The Penney's Game with Group Action 2020 PRIMES Conference

Sean Li Mentor: Tanya Khovanova

October 17-18, 2020

Sean Li Mentor: Tanya Khovanova The Penney's Game with Group Action

Example (classic)

I repeatedly flip a coin. What is the expected number of flips for me to flip two heads in a row?

Example (classic)

I repeatedly flip a coin. What is the expected number of flips for me to flip two heads in a row?

• Markov chains with states \emptyset , H and end state HH to get EV of |6|.

伺 と く き と く き と

-

Example (classic)

I repeatedly flip a coin. What is the expected number of flips for me to flip two heads in a row?

• Markov chains with states \emptyset , H and end state HH to get EV of 6.

Modification

What about HT instead of HH?

-

Example (classic)

I repeatedly flip a coin. What is the expected number of flips for me to flip two heads in a row?

• Markov chains with states \emptyset , H and end state HH to get EV of 6.

Modification

What about HT instead of HH?

• Answer of 4; intuitively less since HT has no "reset."

Example (classic)

I repeatedly flip a coin. What is the expected number of flips for me to flip two heads in a row?

• Markov chains with states \emptyset , H and end state HH to get EV of 6.

Modification

What about *HT* instead of *HH*?

• Answer of 4; intuitively less since HT has no "reset."

General question

A random string is generated by attaching either H or T to the end of the string until the substring _____ appears. What is the expected length of the final string?

• In other words, calculate the expected wait time.

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

• Why does HH take longer than HT? Can we generalize?

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

- Why does HH take longer than HT? Can we generalize?
- More letters in the alphabet?

Problem (Rubinstein-Salzedo)

A monkey hits one of 26 letters at random each second. On average, how long will it take for the monkey to type the word ABRACADABRA?

- Why does HH take longer than HT? Can we generalize?
- More letters in the alphabet?

Problem (Rubinstein-Salzedo)

A monkey hits one of 26 letters at random each second. On average, how long will it take for the monkey to type the word ABRACADABRA?

• How many outputs of length ℓ do not contain a word except at the end?

- Why does HH take longer than HT? Can we generalize?
- More letters in the alphabet?

Problem (Rubinstein-Salzedo)

A monkey hits one of 26 letters at random each second. On average, how long will it take for the monkey to type the word ABRACADABRA?

- How many outputs of length ℓ do not contain a word except at the end?
- What if we stop when we see any word from a set S? (e.g. S = {HHHH, THHH}, leading to the concept of the Penney's game)

We designate an **alphabet** A with q letters.

Example

When flipping a coin, q = 2 and $A = \{H, T\}$, the *coin alphabet*.

<□> < => < => < => < = < の < @

We designate an **alphabet** A with q letters.

Example

When flipping a coin, q = 2 and $A = \{H, T\}$, the *coin alphabet*.

A word w avoids v if it does not contain any substring equal to v. We are interested in:

- words which avoid w, except for a single w at the end; and
- words which avoid a word w.

|▲□ → ▲ 臣 → ▲ 臣 → ○ へ ○

Word correlation

The **autocorrelation** of a word $w = w_1 w_2 \dots w_\ell$ of length ℓ is a vector

$$C(w,w) = (C_0, C_1, \ldots, C_{\ell-1})$$

of 0's and 1's, such that $C_k = 1$ iff w has period k, i.e. $w_i = w_{i+k}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Word correlation

The **autocorrelation** of a word $w = w_1 w_2 \dots w_\ell$ of length ℓ is a vector

$$C(w,w) = (C_0, C_1, \ldots, C_{\ell-1})$$

of 0's and 1's, such that $C_k = 1$ iff w has period k, i.e. $w_i = w_{i+k}$.

Example

Under the coin alphabet, the word w = HTHTH has autocorrelation C(w, w) = (1, 0, 1, 0, 1).

▲母▶ ▲臣▶ ▲臣▶ 三臣 めんゆ

Word correlation

The **autocorrelation** of a word $w = w_1 w_2 \dots w_\ell$ of length ℓ is a vector

$$C(w,w) = (C_0, C_1, \ldots, C_{\ell-1})$$

of 0's and 1's, such that $C_k = 1$ iff w has period k, i.e. $w_i = w_{i+k}$.

