On Generalized Carmichael Numbers

Tae Kyu Kim mentor: Yongyi Chen
Monta Vista High School

Oct 18, 2020
MIT PRIMES Conference

Historical Background

Theorem (Fermat, 1860)

If p is prime, then p divides $a^{p}-a$ for all integers a.

Example

5 is prime, so 5 divides

$$
\begin{array}{ll}
0^{5}-0=0, & 3^{5}-3=240 \\
1^{5}-1=0, & 4^{5}-4=1020 \\
2^{5}-2=30
\end{array}
$$

Question: Is the converse true?

Historical Background

Question: Is the converse true?
No! In 1910, Carmichael showed that 561 divides $a^{561}-a$ for all integers a.

Historical Background

Question: Is the converse true?

No! In 1910, Carmichael showed that 561 divides $a^{561}-a$ for all integers a.
Theorem (Korselt's criterion)
A positive integer n divides a^{n} - a for all integers a if and only if n is squarefree and $p-1$ divides $n-1$ for all primes p dividing n.

Historical Background

Question: Is the converse true?

No! In 1910, Carmichael showed that 561 divides a^{561} - a for all integers a.

Theorem (Korselt's criterion)

A positive integer n divides a^{n} - a for all integers a if and only if n is squarefree and $p-1$ divides $n-1$ for all primes p dividing n.

Example (561 is a counterexample)

Prime factorization of 561: $3 \times 11 \times 17$.
Notice that $3-1=2,11-1=10,17-1=16$ divide $561-1=560$.

Historical Background

Definition (Carmichael number)

The composite integers n with the property that n divides $a^{n}-a$ for all integers a are called the Carmichael numbers.

First 8 Carmichael numbers:

$$
\{561,1105,1729,2465,2821,6601,8911,10585, \ldots\}
$$

Historical Background

Definition (Carmichael number)

The composite integers n with the property that n divides $a^{n}-a$ for all integers a are called the Carmichael numbers.

First 8 Carmichael numbers:

$$
\{561,1105,1729,2465,2821,6601,8911,10585, \ldots\}
$$

Theorem (Alford, Granville, Pomerance)

There are infinitely many Carmichael numbers. The number of Carmichael numbers less than X is at least $X^{\frac{2}{7}}$ for sufficiently large X.

Conjecture (Erdős)

There are $X^{1-o(1)}$ Carmichael numbers less than X.

Motivation

Question

For what positive integers n does n divide $a^{n-1}-a$ for all integers a ?

Motivation

Question

For what positive integers n does n divide $a^{n-1}-a$ for all integers a ?
(1) For every prime p dividing $n, p-1$ must divide n.
(2) n is squarefree.

$$
\Longrightarrow n \in\{1,2,6,42,1806\} .
$$

Our Main Problem

Question

Given an integer k, for what integers $n>\max (k, 0)$ does n divide $a^{n-k+1}-a$ for all integers a ?

Our Main Problem

Question

Given an integer k, for what integers $n>\max (k, 0)$ does n divide $a^{n-k+1}-a$ for all integers a ?

Definition

$$
C_{k}=\left\{n>\max (k, 0): n \text { divides } a^{n-k+1}-a \text { for all integers } a\right\}
$$

$$
\begin{aligned}
& C_{1}=\text { all primes and Carmichael numbers } \\
& C_{0}=\{1,2,6,42,1806\} \\
& C_{-1}=? ? ?
\end{aligned}
$$

First Steps

Proposition (Generalized Korselt's Criterion)

An integer $n>\max (k, 0)$ is in C_{k} if and only if n is squarefree and $p-1$ divides $n-k$ for all primes p dividing n.

First Steps

Proposition (Generalized Korselt's Criterion)

An integer $n>\max (k, 0)$ is in C_{k} if and only if n is squarefree and $p-1$ divides $n-k$ for all primes p dividing n.

Definition

The Carmichael function $\lambda(n)$ is defined as the smallest positive integer such that $a^{\lambda(n)} \equiv a(\bmod n)$ for all integers a.

