On Quasisymmetric Functions with Two Bordering Variables

Alexander Zhang
Mentor: Andrey Khesin

October 17-18, 2020
MIT PRIMES Conference

Introductory Definitions

- The extended natural numbers: the set $\mathbb{N} \cup\{0, \infty\}$, denoted by \mathcal{N}. Its total order is given by $0 \prec 1 \prec 2 \prec \cdots \prec \infty$.

Introductory Definitions

- The extended natural numbers: the set $\mathbb{N} \cup\{0, \infty\}$, denoted by \mathcal{N}. Its total order is given by $0 \prec 1 \prec 2 \prec \cdots \prec \infty$.
- $\mathbb{Z}\left[\left[x_{0}, x_{1}, x_{2}, \ldots, x_{\infty}\right]\right]$: Ring of formal power series in the variables $x_{0}, x_{1}, x_{2}, \ldots, x_{\infty}$ over \mathbb{Z}. Essentially the ring of polynomials except elements may contain infinitely many monomials.

Introductory Definitions

- The extended natural numbers: the set $\mathbb{N} \cup\{0, \infty\}$, denoted by \mathcal{N}. Its total order is given by $0 \prec 1 \prec 2 \prec \cdots \prec \infty$.
- $\mathbb{Z}\left[\left[x_{0}, x_{1}, x_{2}, \ldots, x_{\infty}\right]\right]$: Ring of formal power series in the variables $x_{0}, x_{1}, x_{2}, \ldots, x_{\infty}$ over \mathbb{Z}. Essentially the ring of polynomials except elements may contain infinitely many monomials.
- Example: $x_{0}+x_{1}+x_{2}+\cdots+x_{\infty}=\sum_{i \in \mathcal{N}} x_{i}$.

Introductory Definitions

- The extended natural numbers: the set $\mathbb{N} \cup\{0, \infty\}$, denoted by \mathcal{N}. Its total order is given by $0 \prec 1 \prec 2 \prec \cdots \prec \infty$.
- $\mathbb{Z}\left[\left[x_{0}, x_{1}, x_{2}, \ldots, x_{\infty}\right]\right]$: Ring of formal power series in the variables $x_{0}, x_{1}, x_{2}, \ldots, x_{\infty}$ over \mathbb{Z}. Essentially the ring of polynomials except elements may contain infinitely many monomials.
- Example: $x_{0}+x_{1}+x_{2}+\cdots+x_{\infty}=\sum_{i \in \mathcal{N}} x_{i}$.
- x_{0} and x_{∞} are bordering variables; x_{i} for all $i \in \mathbb{N}$ are natural variables.

Introductory Definitions

- The extended natural numbers: the set $\mathbb{N} \cup\{0, \infty\}$, denoted by \mathcal{N}. Its total order is given by $0 \prec 1 \prec 2 \prec \cdots \prec \infty$.
- $\mathbb{Z}\left[\left[x_{0}, x_{1}, x_{2}, \ldots, x_{\infty}\right]\right]$: Ring of formal power series in the variables $x_{0}, x_{1}, x_{2}, \ldots, x_{\infty}$ over \mathbb{Z}. Essentially the ring of polynomials except elements may contain infinitely many monomials.
- Example: $x_{0}+x_{1}+x_{2}+\cdots+x_{\infty}=\sum_{i \in \mathcal{N}} x_{i}$.
- x_{0} and x_{∞} are bordering variables; x_{i} for all $i \in \mathbb{N}$ are natural variables.
- Denote by $[m](p)$ the coefficient of the monomial m in the power series p.