Example

Under the coin alphabet, the word w = HTHTH has autocorrelation C(w, w) = (1, 0, 1, 0, 1).

<u>HTHTH</u>		
НТНТН		ightarrow 1
HTHT	Н	ightarrow 0
HTH	TH	ightarrow 1
HT	HTH	ightarrow 0
Н	THTH	ightarrow 1

▲母▶ ▲臣▶ ▲臣▶ 三臣 めんゆ

Word correlation (pt. 2)

Similarly, we can define the **correlation** C(w, v) between two words w and v, even between words of different length.

(日本)

Word correlation (pt. 2)

Similarly, we can define the **correlation** C(w, v) between two words w and v, even between words of different length.

Example

Under the coin alphabet, the correlation C(HTHTTH, HTTHT) is equal to (0, 0, 1, 0, 0, 1).

<u>HTHTTH</u>		
HTTHT		ightarrow 0
HTTHT		ightarrow 0
HTTH	Т	ightarrow 1
HTT	HT	ightarrow 0
HT	THT	ightarrow 0
Н	TTHT	ightarrow 1

Say $C(w, w) = (C_0, C_1, \dots, C_{\ell-1})$. The **Conway leading number** wLw of a word w of length ℓ is

$$C_0 q^{\ell-1} + C_1 q^{\ell-2} + \cdots + C_{\ell-1}.$$

(Think base-q.)

Say $C(w, w) = (C_0, C_1, \dots, C_{\ell-1})$. The **Conway leading number** wLw of a word w of length ℓ is

$$C_0 q^{\ell-1} + C_1 q^{\ell-2} + \cdots + C_{\ell-1}.$$

(Think base-q.)

Theorem (Collings, 1982)

The expected wait time for a word w is precisely $q \cdot w L w$.

Sean Li Mentor: Tanya Khovanova The Penney's Game with Group Action

◆□ > ◆ ■ > ◆ ■ > ● ■ ● ● ●

Say $C(w, w) = (C_0, C_1, \dots, C_{\ell-1})$. The **Conway leading number** wLw of a word w of length ℓ is

$$C_0 q^{\ell-1} + C_1 q^{\ell-2} + \cdots + C_{\ell-1}.$$

(Think base-q.)

Theorem (Collings, 1982)

The expected wait time for a word w is precisely $q \cdot w L w$.

Example

On average, it takes $2(2^{4-0} + 2^{4-2} + 2^{4-4}) = 42$ letters to generate the string HTHTH.

◆□> ◆□> ◆三> ◆三> ● □ ● のへの

Say $C(w, w) = (C_0, C_1, \dots, C_{\ell-1})$. The **Conway leading number** wLw of a word w of length ℓ is

$$C_0 q^{\ell-1} + C_1 q^{\ell-2} + \cdots + C_{\ell-1}.$$

(Think base-q.)

Theorem (Collings, 1982)

The expected wait time for a word w is precisely $q \cdot w L w$.

Example

On average, it takes $2(2^{4-0} + 2^{4-2} + 2^{4-4}) = 42$ letters to generate the string HTHTH.

Example (Rubinstein-Salzedo)

On average, a monkey will take $26(26^{10} + 26^3 + 1) = 26^{11} + 26^4 + 26$ letters to type <u>ABRA</u>CAD<u>ABRA</u>.

If the avoiding set S has two words $\{w_A, w_B\}$, then we can turn this into a game (the **Penney's game**, a la Walter Penney): if Alice and Bob pick w_A and w_B , which word will appear first?

-

If the avoiding set S has two words $\{w_A, w_B\}$, then we can turn this into a game (the **Penney's game**, a la Walter Penney): if Alice and Bob pick w_A and w_B , which word will appear first?

The game is **non-transitive**: take the cycle

HHT < THH < TTH < HTT < HHT.

-

If the avoiding set S has two words $\{w_A, w_B\}$, then we can turn this into a game (the **Penney's game**, a la Walter Penney): if Alice and Bob pick w_A and w_B , which word will appear first?

