On Quasisymmetric Functions with Two Bordering Variables

> Alexander Zhang Mentor: Andrey Khesin

October 17-18, 2020 MIT PRIMES Conference

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The extended natural numbers: the set N ∪ {0,∞}, denoted by N. Its total order is given by 0 ≺ 1 ≺ 2 ≺ · · · ≺ ∞.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The extended natural numbers: the set N ∪ {0,∞}, denoted by N. Its total order is given by 0 ≺ 1 ≺ 2 ≺ · · · ≺ ∞.
- ► Z[[x₀, x₁, x₂,..., x_∞]]: Ring of formal power series in the variables x₀, x₁, x₂,..., x_∞ over Z. Essentially the ring of polynomials except elements may contain infinitely many monomials.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The extended natural numbers: the set N ∪ {0,∞}, denoted by N. Its total order is given by 0 ≺ 1 ≺ 2 ≺ · · · ≺ ∞.
- ► Z[[x₀, x₁, x₂,..., x_∞]]: Ring of formal power series in the variables x₀, x₁, x₂,..., x_∞ over Z. Essentially the ring of polynomials except elements may contain infinitely many monomials.

• Example:
$$x_0 + x_1 + x_2 + \dots + x_{\infty} = \sum_{i \in \mathcal{N}} x_i$$
.

- The extended natural numbers: the set N ∪ {0,∞}, denoted by N. Its total order is given by 0 ≺ 1 ≺ 2 ≺ · · · ≺ ∞.
- ► Z[[x₀, x₁, x₂,..., x_∞]]: Ring of formal power series in the variables x₀, x₁, x₂,..., x_∞ over Z. Essentially the ring of polynomials except elements may contain infinitely many monomials.

• Example:
$$x_0 + x_1 + x_2 + \dots + x_{\infty} = \sum_{i \in \mathcal{N}} x_i$$
.

x₀ and x_∞ are bordering variables; x_i for all i ∈ N are natural variables.

- The extended natural numbers: the set N ∪ {0,∞}, denoted by N. Its total order is given by 0 ≺ 1 ≺ 2 ≺ · · · ≺ ∞.
- ► Z[[x₀, x₁, x₂,..., x_∞]]: Ring of formal power series in the variables x₀, x₁, x₂,..., x_∞ over Z. Essentially the ring of polynomials except elements may contain infinitely many monomials.

• Example:
$$x_0 + x_1 + x_2 + \dots + x_{\infty} = \sum_{i \in \mathcal{N}} x_i$$
.

- x₀ and x_∞ are bordering variables; x_i for all i ∈ N are natural variables.
- Denote by [m](p) the coefficient of the monomial m in the power series p.

- The extended natural numbers: the set N ∪ {0,∞}, denoted by N. Its total order is given by 0 ≺ 1 ≺ 2 ≺ · · · ≺ ∞.
- ► Z[[x₀, x₁, x₂,..., x_∞]]: Ring of formal power series in the variables x₀, x₁, x₂,..., x_∞ over Z. Essentially the ring of polynomials except elements may contain infinitely many monomials.

• Example:
$$x_0 + x_1 + x_2 + \dots + x_{\infty} = \sum_{i \in \mathcal{N}} x_i$$
.

- x₀ and x_∞ are bordering variables; x_i for all i ∈ N are natural variables.
- Denote by [m](p) the coefficient of the monomial m in the power series p.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Example: $[x^3y](x+7y+13x^3y) = 13$.

The **ring of quasisymmetric functions** (QSym): the ring of power series f in the natural variables x_1, x_2, \ldots such that

$$[x_{i_1}^{\alpha_1} x_{i_2}^{\alpha_2} \cdots x_{i_k}^{\alpha_k}](f) = [x_{j_1}^{\alpha_1} x_{j_2}^{\alpha_2} \cdots x_{j_k}^{\alpha_k}](f)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for all $i_1 < i_2 < \cdots < i_k$ and $j_1 < j_2 < \cdots < j_k$.

