The Penney's Game with Group Action 2020 PRIMES Conference

Sean Li
Mentor: Tanya Khovanova

October 17-18, 2020

Coin flipping problem

Example (classic)
I repeatedly flip a coin. What is the expected number of flips for me to flip two heads in a row?

Coin flipping problem

Example (classic)

I repeatedly flip a coin. What is the expected number of flips for me to flip two heads in a row?

- Markov chains with states \varnothing, H and end state $H H$ to get EV of 6 .

Coin flipping problem

Example (classic)

I repeatedly flip a coin. What is the expected number of flips for me to flip two heads in a row?

- Markov chains with states \varnothing, H and end state $H H$ to get EV of 6 .

Modification

What about HT instead of $H H$?

Coin flipping problem

Example (classic)

I repeatedly flip a coin. What is the expected number of flips for me to flip two heads in a row?

- Markov chains with states \varnothing, H and end state $H H$ to get EV of 6 .

Modification

What about HT instead of $H H$?

- Answer of 4 ; intuitively less since $H T$ has no "reset."

Coin flipping problem

Example (classic)

I repeatedly flip a coin. What is the expected number of flips for me to flip two heads in a row?

- Markov chains with states \varnothing, H and end state $H H$ to get EV of 6 .

Modification

What about HT instead of $H H$?

- Answer of 4 ; intuitively less since $H T$ has no "reset."

General question

A random string is generated by attaching either H or T to the end of the string until the substring \qquad appears. What is the expected length of the final string?

- In other words, calculate the expected wait time.

Natural questions

- Why does HH take longer than HT? Can we generalize?

Natural questions

- Why does HH take longer than HT? Can we generalize?
- More letters in the alphabet?

Problem (Rubinstein-Salzedo)

A monkey hits one of 26 letters at random each second. On average, how long will it take for the monkey to type the word ABRACADABRA?

Natural questions

- Why does HH take longer than HT? Can we generalize?
- More letters in the alphabet?

Problem (Rubinstein-Salzedo)

A monkey hits one of 26 letters at random each second. On average, how long will it take for the monkey to type the word ABRACADABRA?

- How many outputs of length ℓ do not contain a word except at the end?

Natural questions

- Why does HH take longer than HT? Can we generalize?
- More letters in the alphabet?

Problem (Rubinstein-Salzedo)

A monkey hits one of 26 letters at random each second. On average, how long will it take for the monkey to type the word ABRACADABRA?

- How many outputs of length ℓ do not contain a word except at the end?
- What if we stop when we see any word from a set S ? (e.g. $S=\{H H H H, T H H H\}$, leading to the concept of the Penney's game)

Basic terminology

We designate an alphabet \mathcal{A} with q letters.

Example

When flipping a coin, $q=2$ and $\mathcal{A}=\{\mathrm{H}, \mathrm{T}\}$, the coin alphabet.

Basic terminology

We designate an alphabet \mathcal{A} with q letters.

Example

When flipping a coin, $q=2$ and $\mathcal{A}=\{\mathrm{H}, \mathrm{T}\}$, the coin alphabet.
A word w avoids v if it does not contain any substring equal to v. We are interested in:

- words which avoid w, except for a single w at the end; and
- words which avoid a word w.

Word correlation

The autocorrelation of a word $w=w_{1} w_{2} \ldots w_{\ell}$ of length ℓ is a vector

$$
C(w, w)=\left(C_{0}, C_{1}, \ldots, C_{\ell-1}\right)
$$

of 0 's and 1 's, such that $C_{k}=1$ iff w has period k, i.e. $w_{i}=w_{i+k}$.

Word correlation

The autocorrelation of a word $w=w_{1} w_{2} \ldots w_{\ell}$ of length ℓ is a vector

$$
C(w, w)=\left(C_{0}, C_{1}, \ldots, C_{\ell-1}\right)
$$

of 0 's and 1 's, such that $C_{k}=1$ iff w has period k, i.e. $w_{i}=w_{i+k}$.

Example

Under the coin alphabet, the word $w=$ HTHTH has autocorrelation $C(w, w)=(1,0,1,0,1)$.

Word correlation

The autocorrelation of a word $w=w_{1} w_{2} \ldots w_{\ell}$ of length ℓ is a vector

$$
C(w, w)=\left(C_{0}, C_{1}, \ldots, C_{\ell-1}\right)
$$

of 0 's and 1 's, such that $C_{k}=1$ iff w has period k, i.e. $w_{i}=w_{i+k}$.