The game is **non-transitive**: take the cycle

HHT < THH < TTH < HTT < HHT.

Theorem (Conway)

The odds that Alice wins are exactly

$$p_A: p_B = (w_B L w_B - w_B L w_A) : (w_A L w_A - w_A L w_B).$$

If the avoiding set S has two words $\{w_A, w_B\}$, then we can turn this into a game (the **Penney's game**, a la Walter Penney): if Alice and Bob pick w_A and w_B , which word will appear first?

The game is **non-transitive**: take the cycle

HHT < THH < TTH < HTT < HHT.

Theorem (Conway)

The odds that Alice wins are exactly

$$p_A: p_B = (w_B L w_B - w_B L w_A): (w_A L w_A - w_A L w_B).$$

Example

If Alice picks HTHT and Bob picks THTT, then Alice's chance of winning is $\frac{9}{14}$. Alice's expected wait time is 20, but Bob's is 18.

▲圖▶ ▲理▶ ▲理▶

Theorem (Guibas & Odlyzko)

If Alice picks her word $w_A = w(1)w(2) \dots w(\ell)$ first, then Bob has the best odds of winning when he chooses $w_B = w^*w(1)w(2) \dots w(\ell - 1)$ for some w^* . This is a winning strategy.

・回 ・ ・ ヨ ・ ・ ヨ ・ …

Theorem (Guibas & Odlyzko)

If Alice picks her word $w_A = w(1)w(2) \dots w(\ell)$ first, then Bob has the best odds of winning when he chooses $w_B = w^*w(1)w(2) \dots w(\ell - 1)$ for some w^* . This is a winning strategy.

Example

If Alice chooses HHHH and Bob chooses THHH, then the probability Bob's word appears first is $\frac{15}{16}.$

Best beater (pt. 2)

Figure: Directed graph of best beaters for $(q, \ell) = (2, 3)$.

Sean Li Mentor: Tanya Khovanova The Penney's Game with Group Action

э

Generating function system

For a word w, define

• the correlation polynomial

$$C_{v,w}(z) = C_0 + C_1 z + \cdots + C_{\ell-1} z^{\ell-1}$$

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ � � � �

Generating function system

For a word w, define

• the correlation polynomial

$$C_{v,w}(z) = C_0 + C_1 z + \cdots + C_{\ell-1} z^{\ell-1}.$$

- T_w(n) be the number of words of length n avoiding w, except for a single w at the end; and
- $A_w(n)$ be the number of words of length *n* avoiding *w*.

Generating function system

For a word w, define

• the correlation polynomial

$$C_{\nu,w}(z) = C_0 + C_1 z + \cdots + C_{\ell-1} z^{\ell-1}.$$

- T_w(n) be the number of words of length n avoiding w, except for a single w at the end; and
- A_w(n) be the number of words of length n avoiding w.
 We then define the generating functions

$$G(z) = \sum_{n=0}^{\infty} A_w(n) z^n, \quad G_w(z) = \sum_{n=0}^{\infty} T_w(n) z^n.$$

Theorem (Guibas & Odlyzko, 1978)

For a **reduced** set $S = \{w_1, w_2, ..., w_k\}$, the generating functions G(z), $G_{w_1}(z)$, $G_{w_2}(z)$, ..., $G_{w_k}(z)$ satisfy the following system of linear equations:

$$(1-qz)G(z) + G_{w_1}(z) + G_{w_2}(z) + \dots + G_{w_k}(z) = 1$$

$$G(z) - z^{-\ell_1}C_{w_1,w_1}(z)G_{w_1}(z) - \dots - z^{-\ell_k}C_{w_k,w_1}(z)G_{w_k}(z) = 0$$

$$G(z) - z^{-\ell_1}C_{w_1,w_2}(z)G_{w_1}(z) - \dots - z^{-\ell_k}C_{w_k,w_2}(z)G_{w_k}(z) = 0$$

$$G(z) - z^{-\ell_1} C_{w_1,w_k}(z) G_{w_1}(z) - \cdots - z^{-\ell_k} C_{w_k,w_k}(z) G_{w_k}(z) = 0$$

(本部) (本語) (本語) (語)

Motivating idea is generalizing the game: what if Alice and Bob pick sets of words? What if Alice can pick abaa, representing HTHH and THTT at the same time?