The **ring of quasisymmetric functions** (QSym): the ring of power series f in the natural variables x_1, x_2, \ldots such that

$$[x_{i_1}^{\alpha_1}x_{i_2}^{\alpha_2}\cdots x_{i_k}^{\alpha_k}](f) = [x_{j_1}^{\alpha_1}x_{j_2}^{\alpha_2}\cdots x_{j_k}^{\alpha_k}](f)$$

for all $i_1 < i_2 < \cdots < i_k$ and $j_1 < j_2 < \cdots < j_k$.

Example of a quasisymmetric function: $\sum_{i < i}$

$$\sum_{i< j< k} 6x_i x_j^2 x_k^3 + \sum_{i< j} x_i x_j.$$

The **ring of quasisymmetric functions** (QSym): the ring of power series f in the natural variables x_1, x_2, \ldots such that

$$[x_{i_1}^{\alpha_1}x_{i_2}^{\alpha_2}\cdots x_{i_k}^{\alpha_k}](f) = [x_{j_1}^{\alpha_1}x_{j_2}^{\alpha_2}\cdots x_{j_k}^{\alpha_k}](f)$$

for all $i_1 < i_2 < \cdots < i_k$ and $j_1 < j_2 < \cdots < j_k$.

Example of a quasisymmetric function: $\sum_{i < j < k} 6x_i x_j^2 x_k^3 + \sum_{i < j} x_i x_j$.

Example of a non-quasisymmetric function:

$$f = x_1 x_2^2 x_3^3 + x_1 x_2^2 x_4^3 + x_1 x_3^2 x_4^3 + x_2 x_3^2 x_4^3$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

because $[x_1x_2^2x_3^3](f) \neq [x_1x_2^2x_5^3](f)$.

The **ring of quasisymmetric functions** (QSym): the ring of power series f in the natural variables x_1, x_2, \ldots such that

$$[x_{i_1}^{\alpha_1}x_{i_2}^{\alpha_2}\cdots x_{i_k}^{\alpha_k}](f) = [x_{j_1}^{\alpha_1}x_{j_2}^{\alpha_2}\cdots x_{j_k}^{\alpha_k}](f)$$

for all $i_1 < i_2 < \cdots < i_k$ and $j_1 < j_2 < \cdots < j_k$.

Example of a quasisymmetric function: $\sum_{i < j < k} 6x_i x_j^2 x_k^3 + \sum_{i < j} x_i x_j$.

Example of a non-quasisymmetric function:

$$f = x_1 x_2^2 x_3^3 + x_1 x_2^2 x_4^3 + x_1 x_3^2 x_4^3 + x_2 x_3^2 x_4^3$$

because $[x_1x_2^2x_3^3](f) \neq [x_1x_2^2x_5^3](f)$.

We will investigate power series quasisymmetric in $x_1, x_2, ...$ but with two bordering variables x_0, x_{∞} .

Our Family of Power Series

Let $n \in \mathbb{N} \cup \{0\}$, $[n] = \{1, 2, \dots, n\}$, and $\Lambda \subseteq [n]$. Define $K_{n,\Lambda}$ as:

$$\begin{split} \mathcal{K}_{n,\Lambda} &= \sum_{\substack{(g_1,g_2,\ldots,g_n) \in \mathcal{N}^n; \\ 0 \preceq g_1 \preceq g_2 \preceq \cdots \preceq g_n \preceq \infty; \\ \text{no } i \in \Lambda \text{ satisfies } g_{i-1} = g_i = g_{i+1} \\ (\text{where } g_0 = 0 \text{ and } g_{n+1} = \infty)} 2^{|\{g_1,g_2,\ldots,g_n\} \cap \mathbb{N}|} x_{g_1} x_{g_2} \cdots x_{g_n}. \end{split}$$

$$\begin{split} \mathcal{K}_{n,\Lambda} &= \sum_{\substack{(g_1,g_2,\ldots,g_n) \in \mathcal{N}^n; \\ 0 \preceq g_1 \preceq g_2 \preceq \cdots \preceq g_n \preceq \infty; \\ \text{no } i \in \Lambda \text{ satisfies } g_{i-1} = g_i = g_{i+1} \\ (\text{where } g_0 = 0 \text{ and } g_{n+1} = \infty)} 2^{|\{g_1,g_2,\ldots,g_n\} \cap \mathbb{N}|} x_{g_1} x_{g_2} \cdots x_{g_n}. \end{split}$$

