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Introductory Definitions

I The extended natural numbers: the set N ∪ {0,∞},
denoted by N . Its total order is given by
0 ≺ 1 ≺ 2 ≺ · · · ≺ ∞.

I Z[[x0, x1, x2, . . . , x∞]]: Ring of formal power series in the
variables x0, x1, x2, . . . , x∞ over Z. Essentially the ring of
polynomials except elements may contain infinitely many
monomials.
I Example: x0 + x1 + x2 + · · ·+ x∞ =

∑
i∈N

xi .

I x0 and x∞ are bordering variables; xi for all i ∈ N are
natural variables.

I Denote by [m](p) the coefficient of the monomial m in the
power series p.
I Example: [x3y ](x + 7y + 13x3y) = 13.
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Quasisymmetric Functions

The ring of quasisymmetric functions (QSym): the ring of
power series f in the natural variables x1, x2, . . . such that

[xα1
i1
xα2
i2
· · · xαk

ik
](f ) = [xα1

j1
xα2
j2
· · · xαk

jk
](f )

for all i1 < i2 < · · · < ik and j1 < j2 < · · · < jk .

Example of a quasisymmetric function:
∑

i<j<k

6xix
2
j x

3
k +

∑
i<j

xixj .

Example of a non-quasisymmetric function:

f = x1x
2
2x

3
3 + x1x

2
2x

3
4 + x1x

2
3x

3
4 + x2x

2
3x

3
4

because [x1x
2
2x

3
3 ](f ) 6= [x1x

2
2x

3
5 ](f ).

We will investigate power series quasisymmetric in x1, x2, . . . but
with two bordering variables x0, x∞.
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Our Family of Power Series

Let n ∈ N ∪ {0}, [n] = {1, 2, . . . , n}, and Λ ⊆ [n]. Define Kn,Λ as:

Kn,Λ =
∑

(g1,g2,...,gn)∈N n;
0�g1�g2�···�gn�∞;

no i∈Λ satisfies gi−1=gi=gi+1

(where g0=0 and gn+1=∞)

2|{g1,g2,...,gn}∩N|xg1xg2 · · · xgn .

The sum runs over all combinations with replacement of n
nondecreasing elements g1, g2, . . . , gn ∈ N such that for all i ∈ Λ,
gi−1 = gi = gi+1 is false, where g0 = 0 and gn+1 =∞.

Example: If n = 5 and Λ = {1, 4}, then the combinations
(0, 0, 1, 3,∞) and (2, 2, 7, 7, 7) are not included because they have
g0 = g1 = g2 and g3 = g4 = g5, but (0, 1, 5, 5, 8) is included.
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corresponding summand 2|{g1,g2,...,gn}∩N|xg1xg2 · · · xgn equals
8x0x1x

2
5x7.
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Examples of Kn,Λ’s
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2|{g1,g2,...,gn}∩N|xg1xg2 · · · xgn .

I When n = 1, K1,{} = K1,{1} = x0 +
∑
i∈N

2xi + x∞. There are

no restrictions on g1 because 0 = g1 =∞ is impossible.

I When n = 2,

K2,{1} =
∑
i∈N

2x0xi +
∑
i∈N

2xix∞ +
∑
i∈N

2x2
i +

∑
i<j∈N

4xixj + x2
∞.

The coefficient of each monomial depends on how many
distinct natural variables it contains.
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Main Theorem

Theorem
The span of our family of power series, span (Kn,Λ)n∈N∪{0}; Λ⊆[n], is

a Z-subalgebra of Z[[x0, x1, x2, . . . , x∞]].

Equivalently, the product of any Kn,ΛKm,Ω can be written as the
sums and differences of several Kn+m,Ξ’s, where each Ξ ⊆ [n + m].

Example: When n = m = 2 and Λ = Ω = {1, 2}, the product
K2,{1,2}K2,{1,2} can be written as

K4,{2} + 2K4,{1,3} + 2K4,{1,4} + K4,{2,4} + K4,{1,2,4} − K4,{1,2}.
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Origin of the Problem

Grinberg proved the theorem in 2018 for exterior peak sets Λ, Ω;
i.e. sets with no pair of consecutive integers. That result was key
to proving the shuffle-compatibility of the exterior peak set
statistic Epk.

In 2020, Grinberg later proved the theorem for x0 = x∞ = 0, in
which case the power series are quasisymmetric.
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Proof Outline

Consider similar family of functions, Ln,Λ’s, which can be handled
more easily; prove the following equivalent theorem: the product of
any Ln,ΛLm,Ω can be written as the sums and differences of several
Ln+m,Ξ’s, where each Ξ ⊆ [n + m].

“Zero out” the coefficients of monomials in Ln,ΛLm,Ω by
adding/subtracting Ln+m,Ξ’s in a specific order.

Show that doing so results in the coefficients of every monomial
becoming zero, thus proving the theorem.
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