Example

Under the coin alphabet, the word $w=$ HTHTH has autocorrelation $C(w, w)=(1,0,1,0,1)$.

Word correlation (pt. 2)

Similarly, we can define the correlation $C(w, v)$ between two words w and v, even between words of different length.

Word correlation (pt. 2)

Similarly, we can define the correlation $C(w, v)$ between two words w and v, even between words of different length.

Example

Under the coin alphabet, the correlation C (HTHTTH, HTTHT) is equal to ($0,0,1,0,0,1$).

HTHTTH

HTTHT	$\rightarrow 0$
HTTHT	$\rightarrow 0$
HTTH T	$\rightarrow 1$
HTT HT	$\rightarrow 0$
HT THT	$\rightarrow 0$
H TTHT	$\rightarrow 1$

Expected wait times

Say $C(w, w)=\left(C_{0}, C_{1}, \ldots, C_{\ell-1}\right)$. The Conway leading number $w L w$ of a word w of length ℓ is

$$
C_{0} q^{\ell-1}+C_{1} q^{\ell-2}+\cdots+C_{\ell-1} .
$$

(Think base-q.)

Expected wait times

Say $C(w, w)=\left(C_{0}, C_{1}, \ldots, C_{\ell-1}\right)$. The Conway leading number $w L w$ of a word w of length ℓ is

$$
C_{0} q^{\ell-1}+C_{1} q^{\ell-2}+\cdots+C_{\ell-1} .
$$

(Think base-q.)

Theorem (Collings, 1982)
The expected wait time for a word w is precisely $q \cdot w L w$.

Expected wait times

Say $C(w, w)=\left(C_{0}, C_{1}, \ldots, C_{\ell-1}\right)$. The Conway leading number $w L w$ of a word w of length ℓ is

$$
C_{0} q^{\ell-1}+C_{1} q^{\ell-2}+\cdots+C_{\ell-1} .
$$

(Think base-q.)

Theorem (Collings, 1982)

The expected wait time for a word w is precisely $q \cdot w L w$.

Example

On average, it takes $2\left(2^{4-0}+2^{4-2}+2^{4-4}\right)=42$ letters to generate the string HTHTH.

Expected wait times

Say $C(w, w)=\left(C_{0}, C_{1}, \ldots, C_{\ell-1}\right)$. The Conway leading number $w L w$ of a word w of length ℓ is

$$
C_{0} q^{\ell-1}+C_{1} q^{\ell-2}+\cdots+C_{\ell-1} .
$$

(Think base-q.)

Theorem (Collings, 1982)

The expected wait time for a word w is precisely $q \cdot w L w$.

Example

On average, it takes $2\left(2^{4-0}+2^{4-2}+2^{4-4}\right)=42$ letters to generate the string HTHTH.

Example (Rubinstein-Salzedo)

On average, a monkey will take $26\left(26^{10}+26^{3}+1\right)=26^{11}+26^{4}+26$ letters to type ABRACADABRA.

The Penney's game

If the avoiding set S has two words $\left\{w_{A}, w_{B}\right\}$, then we can turn this into a game (the Penney's game, a la Walter Penney): if Alice and Bob pick w_{A} and w_{B}, which word will appear first?

The Penney's game

If the avoiding set S has two words $\left\{w_{A}, w_{B}\right\}$, then we can turn this into a game (the Penney's game, a la Walter Penney): if Alice and Bob pick w_{A} and w_{B}, which word will appear first?

The game is non-transitive: take the cycle

$$
\mathrm{HHT}<\mathrm{THH}<\mathrm{TTH}<\mathrm{HTT}<\mathrm{HHT} .
$$

The Penney's game

If the avoiding set S has two words $\left\{w_{A}, w_{B}\right\}$, then we can turn this into a game (the Penney's game, a la Walter Penney): if Alice and Bob pick w_{A} and w_{B}, which word will appear first?

The game is non-transitive: take the cycle

$$
\text { HHT }<\mathrm{THH}<\mathrm{TTH}<\mathrm{HTT}<\text { HHT. }
$$

Theorem (Conway)

The odds that Alice wins are exactly

$$
p_{A}: p_{B}=\left(w_{B} L w_{B}-w_{B} L w_{A}\right):\left(w_{A} L w_{A}-w_{A} L w_{B}\right) .
$$

The Penney's game

If the avoiding set S has two words $\left\{w_{A}, w_{B}\right\}$, then we can turn this into a game (the Penney's game, a la Walter Penney): if Alice and Bob pick w_{A} and w_{B}, which word will appear first?