Introductory Definitions

- The extended natural numbers: the set $\mathbb{N} \cup\{0, \infty\}$, denoted by \mathcal{N}. Its total order is given by $0 \prec 1 \prec 2 \prec \cdots \prec \infty$.
- $\mathbb{Z}\left[\left[x_{0}, x_{1}, x_{2}, \ldots, x_{\infty}\right]\right]$: Ring of formal power series in the variables $x_{0}, x_{1}, x_{2}, \ldots, x_{\infty}$ over \mathbb{Z}. Essentially the ring of polynomials except elements may contain infinitely many monomials.
- Example: $x_{0}+x_{1}+x_{2}+\cdots+x_{\infty}=\sum_{i \in \mathcal{N}} x_{i}$.
- x_{0} and x_{∞} are bordering variables; x_{i} for all $i \in \mathbb{N}$ are natural variables.
- Denote by $[m](p)$ the coefficient of the monomial m in the power series p.
- Example: $\left[x^{3} y\right]\left(x+7 y+13 x^{3} y\right)=13$.

Quasisymmetric Functions

The ring of quasisymmetric functions (QSym): the ring of power series f in the natural variables x_{1}, x_{2}, \ldots such that

$$
\left[x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}\right](f)=\left[x_{j_{1}}^{\alpha_{1}} x_{j_{2}}^{\alpha_{2}} \cdots x_{j_{k}}^{\alpha_{k}}\right](f)
$$

for all $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$.

Quasisymmetric Functions

The ring of quasisymmetric functions (QSym): the ring of power series f in the natural variables x_{1}, x_{2}, \ldots such that

$$
\left[x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}\right](f)=\left[x_{j_{1}}^{\alpha_{1}} x_{j_{2}}^{\alpha_{2}} \cdots x_{j_{k}}^{\alpha_{k}}\right](f)
$$

for all $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$.
Example of a quasisymmetric function: $\sum_{i<j<k} 6 x_{i} x_{j}^{2} x_{k}^{3}+\sum_{i<j} x_{i} x_{j}$.

Quasisymmetric Functions

The ring of quasisymmetric functions (QSym): the ring of power series f in the natural variables x_{1}, x_{2}, \ldots such that

$$
\left[x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}\right](f)=\left[x_{j_{1}}^{\alpha_{1}} x_{j_{2}}^{\alpha_{2}} \cdots x_{j_{k}}^{\alpha_{k}}\right](f)
$$

for all $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$.
Example of a quasisymmetric function: $\sum_{i<j<k} 6 x_{i} x_{j}^{2} x_{k}^{3}+\sum_{i<j} x_{i} x_{j}$.
Example of a non-quasisymmetric function:

$$
f=x_{1} x_{2}^{2} x_{3}^{3}+x_{1} x_{2}^{2} x_{4}^{3}+x_{1} x_{3}^{2} x_{4}^{3}+x_{2} x_{3}^{2} x_{4}^{3}
$$

because $\left[x_{1} x_{2}^{2} x_{3}^{3}\right](f) \neq\left[x_{1} x_{2}^{2} x_{5}^{3}\right](f)$.

Quasisymmetric Functions

The ring of quasisymmetric functions (QSym): the ring of power series f in the natural variables x_{1}, x_{2}, \ldots such that

$$
\left[x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}\right](f)=\left[x_{j_{1}}^{\alpha_{1}} x_{j_{2}}^{\alpha_{2}} \cdots x_{j_{k}}^{\alpha_{k}}\right](f)
$$

for all $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$.
Example of a quasisymmetric function: $\sum_{i<j<k} 6 x_{i} x_{j}^{2} x_{k}^{3}+\sum_{i<j} x_{i} x_{j}$.
Example of a non-quasisymmetric function:

$$
f=x_{1} x_{2}^{2} x_{3}^{3}+x_{1} x_{2}^{2} x_{4}^{3}+x_{1} x_{3}^{2} x_{4}^{3}+x_{2} x_{3}^{2} x_{4}^{3}
$$

because $\left[x_{1} x_{2}^{2} x_{3}^{3}\right](f) \neq\left[x_{1} x_{2}^{2} x_{5}^{3}\right](f)$.
We will investigate power series quasisymmetric in x_{1}, x_{2}, \ldots but with two bordering variables x_{0}, x_{∞}.

