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Z|[x0, x1, X2, - - . , Xs0|]: Ring of formal power series in the
variables xg, X1, X2, . . ., Xoo Over Z. Essentially the ring of
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monomials.

> Example: xo+x1+x 4+ + X0 = Y. X

ieN

Xo and X, are bordering variables; x; for all i € N are
natural variables.
Denote by [m](p) the coefficient of the monomial m in the
power series p.

> Example: [x3y](x + 7y + 13x3y) = 13.
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Quasisymmetric Functions

The ring of quasisymmetric functions (QSym): the ring of
power series f in the natural variables xq, x», ... such that

et xEH(F) = B X))

forall i < i <---<igandj1 <jo <--- < k.

Example of a quasisymmetric function: ) 6X,-XJ-2X,‘:’ + > xix;.
i<j<k i<j

Example of a non-quasisymmetric function:

f = X x3X3 + X X3 x5 + X X3 X3 + XoXa X3
because [x;x3x3](f) # [xx3x3](f).

We will investigate power series quasisymmetric in xi, x2, ... but
with two bordering variables xg, Xoo-
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The sum runs over all combinations with replacement of n
nondecreasing elements g1, g2, ...,8, € N such that for all / € A,
gi—1 = & = gi+1 is false, where go = 0 and g,+1 = 0.

Example: If n =5 and A = {1,4}, then the combinations
(0,0,1,3,00) and (2,2,7,7,7) are not included because they have
g = g1 = & and g3 = g4 = gs, but (0,1,5,5,8) is included.
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Let n€ NU{0}, [n] ={1,2,...,n}, and A C [n]. Define K, A as:

82,80 }NN
Kop = E : ol{g1.82,-.8n} |Xg1Xg2 e Xg
(81,825-,8n)EN™;
0=g1=3g2 = 2gn=00;
no i€N satisfies gi_1=gi=gi+1
(where go=0 and gp+1=00)
Each summand of K, A is the monomial xg, xg, - - - Xz, multiplied by
2 to the power of the number of distinct natural variables in

{Xg1s Xgor -+ > Xgy }-

Example: If n=5 and (g1,82,...,8,) = (0,1,5,5,7), then the
corresponding summand 2|{g1’5’2’“"é"’"}m\”xglxg2 -+ Xg, equals
8xox1X52X7.
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Examples of K, A's

§ - 0N NN
Kn’/\ = 2|{g1 82 gn} |Xg1Xg2 e Xgn‘

(81:82:--,8n)ENT;
0=g1=%g2 2" 2gn=00;
no €A satisfies gi_1=gi=gi+1
(where go=0 and gn11=00)

> When n=1, Ky 3 = Ky (13 = X0 + >_ 2Xi + Xo. There are

ieN
no restrictions on g1 because 0 = g = oo is impossible.
» When n =2,
Koy = Z 2x0X; + Z 2XiXoo + Z 2x7 + Z 4xix; + x2..
ieN ieN ieN i<jeN

The coefficient of each monomial depends on how many
distinct natural variables it contains.
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Theorem
The span of our family of power series, span (Kp a)
a Z-subalgebra of Z[[xop, X1, X2, - -+, Xoo]]-

neNU{0}; AC[n]’ 1S
Equivalently, the product of any K, K, o can be written as the
sums and differences of several Kj,4m='s, where each = C [n+ m].

Example: When n = m =2 and A = Q = {1, 2}, the product
K> 1,2y K2, 11,2} can be written as

Ka 2y +2Ks 13y + 2Ka 1.4y + Ko 2.4y + Ka(124) — Kaf1,2)-
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In 2020, Grinberg later proved the theorem for xp = xoc = 0, in
which case the power series are quasisymmetric.



Proof Outline

Consider similar family of functions, L, A's, which can be handled
more easily; prove the following equivalent theorem: the product of
any L, aALm.o can be written as the sums and differences of several
Lnym="s, where each = C [n + m].



Proof Outline

Consider similar family of functions, L, A's, which can be handled
more easily; prove the following equivalent theorem: the product of
any L, aALm.o can be written as the sums and differences of several
Lnym="s, where each = C [n + m].

“Zero out” the coefficients of monomials in L, ALy o by
adding/subtracting L,ym="s in a specific order.



Proof Outline

Consider similar family of functions, L, A's, which can be handled
more easily; prove the following equivalent theorem: the product of
any L, aALm.o can be written as the sums and differences of several
Lnym="s, where each = C [n + m].

“Zero out” the coefficients of monomials in L, ALy o by
adding/subtracting L,ym="s in a specific order.

Show that doing so results in the coefficients of every monomial
becoming zero, thus proving the theorem.
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