On Generalized Carmichael Numbers

Tae Kyu Kim mentor: Yongyi Chen

Monta Vista High School

Oct 18, 2020 MIT PRIMES Conference

Theorem (Fermat, 1860)

If p is prime, then p divides $a^p - a$ for all integers a.

Example

5 is prime, so 5 divides

$$\begin{array}{ll} 0^5-0=0, & 3^5-3=240,\\ 1^5-1=0, & 4^5-4=1020.\\ 2^5-2=30, \end{array}$$

Question: Is the converse true?

Question: Is the converse true?

No! In 1910, Carmichael showed that 561 divides $a^{561} - a$ for all integers a.

Question: Is the converse true?

No! In 1910, Carmichael showed that 561 divides $a^{561} - a$ for all integers a.

Theorem (Korselt's criterion)

A positive integer n divides $a^n - a$ for all integers a if and only if n is squarefree and p - 1 divides n - 1 for all primes p dividing n.

Question: Is the converse true?

No! In 1910, Carmichael showed that 561 divides $a^{561} - a$ for all integers a.

Theorem (Korselt's criterion)

A positive integer n divides $a^n - a$ for all integers a if and only if n is squarefree and p - 1 divides n - 1 for all primes p dividing n.

Example (561 is a counterexample)

Prime factorization of 561: $3 \times 11 \times 17$. Notice that 3 - 1 = 2, 11 - 1 = 10, 17 - 1 = 16 divide 561 - 1 = 560.

Definition (Carmichael number)

The composite integers *n* with the property that *n* divides $a^n - a$ for all integers *a* are called the **Carmichael numbers**.

First 8 Carmichael numbers:

 $\{561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, \ldots\}$

Definition (Carmichael number)

The composite integers *n* with the property that *n* divides $a^n - a$ for all integers *a* are called the **Carmichael numbers**.

First 8 Carmichael numbers:

 $\{561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, \ldots\}$

Theorem (Alford, Granville, Pomerance)

There are infinitely many Carmichael numbers. The number of Carmichael numbers less than X is at least $X^{\frac{2}{7}}$ for sufficiently large X.

Conjecture (Erdős)

There are $X^{1-o(1)}$ Carmichael numbers less than X.

For what positive integers n does n divide $a^{n-1} - a$ for all integers a?

For what positive integers n does n divide $a^{n-1} - a$ for all integers a?

For every prime p dividing n, p - 1 must divide n.
 n is squarefree.

 $\implies n \in \{1, 2, 6, 42, 1806\}.$

Given an integer k, for what integers $n > \max(k, 0)$ does n divide $a^{n-k+1} - a$ for all integers a?

Given an integer k, for what integers $n > \max(k, 0)$ does n divide $a^{n-k+1} - a$ for all integers a?

Definition

$$\mathcal{C}_k = \{n > \max(k,0): n ext{ divides } a^{n-k+1} - a ext{ for all integers } a\}$$

 C_1 = all primes and Carmichael numbers $C_0 = \{1, 2, 6, 42, 1806\}$ $C_{-1} = ???$

First Steps

Proposition (Generalized Korselt's Criterion)

An integer $n > \max(k, 0)$ is in C_k if and only if n is squarefree and p - 1 divides n - k for all primes p dividing n.

First Steps

Proposition (Generalized Korselt's Criterion)

An integer $n > \max(k, 0)$ is in C_k if and only if n is squarefree and p - 1 divides n - k for all primes p dividing n.

Definition

The Carmichael function $\lambda(n)$ is defined as the smallest positive integer such that $a^{\lambda(n)} \equiv a \pmod{n}$ for all integers a.

For squarefree *n*,

$$\lambda(n) = \operatorname{lcm}_{p|n} \{p-1\}.$$

Proposition (Alternate Korselt's Criterion)

An integer $n > \max(k, 0)$ is in C_k if and only if n is squarefree and $\lambda(n)$ divides n - k.

k	C _k
1	$\{2, 3, 5, 7, 11, 13, 17, \ldots\}$
2	$\{6, 10, 14, 22, 26, 30, 34, \ldots\}$
3	$\{15, 21, 33, 39, 51, 57, 69, \ldots\}$
5	$\{65, 85, 145, 165, 185, 205, \ldots\}$

Table: C_k for k = 1, 2, 3, 5

Image: A match a ma

k	C _k
1	$\{2, 3, 5, 7, 11, 13, 17, \ldots\}$
2	$\{6, 10, 14, 22, 26, 30, 34, \ldots\}$
3	$\{15, 21, 33, 39, 51, 57, 69, \ldots\}$
5	$\{65, 85, 145, 165, 185, 205, \ldots\}$

Table: C_k for k = 1, 2, 3, 5

For squarefree k, set n = km where m is a squarefree integer coprime to k.

k	C _k
1	$\{2, 3, 5, 7, 11, 13, 17, \ldots\}$
2	$\{6, 10, 14, 22, 26, 30, 34, \ldots\}$
3	$\{15, 21, 33, 39, 51, 57, 69, \ldots\}$
5	$\{65, 85, 145, 165, 185, 205, \ldots\}$

Table: C_k for k = 1, 2, 3, 5

For squarefree k, set n = km where m is a squarefree integer coprime to k.

$$\lambda(n) \mid n-k \iff \lambda(km) \mid k(m-1)$$
 $\iff \begin{cases} \lambda(k) \mid k(m-1) \\ \lambda(m) \mid k(m-1) \end{cases}$

With n = km:

1 $\lambda(k) \mid k(m-1)$ leads to the congruence condition $m \equiv 1$ mod $\left(\frac{\lambda(k)}{\gcd(\lambda(k),k)}\right)$.

