, b}(I) \mid I\right.$ descent set $\}$.

Values of $C_{a, b}$

- We've now determined the minimum possible value of $C_{a, b}$ for fixed $a<b$. This leads us to wonder, what is the maximum value $C_{a, b}$ can obtain?
- Define $R_{a, b}=\left\{C_{a, b}(I) \mid I\right.$ descent set $\}$.

Figure: Adding three cells to the leftmost column of a ribbon.

- Define ϕ to be the function that adds one cell to the bottom of the leftmost column of rib(I). Define ψ to be the function that removes all cells in the leftmost column of rib(I). For example, the figure to the left illustrates $\phi^{3}(I)$ and the figure to the right illustrates $\psi^{2}(I)$.

Figure: Removing two leftmost columns of a ribbon.

Construction of Maxima

Theorem (C.)
Take nonnegative integers a and b such that $b>a \geq 0$, and let λ_{1} denote the width of the first row of rib(I). Set either $s=b$ if $\lambda_{1}=2$ or $s>b$ if $\lambda_{1}>2$. Then,

$$
\lim _{n \rightarrow \infty} C_{a, b}\left(\phi^{n}(I)\right)= \begin{cases}\infty, & \lambda_{1}=2 \\ C_{a, b}(\psi(I)), & \lambda_{1}>2\end{cases}
$$

Figure: If $\lambda_{1}=2$.

Figure: If $\lambda_{1}>2$.

Closures and Limit Points

- This leads us to ask: Which values are in the set $R_{a, b}$?

Closures and Limit Points

- This leads us to ask: Which values are in the set $R_{a, b}$?
- We know that $R_{a, b} \subseteq \mathbb{Q}$ since $C_{a}, C_{b} \in \mathbb{N}$.

Closures and Limit Points

- This leads us to ask: Which values are in the set $R_{a, b}$?
- We know that $R_{a, b} \subseteq \mathbb{Q}$ since $C_{a}, C_{b} \in \mathbb{N}$.
- Could the closure (union of all points in a set and all limit points of a set) of $R_{a, b}$ be $\left\{x \in \mathbb{R} \left\lvert\, x \geq \frac{a!}{b!}\right.\right\}$?

Closures and Limit Points

- This leads us to ask: Which values are in the set $R_{a, b}$?
- We know that $R_{a, b} \subseteq \mathbb{Q}$ since $C_{a}, C_{b} \in \mathbb{N}$.
- Could the closure (union of all points in a set and all limit points of a set) of $R_{a, b}$ be $\left\{x \in \mathbb{R} \left\lvert\, x \geq \frac{a!}{b!}\right.\right\}$?

Corollary (C.)

For any integers a and b such that $a<b$ and subset $R^{\prime} \subseteq R_{a, b}$ such that $\left|R_{a, b}-R^{\prime}\right|$ is finite, the closure $\overline{R^{\prime}}$ coincides with the closure $\overline{R_{a, b}}$ in the Euclidean topology.

Future Steps

- Further examine $R_{a, b}$ and its closure.

Future Steps

- Further examine $R_{a, b}$ and its closure.
- Determine if there exist operations to conduct on ribbons corresponding to descent sets, other than adding cells to its lower left cell, that create monotonic changes in ratios of Naruse-Newton coefficients.

Future Steps

- Further examine $R_{a, b}$ and its closure.
- Determine if there exist operations to conduct on ribbons corresponding to descent sets, other than adding cells to its lower left cell, that create monotonic changes in ratios of Naruse-Newton coefficients.
- Study the asymptotic growth of $C_{a, b}$ upon having specific operations conducted on I.

Acknowledgements

I would like to thank:

- My mentor, Pakawut Jiradilok.
- Prof. Etingof, Dr. Gerovitch, Dr. Khovanova, and everyone else who made this program possible.
- My family, and especially my parents.

References

- Ferenc Bencs. "Some coefficient sequences related to the descent polynomial". In: arXiv preprints (2018). arXiv:1806.00689.
- Alexander Diaz-Lopez et al. "Descent polynomials". In: Discrete Mathematics 342 (2019), pp. 1674-1686.
- Pakawut Jiradilok and Thomas McConville. "Roots of Descent Polynomials and an Algebraic Inequality on Hook Lengths". In: arXiv preprints (2019). arXiv:1910.14631.
- Hiroshi Naruse. "Schubert calculus and hook formula". In: Slides at 73rd Sem. Lothar. Combin., Strobl, Austria (2014).