Motivating idea is generalizing the game: what if Alice and Bob pick sets of words? What if Alice can pick abaa, representing HTHH and THTT at the same time?

We generalize to a group action $\varphi : G \times A \to A$, thus sending words to words. A word *w* resides in an orbit $\mathcal{O}(w)$ under the action; a **pattern** is a representative (typically earliest lex. and *in lowercase*) from $\mathcal{O}(w)$. Alice and Bob pick patterns instead of words.

Motivating idea is generalizing the game: what if Alice and Bob pick sets of words? What if Alice can pick abaa, representing HTHH and THTT at the same time?

We generalize to a group action $\varphi : G \times A \to A$, thus sending words to words. A word *w* resides in an orbit $\mathcal{O}(w)$ under the action; a **pattern** is a representative (typically earliest lex. and *in lowercase*) from $\mathcal{O}(w)$. Alice and Bob pick patterns instead of words.

Example

Under the alphabet $\mathcal{A} = \{A, B, C\}$ and the cyclic action, the orbit of ABC is $\{ABC, BCA, CAB\}$ and corresponds to the pattern abc.

・ロト ・回 ト ・ヨト ・ヨト - ヨ

Motivating idea is generalizing the game: what if Alice and Bob pick sets of words? What if Alice can pick abaa, representing HTHH and THTT at the same time?

We generalize to a group action $\varphi : G \times A \to A$, thus sending words to words. A word *w* resides in an orbit $\mathcal{O}(w)$ under the action; a **pattern** is a representative (typically earliest lex. and *in lowercase*) from $\mathcal{O}(w)$. Alice and Bob pick patterns instead of words.

Example

Under the alphabet $\mathcal{A} = \{A, B, C\}$ and the cyclic action, the orbit of ABC is $\{ABC, BCA, CAB\}$ and corresponds to the pattern abc.

We can also define pattern correlation polynomials, and generating functions G(z) with avoiders of p, and $G_p(z)$ for first-timers of p.

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

How the Penney flips

• If w is in the orbit represented by p, then

$$\mathcal{C}(p,p) = \sum_{v \in \mathcal{O}(w)} \mathcal{C}(v,w).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

How the Penney flips

• If w is in the orbit represented by p, then

$$\mathcal{C}(p,p) = \sum_{v \in \mathcal{O}(w)} C(v,w).$$

• Generally, if w' is in the orbit represented by p', and w in the orbit of p, then

$$\mathcal{C}(p,p') = \sum_{v \in \mathcal{O}(w)} C(v,w').$$

→ □ → → 注 → ↓ 注 → りへぐ

How the Penney flips

• If w is in the orbit represented by p, then

$$\mathcal{C}(p,p) = \sum_{v \in \mathcal{O}(w)} C(v,w).$$

 Generally, if w' is in the orbit represented by p', and w in the orbit of p, then

$$\mathcal{C}(p,p') = \sum_{v \in \mathcal{O}(w)} C(v,w').$$

• The pattern Conway leading number and correlation polynomial

$$p\mathcal{L}p' = \mathcal{C}_0 q^{\ell-1} + \mathcal{C}_1 q^{\ell-2} + \dots + \mathcal{C}_{\ell-1};$$
$$\mathcal{C}_{p,p'}(z) = \mathcal{C}_0 + \mathcal{C}_1 z + \dots + \mathcal{C}_{\ell-1} z^{\ell-1}.$$