The game is non-transitive: take the cycle

$$
\text { HHT }<\text { THH }<\mathrm{TTH}<\mathrm{HTT}<\text { HHT. }
$$

Theorem (Conway)

The odds that Alice wins are exactly

$$
p_{A}: p_{B}=\left(w_{B} L w_{B}-w_{B} L w_{A}\right):\left(w_{A} L w_{A}-w_{A} L w_{B}\right) .
$$

Example

If Alice picks HTHT and Bob picks THTT, then Alice's chance of winning is $\frac{9}{14}$. Alice's expected wait time is 20, but Bob's is 18 .

Best beater

Theorem (Guibas \& Odlyzko)

If Alice picks her word $w_{A}=w(1) w(2) \ldots w(\ell)$ first, then Bob has the best odds of winning when he chooses $w_{B}=w^{*} w(1) w(2) \ldots w(\ell-1)$ for some w^{*}. This is a winning strategy.

Best beater

Theorem (Guibas \& Odlyzko)

If Alice picks her word $w_{A}=w(1) w(2) \ldots w(\ell)$ first, then Bob has the best odds of winning when he chooses $w_{B}=w^{*} w(1) w(2) \ldots w(\ell-1)$ for some w^{*}. This is a winning strategy.

Example

If Alice chooses HHHH and Bob chooses THHH, then the probability Bob's word appears first is $\frac{15}{16}$.

Best beater (pt. 2)

Figure: Directed graph of best beaters for $(q, \ell)=(2,3)$.

Generating function system

For a word w, define

- the correlation polynomial

$$
C_{v, w}(z)=C_{0}+C_{1} z+\cdots+C_{\ell-1} z^{\ell-1} .
$$

Generating function system

For a word w, define

- the correlation polynomial

$$
C_{v, w}(z)=C_{0}+C_{1} z+\cdots+C_{\ell-1} z^{\ell-1} .
$$

- $T_{w}(n)$ be the number of words of length n avoiding w, except for a single w at the end; and
- $A_{w}(n)$ be the number of words of length n avoiding w.

Generating function system

For a word w, define

- the correlation polynomial

$$
C_{v, w}(z)=C_{0}+C_{1} z+\cdots+C_{\ell-1} z^{\ell-1} .
$$

- $T_{w}(n)$ be the number of words of length n avoiding w, except for a single w at the end; and
- $A_{w}(n)$ be the number of words of length n avoiding w.

We then define the generating functions

$$
G(z)=\sum_{n=0}^{\infty} A_{w}(n) z^{n}, \quad G_{w}(z)=\sum_{n=0}^{\infty} T_{w}(n) z^{n} .
$$

Extended results

Theorem (Guibas \& Odlyzko, 1978)

For a reduced set $S=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$, the generating functions $G(z)$, $G_{w_{1}}(z), G_{w_{2}}(z), \ldots, G_{w_{k}}(z)$ satisfy the following system of linear equations:

$$
\begin{gathered}
(1-q z) G(z)+G_{w_{1}}(z)+G_{w_{2}}(z)+\cdots+G_{w_{k}}(z)=1 \\
G(z)-z^{-\ell_{1}} C_{w_{1}, w_{1}}(z) G_{w_{1}}(z)-\cdots-z^{-\ell_{k}} C_{w_{k}, w_{1}}(z) G_{w_{k}}(z)=0 \\
G(z)-z^{-\ell_{1}} C_{w_{1}, w_{2}}(z) G_{w_{1}}(z)-\cdots-z^{-\ell_{k}} C_{w_{k}, w_{2}}(z) G_{w_{k}}(z)=0 \\
\vdots \\
G(z)-z^{-\ell_{1}} C_{w_{1}, w_{k}}(z) G_{w_{1}}(z)-\cdots-z^{-\ell_{k}} C_{w_{k}, w_{k}}(z) G_{w_{k}}(z)=0
\end{gathered}
$$

Patterns

Motivating idea is generalizing the game: what if Alice and Bob pick sets of words? What if Alice can pick abaa, representing HTHH and THTT at the same time?