≥ $\lambda(m) \mid k(m-1)$ is a looser variant of $\lambda(m) \mid m-1$. In particular, all primes satisfy this condition.

With n = km:

$\begin{array}{l} \bullet \lambda(k) \mid k(m-1) \text{ leads to the congruence condition } m \equiv 1 \\ \mod \left(\frac{\lambda(k)}{\gcd(\lambda(k),k)}\right). \end{array}$

② $\lambda(m) | k(m-1)$ is a looser variant of $\lambda(m) | m-1$. In particular, all primes satisfy this condition.

Theorem (Dirichlet)

Let a, m be coprime integers. The number of primes $\equiv a \pmod{m}$ less than X is approximately $\frac{1}{\phi(m)} \cdot \frac{X}{\log(X)}$, where ϕ is Euler's Totient function. In particular, there are infinitely many primes $\equiv a \pmod{m}$.

Theorem (Makowski, 1962)

For any squarefree k > 0, there are infinitely many elements in C_k .

For
$$k > 0$$
: $C_k = \text{noise} + k \cdot \left\{ \text{primes} \equiv 1 \mod \left(\frac{\lambda(k)}{\gcd(\lambda(k),k)} \right) \right\}$.
For $k < 0$: $C_k = \text{noise}$.
(noise = generalized Carmichael numbers)

For
$$k > 0$$
: $C_k = \text{noise} + k \cdot \left\{ \text{primes} \equiv 1 \mod \left(\frac{\lambda(k)}{\gcd(\lambda(k), k)} \right) \right\}$
For $k < 0$: $C_k = \text{noise}$.
(noise = generalized Carmichael numbers)

Conjecture (Chen, Kim)

Let k > 0. Then

$$\lim_{X \to \infty} \frac{|C_{-k} \cap (0, X]|}{|C_k \cap (0, X]| - \frac{\gcd(\lambda(k), k)}{\lambda(k)} \pi\left(\frac{X}{k}\right)} = 1$$

where $\pi(X)$ denotes the number of primes $\leq X$.

• • • • • • • • • • • •

General patterns

- **1** n is usually a multiple of k
- 0 *n* and *k* usually share factors

General patterns

- n is usually a multiple of k
- 0 n and k usually share factors

Example

For k = -11 and large *n*: $C_{-11} = \{\dots, 283309, 306229, 319189, 337249, 352429, 382789, \dots\}$

General patterns

- **1** n is usually a multiple of k
- 0 n and k usually share factors

Example

For k = -11 and large *n*: $C_{-11} = \{\dots, 283309, 306229, 319189, 337249, 352429, 382789, \dots\}$

Heuristic (Chen, Kim)

For large $n \in C_k$ and small integers m, n - k will often be divisible by m. The proportion of n with such property increases with the value of n and decreases with the value of m.

Idea: for large *n*, *m* often divides $\lambda(n)$.

Simple cases (Short products)

Proposition (Halbeisen, Hungerbühler)

If $k \neq 1$, then C_k contains finitely many primes.

Proposition (Halbeisen, Hungerbühler)

Unless k > 0 and k is prime, there are finitely many pairs of primes p, q such that $pq \in C_k$.

Proposition (Chen, Kim)

For any integers k and l > k, there are finitely many pairs of primes p, q such that $lpq \in C_k$.

Corollary (Chen, Kim)

For any k < 0, there are finitely many triples of primes p, q, r such that $pqr \in C_k$ and p-1 divides q-1 and r-1.

Given integers a, k, for what integers n > max(k, 0) does n divide a^{n-k+1} − a? When does a^{n-k} − 1?

We extend the work of Kiss and Phong [KP87] on k > 0 to all integers k:

Theorem (Chen, Kim)

If $a \ge 2$ and k are integers with $(k, a) \ne (0, 2)$, there are infinitely many positive integers n such that $a^{n-k} \equiv 1 \pmod{n}$. If (k, a) = (0, 2), then there are no integers n > 1 such that $a^{n-k} \equiv 1 \pmod{n}$.

2 Given an integer k, for what n does $\lambda(n)$ divide n - k?

The exponents in the prime factorization of n are bounded by k:

Proposition (Chen, Kim)

If $\lambda(n)$ divides n - k and $n = \prod_{i=1}^{r} p_i^{e_i}$, then $\prod_{i=1}^{r} p_i^{e_i-1}$ divides k.

Historical background

- Fermat's little theorem, Carmichael numbers
- Korselt's criterion

Our research

- Generalization of Korselt's criterion
- Patterns in data \rightarrow theorems, conjectures, heuristics
- Simpler cases with 2, 3 prime factors
- Alternative problems

Special thanks to Stefan Wehmeier for suggesting the project and providing advice on the best direction for research. I would also like to thank Yongyi Chen for his immense support in mentoring this project. Finally, I would like to thank the MIT PRIMES program for the research opportunity.

References

William R Alford, Andrew Granville, and Carl Pomerance. There are infinitely many carmichael numbers. *Annals of Mathematics*, pages 703–722, 1994.

- Lorenz Halbeisen and Norbert Hungerbühler. On generalised carmichael numbers. Hardy-Ramanujan Journal, 1999.
- Péter Kiss and Bui Minh Phong. On a problem of a. rotkiewicz. Mathematics of computation, pages 751–755, 1987.

A. Makowski. Generalization of morrow's d-numbers. *Simon Stevin*, 36:71, 1962/1963.