Theorem

For a **reduced** set $S = \{p_1, p_2, ..., p_k\}$ whose orbit sizes are $r_1, r_2, ..., r_k$, the generating functions G(z), $G_{p_1}(z)$, $G_{p_2}(z)$, ..., $G_{p_k}(z)$ satisfy the following system of linear equations:

$$(1-qz)G(z) + G_{p_1}(z) + G_{p_2}(z) + \cdots + G_{p_k}(z) = 1$$

$$G(z) - \frac{1}{r_1} z^{-\ell_1} C_{p_1,p_1}(z) G_{p_1}(z) - \dots - \frac{1}{r_k} z^{-\ell_k} C_{p_k,p_1}(z) G_{p_k}(z) = 0$$

$$G(z) - \frac{1}{r_1} z^{-\ell_1} C_{p_1,p_2}(z) G_{p_1}(z) - \dots - \frac{1}{r_k} z^{-\ell_k} C_{p_k,p_2}(z) G_{p_k}(z) = 0$$

$$G(z) - rac{1}{r_1} z^{-\ell_1} \mathcal{C}_{
ho_1,
ho_k}(z) G_{
ho_1}(z) - \cdots - rac{1}{r_k} z^{-\ell_k} \mathcal{C}_{
ho_k,
ho_k}(z) G_{
ho_k}(z) = 0$$

• All results from words carry over to patterns (expected value, odds, winning strategy for sufficiently long words)

- (同) (目) (目) (目)

• All results from words carry over to patterns (expected value, odds, winning strategy for sufficiently long words)

Theorem

Suppose Alice picks the pattern p_A and Bob picks the pattern p_B . The odds that Alice wins are exactly

$$\frac{1}{r_B}(p_B\mathcal{L}p_B-p_B\mathcal{L}p_A):\frac{1}{r_A}(p_A\mathcal{L}p_A-p_A\mathcal{L}p_B).$$

(Here r_A and r_B are orbit sizes.)

• All results from words carry over to patterns (expected value, odds, winning strategy for sufficiently long words)

Theorem

Suppose Alice picks the pattern p_A and Bob picks the pattern p_B . The odds that Alice wins are exactly

$$\frac{1}{r_B}(p_B\mathcal{L}p_B-p_B\mathcal{L}p_A):\frac{1}{r_A}(p_A\mathcal{L}p_A-p_A\mathcal{L}p_B).$$

(Here r_A and r_B are orbit sizes.)

• Cyclic action (using $G = C_q$) and symmetric action (using $G = S_q$)

(本部) (本語) (本語) (語)

• All results from words carry over to patterns (expected value, odds, winning strategy for sufficiently long words)

Theorem

Suppose Alice picks the pattern p_A and Bob picks the pattern p_B . The odds that Alice wins are exactly

$$\frac{1}{r_B}(p_B\mathcal{L}p_B-p_B\mathcal{L}p_A):\frac{1}{r_A}(p_A\mathcal{L}p_A-p_A\mathcal{L}p_B).$$

(Here r_A and r_B are orbit sizes.)

• Cyclic action (using $G = C_q$) and symmetric action (using $G = S_q$)

Theorem

For lengths $\ell < q - \sqrt{q}$ and under the symmetric action, Alice has a winning strategy by choosing a pattern with ℓ distinct letters $a_1a_2 \dots a_\ell$.

◆□> ◆□> ◆三> ◆三> ● □ ● のへの

Figure: Directed graph of Bob's best choices for $(q, \ell) = (4, 4)$.

-

- My mentor, Dr. Tanya Khovanova of MIT
- The PRIMES Program, especially Dr. Gerovitch & Dr. Etingof
- Peers at MIT-PRIMES and the attendees of MathROCs
- My parents :)

▲□> < □> < □> □ ○Q()

References

- Elwyn R. Berlekamp, John H. Conway and Richard K. Guy, Winning Ways for your Mathematical Plays, 2nd Edition, Volume 4, AK Peters, 2004, 885.
- Stanley Collings. Coin Sequence Probabilities and Paradoxes, *Inst. Math A*, **18** (1982), 227–232.
- L.J. Guibas and A.M. Odlyzko. String Overlaps, Pattern Matching, and Nontransitive Games, J. Comb. Theory A, 30 (1981), no. 2, 183–208.
- Walter Penney, Problem 95. Penney-Ante, J. Recreat. Math., 2 (1969), 241.

▲圖▶ ▲理▶ ▲理▶