Patterns

Motivating idea is generalizing the game: what if Alice and Bob pick sets of words? What if Alice can pick abaa, representing HTHH and THTT at the same time?

We generalize to a group action $\varphi: G \times \mathcal{A} \rightarrow \mathcal{A}$, thus sending words to words. A word w resides in an orbit $\mathcal{O}(w)$ under the action; a pattern is a representative (typically earliest lex. and in lowercase) from $\mathcal{O}(w)$. Alice and Bob pick patterns instead of words.

Patterns

Motivating idea is generalizing the game: what if Alice and Bob pick sets of words? What if Alice can pick abaa, representing HTHH and THTT at the same time?

We generalize to a group action $\varphi: G \times \mathcal{A} \rightarrow \mathcal{A}$, thus sending words to words. A word w resides in an orbit $\mathcal{O}(w)$ under the action; a pattern is a representative (typically earliest lex. and in lowercase) from $\mathcal{O}(w)$. Alice and Bob pick patterns instead of words.

Example

Under the alphabet $\mathcal{A}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ and the cyclic action, the orbit of ABC is $\{\mathrm{ABC}, \mathrm{BCA}, \mathrm{CAB}\}$ and corresponds to the pattern abc.

Patterns

Motivating idea is generalizing the game: what if Alice and Bob pick sets of words? What if Alice can pick abaa, representing HTHH and THTT at the same time?

We generalize to a group action $\varphi: G \times \mathcal{A} \rightarrow \mathcal{A}$, thus sending words to words. A word w resides in an orbit $\mathcal{O}(w)$ under the action; a pattern is a representative (typically earliest lex. and in lowercase) from $\mathcal{O}(w)$. Alice and Bob pick patterns instead of words.

Example

Under the alphabet $\mathcal{A}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ and the cyclic action, the orbit of ABC is $\{\mathrm{ABC}, \mathrm{BCA}, \mathrm{CAB}\}$ and corresponds to the pattern abc.

We can also define pattern correlation polynomials, and generating functions $G(z)$ with avoiders of p, and $G_{p}(z)$ for first-timers of p.

How the Penney flips

- If w is in the orbit represented by p, then

$$
\mathcal{C}(p, p)=\sum_{v \in \mathcal{O}(w)} C(v, w) .
$$

How the Penney flips

- If w is in the orbit represented by p, then

$$
\mathcal{C}(p, p)=\sum_{v \in \mathcal{O}(w)} C(v, w) .
$$

- Generally, if w^{\prime} is in the orbit represented by p^{\prime}, and w in the orbit of p, then

$$
\mathcal{C}\left(p, p^{\prime}\right)=\sum_{v \in \mathcal{O}(w)} C\left(v, w^{\prime}\right) .
$$

How the Penney flips

- If w is in the orbit represented by p, then

$$
\mathcal{C}(p, p)=\sum_{v \in \mathcal{O}(w)} C(v, w) .
$$

- Generally, if w^{\prime} is in the orbit represented by p^{\prime}, and w in the orbit of p, then

$$
\mathcal{C}\left(p, p^{\prime}\right)=\sum_{v \in \mathcal{O}(w)} C\left(v, w^{\prime}\right) .
$$

- The pattern Conway leading number and correlation polynomial

$$
\begin{aligned}
p \mathcal{L} p^{\prime} & =\mathcal{C}_{0} q^{\ell-1}+\mathcal{C}_{1} q^{\ell-2}+\cdots+\mathcal{C}_{\ell-1} ; \\
\mathcal{C}_{p, p^{\prime}}(z) & =\mathcal{C}_{0}+\mathcal{C}_{1} z+\cdots+\mathcal{C}_{\ell-1} z^{\ell-1} .
\end{aligned}
$$

How the Penney flips (pt. 2)