Our Family of Power Series

Let $n \in \mathbb{N} \cup\{0\},[n]=\{1,2, \ldots, n\}$, and $\Lambda \subseteq[n]$. Define $K_{n, \Lambda}$ as:

Our Family of Power Series

Let $n \in \mathbb{N} \cup\{0\},[n]=\{1,2, \ldots, n\}$, and $\Lambda \subseteq[n]$. Define $K_{n, \Lambda}$ as:

$$
\begin{aligned}
& K_{n, \Lambda}=\quad \sum \quad 2^{\left|\left\{g_{1}, g_{2}, \ldots, g_{n}\right\} \cap \mathbb{N}\right|} x_{g_{1}} x_{g_{2}} \cdots x_{g_{n}} . \\
& \left(g_{1}, g_{2}, \ldots, g_{n}\right) \in \mathcal{N}^{n} ; \\
& 0 \preceq g_{1} \preceq g_{2} \preceq \cdots \preceq g_{n} \preceq \infty \text {; } \\
& \text { no } i \in \bar{\Lambda} \text { satisfies } g_{i-1}=g_{i}=g_{i+1} \\
& \text { (where } g_{0}=0 \text { and } g_{n+1}=\infty \text {) }
\end{aligned}
$$

Our Family of Power Series

Let $n \in \mathbb{N} \cup\{0\},[n]=\{1,2, \ldots, n\}$, and $\Lambda \subseteq[n]$. Define $K_{n, \Lambda}$ as:

$$
K_{n, \Lambda}=\sum_{\substack{\left.\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in \mathcal{N}^{n} ; \\ 0 \preceq g_{1} \preceq g_{2} \preceq \cdots \preceq g_{n} \preceq \infty ; \\ \text { no } i \in \bar{\Lambda} \text { satisfies } \\ \text { (where } g_{0}=0 \text { and } g_{n+1}=\infty\right)}} 2^{\left|\left\{g_{1}, g_{2}, \ldots, g_{n}\right\} \cap \mathbb{N}\right|} x_{g_{1}} x_{g_{2}} \cdots x_{g_{n}}
$$

The sum runs over all combinations with replacement of n nondecreasing elements $g_{1}, g_{2}, \ldots, g_{n} \in \mathcal{N}$ such that for all $i \in \Lambda$, $g_{i-1}=g_{i}=g_{i+1}$ is false, where $g_{0}=0$ and $g_{n+1}=\infty$.

Our Family of Power Series

Let $n \in \mathbb{N} \cup\{0\},[n]=\{1,2, \ldots, n\}$, and $\Lambda \subseteq[n]$. Define $K_{n, \Lambda}$ as:

$$
K_{n, \Lambda}=\sum_{\substack{\left.\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in \mathcal{N}^{n} ; \\ 0 \preceq g_{1} \preceq g_{2} \preceq \cdots \preceq g_{n} \preceq \infty ; \\ \text { no } i \in \bar{\Lambda} \text { satisfies } \\ \text { (where } g_{0}=0 \text { and } g_{n+1}=\infty\right)}} 2^{\left|\left\{g_{1}, g_{2}, \ldots, g_{n}\right\} \cap \mathbb{N}\right|} x_{g_{1}} x_{g_{2}} \cdots x_{g_{n}}
$$

The sum runs over all combinations with replacement of n nondecreasing elements $g_{1}, g_{2}, \ldots, g_{n} \in \mathcal{N}$ such that for all $i \in \Lambda$, $g_{i-1}=g_{i}=g_{i+1}$ is false, where $g_{0}=0$ and $g_{n+1}=\infty$.