The sum runs over all combinations with replacement of nnondecreasing elements $g_1, g_2, \ldots, g_n \in \mathcal{N}$ such that for all $i \in \Lambda$, $g_{i-1} = g_i = g_{i+1}$ is false, where $g_0 = 0$ and $g_{n+1} = \infty$.

$$\begin{split} \mathcal{K}_{n,\Lambda} &= \sum_{\substack{(g_1,g_2,\ldots,g_n) \in \mathcal{N}^n; \\ 0 \preceq g_1 \preceq g_2 \preceq \cdots \preceq g_n \preceq \infty; \\ \text{no } i \in \Lambda \text{ satisfies } g_{i-1} = g_i = g_{i+1} \\ (\text{where } g_0 = 0 \text{ and } g_{n+1} = \infty)} 2^{|\{g_1,g_2,\ldots,g_n\} \cap \mathbb{N}|} x_{g_1} x_{g_2} \cdots x_{g_n}. \end{split}$$

The sum runs over all combinations with replacement of nnondecreasing elements $g_1, g_2, \ldots, g_n \in \mathcal{N}$ such that for all $i \in \Lambda$, $g_{i-1} = g_i = g_{i+1}$ is false, where $g_0 = 0$ and $g_{n+1} = \infty$.

$$\begin{split} \mathcal{K}_{n,\Lambda} &= \sum_{\substack{(g_1,g_2,\ldots,g_n) \in \mathcal{N}^n; \\ 0 \leq g_1 \leq g_2 \leq \cdots \leq g_n \leq \infty; \\ \text{no } i \in \Lambda \text{ satisfies } g_{i-1} = g_i = g_{i+1} \\ (\text{where } g_0 = 0 \text{ and } g_{n+1} = \infty)} 2^{|\{g_1,g_2,\ldots,g_n\} \cap \mathbb{N}|} x_{g_1} x_{g_2} \cdots x_{g_n}. \end{split}$$

The sum runs over all combinations with replacement of nnondecreasing elements $g_1, g_2, \ldots, g_n \in \mathcal{N}$ such that for all $i \in \Lambda$, $g_{i-1} = g_i = g_{i+1}$ is false, where $g_0 = 0$ and $g_{n+1} = \infty$.

Example: If n = 5 and $\Lambda = \{1, 4\}$, then the combinations $(0, 0, 1, 3, \infty)$ and (2, 2, 7, 7, 7) are not included because they have $g_0 = g_1 = g_2$ and $g_3 = g_4 = g_5$, but (0, 1, 5, 5, 8) is included.

Our Family of Power Series (Continued)

Let $n \in \mathbb{N} \cup \{0\}$, $[n] = \{1, 2, \dots, n\}$, and $\Lambda \subseteq [n]$. Define $K_{n,\Lambda}$ as:

$$\begin{split} \mathcal{K}_{n,\Lambda} &= \sum_{\substack{(g_1,g_2,\ldots,g_n) \in \mathcal{N}^n; \\ 0 \preceq g_1 \preceq g_2 \preceq \cdots \preceq g_n \preceq \infty; \\ \text{no } i \in \Lambda \text{ satisfies } g_{i-1} = g_i = g_{i+1} \\ (\text{where } g_0 = 0 \text{ and } g_{n+1} = \infty)} 2^{|\{g_1,g_2,\ldots,g_n\} \cap \mathbb{N}|} x_{g_1} x_{g_2} \cdots x_{g_n}. \end{split}$$

Each summand of $K_{n,\Lambda}$ is the monomial $x_{g_1}x_{g_2}\cdots x_{g_n}$ multiplied by 2 to the power of the number of distinct natural variables in $\{x_{g_1}, x_{g_2}, \ldots, x_{g_n}\}$.