Theorem

For a reduced set $S=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ whose orbit sizes are $r_{1}, r_{2}, \ldots, r_{k}$, the generating functions $G(z), G_{p_{1}}(z), G_{p_{2}}(z), \ldots, G_{p_{k}}(z)$ satisfy the following system of linear equations:

$$
\begin{gathered}
(1-q z) G(z)+G_{p_{1}}(z)+G_{p_{2}}(z)+\cdots+G_{p_{k}}(z)=1 \\
G(z)-\frac{1}{r_{1}} z^{-\ell_{1}} \mathcal{C}_{p_{1}, p_{1}}(z) G_{p_{1}}(z)-\cdots-\frac{1}{r_{k}} z^{-\ell_{k}} \mathcal{C}_{p_{k}, p_{1}}(z) G_{p_{k}}(z)=0 \\
G(z)-\frac{1}{r_{1}} z^{-\ell_{1}} \mathcal{C}_{p_{1}, p_{2}}(z) G_{p_{1}}(z)-\cdots-\frac{1}{r_{k}} z^{-\ell_{k}} \mathcal{C}_{p_{k}, p_{2}}(z) G_{p_{k}}(z)=0 \\
\vdots \\
G(z)-\frac{1}{r_{1}} z^{-\ell_{1}} \mathcal{C}_{p_{1}, p_{k}}(z) G_{p_{1}}(z)-\cdots-\frac{1}{r_{k}} z^{-\ell_{k}} \mathcal{C}_{p_{k}, p_{k}}(z) G_{p_{k}}(z)=0
\end{gathered}
$$

How the Penney flips (pt. 3)

- All results from words carry over to patterns (expected value, odds, winning strategy for sufficiently long words)

How the Penney flips (pt. 3)

- All results from words carry over to patterns (expected value, odds, winning strategy for sufficiently long words)

Theorem

Suppose Alice picks the pattern p_{A} and Bob picks the pattern p_{B}. The odds that Alice wins are exactly

$$
\frac{1}{r_{B}}\left(p_{B} \mathcal{L} p_{B}-p_{B} \mathcal{L} p_{A}\right): \frac{1}{r_{A}}\left(p_{A} \mathcal{L} p_{A}-p_{A} \mathcal{L} p_{B}\right)
$$

(Here r_{A} and r_{B} are orbit sizes.)

How the Penney flips (pt. 3)

- All results from words carry over to patterns (expected value, odds, winning strategy for sufficiently long words)

Theorem

Suppose Alice picks the pattern p_{A} and Bob picks the pattern p_{B}. The odds that Alice wins are exactly

$$
\frac{1}{r_{B}}\left(p_{B} \mathcal{L} p_{B}-p_{B} \mathcal{L} p_{A}\right): \frac{1}{r_{A}}\left(p_{A} \mathcal{L} p_{A}-p_{A} \mathcal{L} p_{B}\right)
$$

(Here r_{A} and r_{B} are orbit sizes.)

- Cyclic action (using $G=C_{q}$) and symmetric action (using $G=S_{q}$)

How the Penney flips (pt. 3)

- All results from words carry over to patterns (expected value, odds, winning strategy for sufficiently long words)

Theorem

Suppose Alice picks the pattern p_{A} and Bob picks the pattern p_{B}. The odds that Alice wins are exactly

$$
\frac{1}{r_{B}}\left(p_{B} \mathcal{L} p_{B}-p_{B} \mathcal{L} p_{A}\right): \frac{1}{r_{A}}\left(p_{A} \mathcal{L} p_{A}-p_{A} \mathcal{L} p_{B}\right)
$$

(Here r_{A} and r_{B} are orbit sizes.)

- Cyclic action (using $G=C_{q}$) and symmetric action (using $G=S_{q}$)

Theorem

For lengths $\ell<q-\sqrt{q}$ and under the symmetric action, Alice has a winning strategy by choosing a pattern with ℓ distinct letters $a_{1} a_{2} \ldots a_{\ell}$.

How the Penney flips (pt. 4)

Figure: Directed graph of Bob's best choices for $(q, \ell)=(4,4)$.

Acknowledgements

- My mentor, Dr. Tanya Khovanova of MIT
- The PRIMES Program, especially Dr. Gerovitch \& Dr. Etingof
- Peers at MIT-PRIMES and the attendees of MathROCs
- My parents :)

References

Elwyn R. Berlekamp, John H. Conway and Richard K. Guy, Winning Ways for your Mathematical Plays, 2nd Edition, Volume 4, AK Peters, 2004, 885.
图 Stanley Collings. Coin Sequence Probabilities and Paradoxes, Inst. Math A, 18 (1982), 227-232.
L.J. Guibas and A.M. Odlyzko. String Overlaps, Pattern Matching, and Nontransitive Games, J. Comb. Theory A, 30 (1981), no. 2, 183-208.
囯 Walter Penney, Problem 95. Penney-Ante, J. Recreat. Math., 2 (1969), 241.