Our Family of Power Series

Let $n \in \mathbb{N} \cup\{0\},[n]=\{1,2, \ldots, n\}$, and $\Lambda \subseteq[n]$. Define $K_{n, \Lambda}$ as:

$$
\begin{aligned}
& K_{n, \Lambda}=\sum_{\substack{\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in \mathcal{N}^{n} ;}}^{2^{\left|\left\{g_{1}, g_{2}, \ldots, g_{n}\right\} \cap \mathbb{N}\right|}} x_{g_{1}} x_{g_{2}} \cdots x_{g_{n}} \\
& \begin{array}{c}
0 \preceq g_{1} \preceq g_{2} \preceq \cdots \preceq g_{n} \preceq \infty ; \\
\text { no } i \in \bar{\Lambda} \text { satisfies } g_{i-1}=g_{i}=g_{i+1} \\
\text { (where } \left.g_{0}=0 \text { and } g_{n+1}=\infty\right)
\end{array}
\end{aligned}
$$

The sum runs over all combinations with replacement of n nondecreasing elements $g_{1}, g_{2}, \ldots, g_{n} \in \mathcal{N}$ such that for all $i \in \Lambda$, $g_{i-1}=g_{i}=g_{i+1}$ is false, where $g_{0}=0$ and $g_{n+1}=\infty$.

Example: If $n=5$ and $\Lambda=\{1,4\}$, then the combinations $(0,0,1,3, \infty)$ and $(2,2,7,7,7)$ are not included because they have $g_{0}=g_{1}=g_{2}$ and $g_{3}=g_{4}=g_{5}$, but $(0,1,5,5,8)$ is included.

Our Family of Power Series (Continued)

Let $n \in \mathbb{N} \cup\{0\},[n]=\{1,2, \ldots, n\}$, and $\Lambda \subseteq[n]$. Define $K_{n, \Lambda}$ as:

$$
K_{n, \Lambda}=\sum_{\substack{\left.\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in \mathcal{N}^{n} ; \\ 0 \preceq g_{1} \preceq g_{2} \preceq \cdots \preceq g_{n} \preceq \infty ; \\ \text { no } i \in \Lambda \\ \text { satisfies } \\ \text { (where } g_{0}=0 \text { and } g_{n+1}=\infty\right)}} 2^{\left|\left\{g_{1}, g_{2}, \ldots, g_{n}\right\} \cap \mathbb{N}\right|} x_{g_{1}} x_{g_{2}} \cdots x_{g_{n}}
$$

Each summand of $K_{n, \Lambda}$ is the monomial $x_{g_{1}} x_{g_{2}} \cdots x_{g_{n}}$ multiplied by 2 to the power of the number of distinct natural variables in $\left\{x_{g_{1}}, x_{g_{2}}, \ldots, x_{g_{n}}\right\}$.

Our Family of Power Series (Continued)

Let $n \in \mathbb{N} \cup\{0\},[n]=\{1,2, \ldots, n\}$, and $\Lambda \subseteq[n]$. Define $K_{n, \Lambda}$ as:

$$
K_{n, \Lambda}=\sum_{\substack{\left.\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in \mathcal{N}^{n} ; \\ 0 \preceq g_{1} \preceq g_{2} \preceq \cdots \preceq g_{n} \preceq \infty ; \\ \text { no } i \in \Lambda \\ \text { satisfies } \\ \text { (where } g_{0}=0 \text { and } g_{n+1}=\infty\right)}} 2^{\left|\left\{g_{1}, g_{2}, \ldots, g_{n}\right\} \cap \mathbb{N}\right|} x_{g_{1}} x_{g_{2}} \cdots x_{g_{n}} .
$$

Each summand of $K_{n, \Lambda}$ is the monomial $x_{g_{1}} x_{g_{2}} \cdots x_{g_{n}}$ multiplied by 2 to the power of the number of distinct natural variables in $\left\{x_{g_{1}}, x_{g_{2}}, \ldots, x_{g_{n}}\right\}$.

Example: If $n=5$ and $\left(g_{1}, g_{2}, \ldots, g_{n}\right)=(0,1,5,5,7)$, then the corresponding summand $2^{\left|\left\{g_{1}, g_{2}, \ldots, g_{n}\right\} \cap \mathbb{N}\right|} x_{g_{1} x_{g_{2}}} \cdots x_{g_{n}}$ equals $8 x_{0} x_{1} x_{5}^{2} x_{7}$.