For squarefree n,

$$
\lambda(n)=\operatorname{lcm}_{p \mid n}\{p-1\} .
$$

Proposition (Alternate Korselt's Criterion)

An integer $n>\max (k, 0)$ is in C_{k} if and only if n is squarefree and $\lambda(n)$ divides $n-k$.

Approach for $k>0$

k	C_{k}
1	$\{2,3,5,7,11,13,17, \ldots\}$
2	$\{6,10,14,22,26,30,34, \ldots\}$
3	$\{15,21,33,39,51,57,69, \ldots\}$
5	$\{65,85,145,165,185,205, \ldots\}$

Table: C_{k} for $k=1,2,3,5$

Approach for $k>0$

k	C_{k}
1	$\{2,3,5,7,11,13,17, \ldots\}$
2	$\{6,10,14,22,26,30,34, \ldots\}$
3	$\{15,21,33,39,51,57,69, \ldots\}$
5	$\{65,85,145,165,185,205, \ldots\}$

Table: C_{k} for $k=1,2,3,5$

For squarefree k, set $n=k m$ where m is a squarefree integer coprime to k.

Approach for $k>0$

k	C_{k}
1	$\{2,3,5,7,11,13,17, \ldots\}$
2	$\{6,10,14,22,26,30,34, \ldots\}$
3	$\{15,21,33,39,51,57,69, \ldots\}$
5	$\{65,85,145,165,185,205, \ldots\}$

Table: C_{k} for $k=1,2,3,5$

For squarefree k, set $n=k m$ where m is a squarefree integer coprime to k.

$$
\begin{aligned}
\lambda(n) \mid n-k & \Longleftrightarrow \lambda(k m) \mid k(m-1) \\
& \Longleftrightarrow\left\{\begin{array}{l}
\lambda(k) \mid k(m-1) \\
\lambda(m) \mid k(m-1)
\end{array}\right.
\end{aligned}
$$

Approach for $k>0$

With $n=k m$:
(1) $\lambda(k) \mid k(m-1)$ leads to the congruence condition $m \equiv 1$ $\bmod \left(\frac{\lambda(k)}{\operatorname{gcd}(\lambda(k), k)}\right)$.
(2) $\lambda(m) \mid k(m-1)$ is a looser variant of $\lambda(m) \mid m-1$. In particular, all primes satisfy this condition.

Approach for $k>0$

With $n=k m$:
(1) $\lambda(k) \mid k(m-1)$ leads to the congruence condition $m \equiv 1$ $\bmod \left(\frac{\lambda(k)}{\operatorname{gcd}(\lambda(k), k)}\right)$.
(2) $\lambda(m) \mid k(m-1)$ is a looser variant of $\lambda(m) \mid m-1$. In particular, all primes satisfy this condition.

Theorem (Dirichlet)

Let a, m be coprime integers. The number of primes $\equiv a(\bmod m)$ less than X is approximately $\frac{1}{\phi(m)} \cdot \frac{X}{\log (X)}$, where ϕ is Euler's Totient function. In particular, there are infinitely many primes $\equiv a(\bmod m)$.

Theorem (Makowski, 1962)

For any squarefree $k>0$, there are infinitely many elements in C_{k}.

Conjectures for $k<0$

For $k>0: C_{k}=$ noise $+k \cdot\left\{\right.$ primes $\left.\equiv 1 \bmod \left(\frac{\lambda(k)}{\operatorname{gcd}(\lambda(k), k)}\right)\right\}$.
For $k<0$: $C_{k}=$ noise.
(noise $=$ generalized Carmichael numbers)

Conjectures for $k<0$

For $k>0: C_{k}=$ noise $+k \cdot\left\{\right.$ primes $\left.\equiv 1 \bmod \left(\frac{\lambda(k)}{\operatorname{gcd}(\lambda(k), k)}\right)\right\}$.
For $k<0$: $C_{k}=$ noise.
(noise $=$ generalized Carmichael numbers)

Conjecture (Chen, Kim)

Let $k>0$. Then

$$
\lim _{X \rightarrow \infty} \frac{\left|C_{-k} \cap(0, X]\right|}{\left|C_{k} \cap(0, X]\right|-\frac{\operatorname{gcd}(\lambda(k), k)}{\lambda(k)} \pi\left(\frac{X}{k}\right)}=1
$$

where $\pi(X)$ denotes the number of primes $\leq X$.