Our Family of Power Series (Continued)

Let $n \in \mathbb{N} \cup \{0\}$, $[n] = \{1, 2, \dots, n\}$, and $\Lambda \subseteq [n]$. Define $K_{n,\Lambda}$ as:

$$\begin{split} \mathcal{K}_{n,\Lambda} = & \sum_{\substack{(g_1,g_2,\ldots,g_n) \in \mathcal{N}^n; \\ 0 \preceq g_1 \preceq g_2 \preceq \cdots \preceq g_n \preceq \infty; \\ \text{no } i \in \Lambda \text{ satisfies } g_{i-1} = g_i = g_{i+1} \\ (\text{where } g_0 = 0 \text{ and } g_{n+1} = \infty)} 2^{|\{g_1,g_2,\ldots,g_n\} \cap \mathbb{N}|} x_{g_1} x_{g_2} \cdots x_{g_n}. \end{split}$$

Each summand of $K_{n,\Lambda}$ is the monomial $x_{g_1}x_{g_2}\cdots x_{g_n}$ multiplied by 2 to the power of the number of distinct natural variables in $\{x_{g_1}, x_{g_2}, \ldots, x_{g_n}\}$.

Example: If n = 5 and $(g_1, g_2, ..., g_n) = (0, 1, 5, 5, 7)$, then the corresponding summand $2^{|\{g_1, g_2, ..., g_n\} \cap \mathbb{N}|} x_{g_1} x_{g_2} \cdots x_{g_n}$ equals $8x_0 x_1 x_5^2 x_7$.

Examples of $K_{n,\Lambda}$'s

$$\begin{split} \mathcal{K}_{n,\Lambda} &= \sum_{\substack{(g_1,g_2,\ldots,g_n) \in \mathcal{N}^n;\\ 0 \leq g_1 \leq g_2 \leq \cdots \leq g_n \leq \infty;\\ \text{no } i \in \Lambda \text{ satisfies } g_{i-1} = g_i = g_{i+1}\\ (\text{where } g_0 = 0 \text{ and } g_{n+1} = \infty)} 2^{|\{g_1,g_2,\ldots,g_n\} \cap \mathbb{N}|} x_{g_1} x_{g_2} \cdots x_{g_n}. \end{split}$$

Examples of $K_{n,\Lambda}$'s

$$\begin{split} \mathcal{K}_{n,\Lambda} &= \sum_{\substack{(g_1,g_2,\ldots,g_n) \in \mathcal{N}^n; \\ 0 \leq g_1 \leq g_2 \leq \cdots \leq g_n \leq \infty; \\ \text{no } i \in \Lambda \text{ satisfies } g_{i-1} = g_i = g_{i+1} \\ (\text{where } g_0 = 0 \text{ and } g_{n+1} = \infty) } 2^{|\{g_1,g_2,\ldots,g_n\} \cap \mathbb{N}|} x_{g_1} x_{g_2} \cdots x_{g_n}. \end{split}$$

▶ When
$$n = 1$$
, $K_{1,\{\}} = K_{1,\{1\}} = x_0 + \sum_{i \in \mathbb{N}} 2x_i + x_\infty$. There are no restrictions on g_1 because $0 = g_1 = \infty$ is impossible.

Examples of $K_{n,\Lambda}$'s

$$\mathcal{K}_{n,\Lambda} = \sum_{\substack{(g_1,g_2,\ldots,g_n) \in \mathcal{N}^n; \\ 0 \preceq g_1 \preceq g_2 \preceq \cdots \preceq g_n \preceq \infty; \\ \text{no } i \in \Lambda \text{ satisfies } g_{i-1} = g_i = g_{i+1} \\ (\text{where } g_0 = 0 \text{ and } g_{n+1} = \infty)} 2^{|\{g_1,g_2,\ldots,g_n\} \cap \mathbb{N}|} x_{g_1} x_{g_2} \cdots x_{g_n}.$$

When n = 1, K_{1,{}} = K_{1,{1}} = x₀ + ∑_{i∈ℕ} 2x_i + x_∞. There are no restrictions on g₁ because 0 = g₁ = ∞ is impossible.
When n = 2,

$$K_{2,\{1\}} = \sum_{i \in \mathbb{N}} 2x_0 x_i + \sum_{i \in \mathbb{N}} 2x_i x_{\infty} + \sum_{i \in \mathbb{N}} 2x_i^2 + \sum_{i < j \in \mathbb{N}} 4x_i x_j + x_{\infty}^2.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The coefficient of each monomial depends on how many distinct natural variables it contains.