Examples of $K_{n, \wedge}$'s

$$
K_{n, \Lambda}=\sum_{\substack{\left.\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in \mathcal{N}^{n} ; \\ 0 \preceq g_{1} \preceq g_{2} \preceq \cdots \preceq g_{n} \preceq \infty ; \\ \text { no } i \in \Lambda \text { satisfies } g_{i-1}=g_{i}=g_{i+1} \\ \text { (where } g_{0}=0 \text { and } g_{n+1}=\infty\right)}} 2^{\left|\left\{g_{1}, g_{2}, \ldots, g_{n}\right\} \cap \mathbb{N}\right|} x_{g_{1}} x_{g_{2}} \cdots x_{g_{n}} .
$$

Examples of $K_{n, \wedge}$'s

$$
\begin{aligned}
& K_{n, \Lambda}=\quad \sum \quad 2^{\left|\left\{g_{1}, g_{2}, \ldots, g_{n}\right\} \cap \mathbb{N}\right|} x_{g_{1} x_{g_{2}}} \cdots x_{g_{n}} . \\
& \left(g_{1}, g_{2}, \ldots, g_{n}\right) \in \mathcal{N}^{n} ; \\
& 0 \preceq g_{1} \preceq g_{2} \preceq \cdots \preceq g_{n} \preceq \infty ; \\
& \text { no } i \in \bar{\Lambda} \text { satisfies } g_{i-1}=g_{i}=g_{i+1} \\
& \text { (where } g_{0}=0 \text { and } g_{n+1}=\infty \text {) }
\end{aligned}
$$

- When $n=1, K_{1,\{ \}}=K_{1,\{1\}}=x_{0}+\sum_{i \in \mathbb{N}} 2 x_{i}+x_{\infty}$. There are no restrictions on g_{1} because $0=g_{1}=\infty$ is impossible.

Examples of $K_{n, \wedge}$'s

$$
K_{n, \Lambda}=\sum_{\substack{\left.\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in \mathcal{N}^{n} ; \\ 0 \preceq g_{1} \preceq g_{2} \preceq \cdots \preceq g_{n} \preceq \infty ; \\ \text { no } i \in \Lambda \text { satisfies } \\ \text { (where } g_{0}=0 \text { and } g_{n+1}=\infty\right)}} 2^{\left|\left\{g_{1}, g_{2}, \ldots, g_{n}\right\} \cap \mathbb{N}\right|} x_{g_{1} x_{g_{2}} \cdots g_{i+1}}
$$

- When $n=1, K_{1,\{ \}}=K_{1,\{1\}}=x_{0}+\sum_{i \in \mathbb{N}} 2 x_{i}+x_{\infty}$. There are no restrictions on g_{1} because $0=g_{1}=\infty$ is impossible.
- When $n=2$,

$$
K_{2,\{1\}}=\sum_{i \in \mathbb{N}} 2 x_{0} x_{i}+\sum_{i \in \mathbb{N}} 2 x_{i} x_{\infty}+\sum_{i \in \mathbb{N}} 2 x_{i}^{2}+\sum_{i<j \in \mathbb{N}} 4 x_{i} x_{j}+x_{\infty}^{2} .
$$

The coefficient of each monomial depends on how many distinct natural variables it contains.

Main Theorem

Theorem

The span of our family of power series, $\operatorname{span}\left(K_{n, \Lambda}\right)_{n \in \mathbb{N} \cup\{0\} ; ~} \subseteq[n]$, is a \mathbb{Z}-subalgebra of $\mathbb{Z}\left[\left[x_{0}, x_{1}, x_{2}, \ldots, x_{\infty}\right]\right]$.

Main Theorem

Theorem

The span of our family of power series, $\operatorname{span}\left(K_{n, \Lambda}\right)_{n \in \mathbb{N} \cup\{0\} ; ~} \subseteq[n]$, is a \mathbb{Z}-subalgebra of $\mathbb{Z}\left[\left[x_{0}, x_{1}, x_{2}, \ldots, x_{\infty}\right]\right]$.

Equivalently, the product of any $K_{n, \Lambda} K_{m, \Omega}$ can be written as the sums and differences of several K_{n+m}, \equiv 's, where each $\equiv \subseteq[n+m]$.

Main Theorem

Theorem

The span of our family of power series, $\operatorname{span}\left(K_{n, \Lambda}\right)_{n \in \mathbb{N} \cup\{0\} ; ~} \subseteq[n]$, is a \mathbb{Z}-subalgebra of $\mathbb{Z}\left[\left[x_{0}, x_{1}, x_{2}, \ldots, x_{\infty}\right]\right]$.

Equivalently, the product of any $K_{n, \Lambda} K_{m, \Omega}$ can be written as the sums and differences of several K_{n+m}, \equiv 's, where each $\equiv \subseteq[n+m]$.

Example: When $n=m=2$ and $\Lambda=\Omega=\{1,2\}$, the product $K_{2,\{1,2\}} K_{2,\{1,2\}}$ can be written as

$$
K_{4,\{2\}}+2 K_{4,\{1,3\}}+2 K_{4,\{1,4\}}+K_{4,\{2,4\}}+K_{4,\{1,2,4\}}-K_{4,\{1,2\}}
$$

Origin of the Problem

Grinberg proved the theorem in 2018 for exterior peak sets Λ, Ω; i.e. sets with no pair of consecutive integers. That result was key to proving the shuffle-compatibility of the exterior peak set statistic Epk.

Origin of the Problem

Grinberg proved the theorem in 2018 for exterior peak sets Λ, Ω; i.e. sets with no pair of consecutive integers. That result was key to proving the shuffle-compatibility of the exterior peak set statistic Epk.

In 2020, Grinberg later proved the theorem for $x_{0}=x_{\infty}=0$, in which case the power series are quasisymmetric.

Proof Outline

Consider similar family of functions, $L_{n, \Lambda}$'s, which can be handled more easily; prove the following equivalent theorem: the product of any $L_{n, \Lambda} L_{m, \Omega}$ can be written as the sums and differences of several $L_{n+m,}$, 's, where each $\equiv \subseteq[n+m]$.

Proof Outline

Consider similar family of functions, $L_{n, \Lambda}$ ' s, which can be handled more easily; prove the following equivalent theorem: the product of any $L_{n, \Lambda} L_{m, \Omega}$ can be written as the sums and differences of several $L_{n+m,}$, 's, where each $\equiv \subseteq[n+m]$.
"Zero out" the coefficients of monomials in $L_{n, \Lambda} L_{m, \Omega}$ by adding/subtracting $L_{n+m, \equiv}$'s in a specific order.

Proof Outline

Consider similar family of functions, $L_{n, \Lambda}$ ' s, which can be handled more easily; prove the following equivalent theorem: the product of any $L_{n, \Lambda} L_{m, \Omega}$ can be written as the sums and differences of several $L_{n+m,}$, 's, where each $\equiv \subseteq[n+m]$.
"Zero out" the coefficients of monomials in $L_{n, \Lambda} L_{m, \Omega}$ by adding/subtracting $L_{n+m, \equiv}$'s in a specific order.

Show that doing so results in the coefficients of every monomial becoming zero, thus proving the theorem.

References

D. Grinberg, Shuffle-compatible permutation statistics II: the exterior peak set. Electron. J. Combin. 25 (2018), Paper 17.
D. Grinberg, The eta-basis of QSym, 2020. Available at www.cip.ifi.lmu.de/~grinberg/algebra/etabasis.pdf.

Acknowledgements

- My mentor, Andrey Khesin
- Professor Darij Grinberg
- The MIT PRIMES program
- My aunt, for letting me use her WiFi