General patterns

(1) n is usually a multiple of k
(2) n and k usually share factors

General patterns

(1) n is usually a multiple of k
(2) n and k usually share factors

$$
\begin{aligned}
& \text { Example } \\
& \text { For } k=-11 \text { and large } n \text { : } \\
& C_{-11}=\{\ldots, 283309,306229,319189,337249,352429,382789, \ldots\}
\end{aligned}
$$

General patterns

(1) n is usually a multiple of k
(2) n and k usually share factors

Example

For $k=-11$ and large n :
$C_{-11}=\{\ldots, 283309,306229,319189,337249,352429,382789, \ldots\}$

Heuristic (Chen, Kim)

For large $n \in C_{k}$ and small integers $m, n-k$ will often be divisible by m. The proportion of n with such property increases with the value of n and decreases with the value of m.

Idea: for large n, m often divides $\lambda(n)$.

Simple cases (Short products)

Proposition (Halbeisen, Hungerbühler)

 If $k \neq 1$, then C_{k} contains finitely many primes.Proposition (Halbeisen, Hungerbühler)
Unless $k>0$ and k is prime, there are finitely many pairs of primes p, q such that $p q \in C_{k}$.

Proposition (Chen, Kim)

For any integers k and $I>k$, there are finitely many pairs of primes p, q such that $l p q \in C_{k}$.

Corollary (Chen, Kim)

For any $k<0$, there are finitely many triples of primes p, q, r such that $p q r \in C_{k}$ and $p-1$ divides $q-1$ and $r-1$.

Alternate Problems

(1) Given integers a, k, for what integers $n>\max (k, 0)$ does n divide $a^{n-k+1}-a$? When does $a^{n-k}-1$?

We extend the work of Kiss and Phong [KP87] on $k>0$ to all integers k :

Theorem (Chen, Kim)

If $a \geq 2$ and k are integers with $(k, a) \neq(0,2)$, there are infinitely many positive integers n such that $a^{n-k} \equiv 1(\bmod n)$. If $(k, a)=(0,2)$, then there are no integers $n>1$ such that $a^{n-k} \equiv 1(\bmod n)$.

Alternate Problems

(2) Given an integer k, for what n does $\lambda(n)$ divide $n-k$?

The exponents in the prime factorization of n are bounded by k :

Proposition (Chen, Kim)

If $\lambda(n)$ divides $n-k$ and $n=\prod_{i=1}^{r} p_{i}^{e_{i}}$, then $\prod_{i=1}^{r} p_{i}^{e_{i}-1}$ divides k.

Summary

(1) Historical background

- Fermat's little theorem, Carmichael numbers
- Korselt's criterion
(2) Our research
- Generalization of Korselt's criterion
- Patterns in data \rightarrow theorems, conjectures, heuristics
- Simpler cases with 2, 3 prime factors
- Alternative problems

Acknowledgements

Special thanks to Stefan Wehmeier for suggesting the project and providing advice on the best direction for research. I would also like to thank Yongyi Chen for his immense support in mentoring this project. Finally, I would like to thank the MIT PRIMES program for the research opportunity.

References

固 William R Alford，Andrew Granville，and Carl Pomerance．
There are infinitely many carmichael numbers．
Annals of Mathematics，pages 703－722， 1994.
嘼 Lorenz Halbeisen and Norbert Hungerbühler．
On generalised carmichael numbers．
Hardy－Ramanujan Journal， 1999.
國 Péter Kiss and Bui Minh Phong．
On a problem of a．rotkiewicz．
Mathematics of computation，pages 751－755， 1987.
A．Makowski．
Generalization of morrow＇s d－numbers．
Simon Stevin，36：71，1962／1963．