Theorem

The span of our family of power series, span $(K_{n,\Lambda})_{n \in \mathbb{N} \cup \{0\}; \Lambda \subseteq [n]}$, is a \mathbb{Z} -subalgebra of $\mathbb{Z}[[x_0, x_1, x_2, \dots, x_{\infty}]]$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem

The span of our family of power series, span $(K_{n,\Lambda})_{n \in \mathbb{N} \cup \{0\}; \Lambda \subseteq [n]}$, is a \mathbb{Z} -subalgebra of $\mathbb{Z}[[x_0, x_1, x_2, \dots, x_{\infty}]]$.

Equivalently, the product of any $K_{n,\Lambda}K_{m,\Omega}$ can be written as the sums and differences of several $K_{n+m,\Xi}$'s, where each $\Xi \subseteq [n+m]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

The span of our family of power series, span $(K_{n,\Lambda})_{n \in \mathbb{N} \cup \{0\}; \Lambda \subseteq [n]}$, is a \mathbb{Z} -subalgebra of $\mathbb{Z}[[x_0, x_1, x_2, \dots, x_{\infty}]]$.

Equivalently, the product of any $K_{n,\Lambda}K_{m,\Omega}$ can be written as the sums and differences of several $K_{n+m,\Xi}$'s, where each $\Xi \subseteq [n+m]$.

Example: When n = m = 2 and $\Lambda = \Omega = \{1, 2\}$, the product $K_{2,\{1,2\}}K_{2,\{1,2\}}$ can be written as

$$K_{4,\{2\}} + 2K_{4,\{1,3\}} + 2K_{4,\{1,4\}} + K_{4,\{2,4\}} + K_{4,\{1,2,4\}} - K_{4,\{1,2\}}.$$

Grinberg proved the theorem in 2018 for exterior peak sets Λ , Ω ; i.e. sets with no pair of consecutive integers. That result was key to proving the shuffle-compatibility of the exterior peak set statistic Epk.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Grinberg proved the theorem in 2018 for exterior peak sets Λ , Ω ; i.e. sets with no pair of consecutive integers. That result was key to proving the shuffle-compatibility of the exterior peak set statistic Epk.

In 2020, Grinberg later proved the theorem for $x_0 = x_{\infty} = 0$, in which case the power series are quasisymmetric.

Consider similar family of functions, $L_{n,\Lambda}$'s, which can be handled more easily; prove the following equivalent theorem: the product of any $L_{n,\Lambda}L_{m,\Omega}$ can be written as the sums and differences of several $L_{n+m,\Xi}$'s, where each $\Xi \subseteq [n+m]$.

Consider similar family of functions, $L_{n,\Lambda}$'s, which can be handled more easily; prove the following equivalent theorem: the product of any $L_{n,\Lambda}L_{m,\Omega}$ can be written as the sums and differences of several $L_{n+m,\Xi}$'s, where each $\Xi \subseteq [n+m]$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

"Zero out" the coefficients of monomials in $L_{n,\Lambda}L_{m,\Omega}$ by adding/subtracting $L_{n+m,\Xi}$'s in a specific order.

Consider similar family of functions, $L_{n,\Lambda}$'s, which can be handled more easily; prove the following equivalent theorem: the product of any $L_{n,\Lambda}L_{m,\Omega}$ can be written as the sums and differences of several $L_{n+m,\Xi}$'s, where each $\Xi \subseteq [n+m]$.

"Zero out" the coefficients of monomials in $L_{n,\Lambda}L_{m,\Omega}$ by adding/subtracting $L_{n+m,\Xi}$'s in a specific order.

Show that doing so results in the coefficients of every monomial becoming zero, thus proving the theorem.

D. Grinberg, Shuffle-compatible permutation statistics II: the exterior peak set. *Electron. J. Combin.* **25** (2018), Paper 17.

D. Grinberg, The eta-basis of QSym, 2020. Available at www.cip.ifi.lmu.de/~grinberg/algebra/etabasis.pdf.

- My mentor, Andrey Khesin
- Professor Darij Grinberg
- The MIT PRIMES program
- My aunt, for letting me use her WiFi

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで