Refinements of Product Formulas for Volumes of Flow Polytopes

William Shi ${ }^{1}$
Mentor: Prof. Alejandro Morales ${ }^{2}$
${ }^{1}$ Northview High School
${ }^{2}$ UMass Amherst

October 17, 2020
MIT PRIMES Conference

Integral Polytopes

- An integral polytope P in \mathbb{R}^{n} is the convex hull of finitely many vertices v in \mathbb{Z}^{n}.
Δ_{2}
Δ_{3}
$[0,1]^{3}$

Integral Polytopes

- An integral polytope P in \mathbb{R}^{n} is the convex hull of finitely many vertices v in \mathbb{Z}^{n}.

$$
\Delta_{2}
$$

$$
\Delta_{3}
$$

$$
[0,1]^{3}
$$

- Equivalently, P is the intersection of finitely many half spaces.

Volume of Polytopes

normalized volume of $P:=\operatorname{dim}(P)!\cdot($ euclidean volume of P)
Δ_{2}
Δ_{3}
$[0,1]^{3}$

Euclidean Volume
1/2
Normalized Volume 1
1/6
1
1

Graphs

- For a loopless graph $G=(\{0,1, \ldots, n, n+1\}, E)$, we orient edge (i, j) from $i \rightarrow j$ if $i<j$.

Graphs

- For a loopless graph $G=(\{0,1, \ldots, n, n+1\}, E)$, we orient edge (i, j) from $i \rightarrow j$ if $i<j$.

- The source has net flow 1 , the sink has net flow -1 , and other vertices have net flow 0 .

Flows

A flow is a function $f: E \rightarrow \mathbb{R}_{\geq 0}^{m}$ that satisfies the net flow vector $(1,0, \ldots, 0,-1)$.

$$
\begin{aligned}
& x_{01}+x_{02}+x_{03}=1 \\
& x_{12}+x_{13}-x_{01}=0 \\
& x_{23}-x_{02}-x_{12}=0
\end{aligned}
$$

Flow Polytopes

- The flow polytope \mathcal{F}_{G} is the set of all flows on G.

The Chan-Robbins-Yuen Polytope

- The Chan-Robbins-Yuen (CRY) Polytope is defined by

$$
C R Y_{n+1}:=\mathcal{F}_{K_{n+2}} .
$$

The Chan-Robbins-Yuen Polytope

- The Chan-Robbins-Yuen (CRY) Polytope is defined by

$$
C R Y_{n+1}:=\mathcal{F}_{K_{n+2}} .
$$

Theorem (Zeilberger 1999)

The volume of the CRY polytope is given by

$$
\operatorname{vol} C R Y_{n+1}=\prod_{i=1}^{n-1} C_{i}
$$

where $C_{i}=\frac{1}{i+1}\binom{2 i}{i}$ is the ith Catalan number.

The Morris Identity

Theorem (Zeilberger 1999, Baldoni-Vergne 2001)

For $n, a, b \in \mathbb{Z}^{+}$and $c \in \mathbb{Z}_{\geq 0}$, define the constant term

$$
M_{n}(a, b, c):=\mathrm{CT}_{x} \prod_{i=1}^{n}\left(1-x_{i}\right)^{-b} x_{i}^{-a+1} \prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)^{-c}
$$

where $\mathrm{CT}_{x}:=\mathrm{CT}_{x_{n}} \cdots \mathrm{CT}_{x_{1}}$. Then

$$
M_{n}(a, b, c)=\prod_{j=0}^{n-1} \frac{\Gamma\left(a-1+b+(n-1+j) \frac{c}{2}\right) \Gamma\left(\frac{c}{2}+1\right)}{\Gamma\left(a+j \frac{c}{2}\right) \Gamma\left(b+j \frac{c}{2}\right) \Gamma\left(\frac{c}{2}(j+1)+1\right)} .
$$

Catalan and Narayana Numbers

- The Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ counts the lattice paths from $(0,0)$ to (n, n) not passing below the diagonal.

$$
C_{3}=5
$$

Catalan and Narayana Numbers

- The Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ counts the lattice paths from $(0,0)$ to (n, n) not passing below the diagonal.

$$
C_{3}=5
$$

- The Catalan numbers are refined by the Narayana numbers $N(n, k)=\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$, which also count the number of peaks.

$$
N(3,1)=1 \quad N(3,2)=3 \quad N(3,3)=1
$$

$$
C_{3}=5
$$

Subdividing the CRY Polytope

- Zeilberger used "Aomoto's extension of Selberg's integral" to refine $M_{n}(1,1,1)$ as a sum of $N(n-1, k) C_{n-2} \cdots C_{1}$.

Subdividing the CRY Polytope

- Zeilberger used "Aomoto's extension of Selberg's integral" to refine $M_{n}(1,1,1)$ as a sum of $N(n-1, k) C_{n-2} \cdots C_{1}$.
- Mészáros (2011) gave a collection of interior disjoint polytopes with volumes that sum to $N(n-1, k) C_{n-2} \cdots C_{1}$.

Generalizing the CRY Polytope

- $K_{n+2}^{a, b, c}$ has vertices $\{0, \ldots, n+1\}$ and for $i \in[n]$, edge $(0, i)$ a times, $(i, n+1) b$ times, and $(i, j) c$ times for $i<j \leq n$.

Generalizing the CRY Polytope

- $K_{n+2}^{a, b, c}$ has vertices $\{0, \ldots, n+1\}$ and for $i \in[n]$, edge $(0, i)$ a times, $(i, n+1) b$ times, and $(i, j) c$ times for $i<j \leq n$.

Theorem (Corteel-Kim-Mészáros 2017)
For $n, a, b \in \mathbb{Z}^{+}$and $c \in \mathbb{Z}_{\geq 0}$,

$$
\operatorname{vol} \mathcal{F}_{K_{n+2}^{a, b, c}}=M_{n}(a, b, c)
$$

Generalizing the CRY Polytope

- $K_{n+2}^{a, b, c}$ has vertices $\{0, \ldots, n+1\}$ and for $i \in[n]$, edge $(0, i)$ a times, $(i, n+1) b$ times, and $(i, j) c$ times for $i<j \leq n$.

Theorem (Corteel-Kim-Mészáros 2017)
For $n, a, b \in \mathbb{Z}^{+}$and $c \in \mathbb{Z}_{\geq 0}$,

$$
\operatorname{vol} \mathcal{F}_{K_{n+2}^{a, b, c}}=M_{n}(a, b, c)
$$

- Q1: Is there a refinement of $M_{n}(a, b, c)$?

Generalizing the CRY Polytope

- $K_{n+2}^{a, b, c}$ has vertices $\{0, \ldots, n+1\}$ and for $i \in[n]$, edge $(0, i)$ a times, $(i, n+1) b$ times, and $(i, j) c$ times for $i<j \leq n$.

Theorem (Corteel-Kim-Mészáros 2017)
For $n, a, b \in \mathbb{Z}^{+}$and $c \in \mathbb{Z}_{\geq 0}$,

$$
\operatorname{vol} \mathcal{F}_{K_{n+2}^{a, b, c}}=M_{n}(a, b, c)
$$

- Q1: Is there a refinement of $M_{n}(a, b, c)$?
- Q2: Does such a refinement have a geometric interpretation?

A New Constant Term Identity

- We define the constant term: $\Psi_{n}(k, a, b, c):=$

$$
\mathrm{CT}_{x}\left[t^{k}\right] \prod_{i=1}^{n}\left(1-x_{i}\right)^{-b} x_{i}^{-a+1}\left(1+t \frac{x_{i}}{1-x_{i}}\right) \prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)^{-c}
$$

A New Constant Term Identity

- We define the constant term: $\Psi_{n}(k, a, b, c):=$

$$
\mathrm{CT}\left[t^{k}\right] \prod_{i=1}^{n}\left(1-x_{i}\right)^{-b} x_{i}^{-a+1}\left(1+t \frac{x_{i}}{1-x_{i}}\right) \prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)^{-c}
$$

Theorem (Morales-S. 2020)
For $n, a, b \in \mathbb{Z}^{+}$and $c, k \in \mathbb{Z}_{\geq 0}$ with $k \leq n$, we have

$$
\Psi_{n}(k, a, b, c)=\binom{n}{k} M_{n}(a, b, c) \prod_{j=1}^{k} \frac{a-1+(n-j) \frac{c}{2}}{b+(j-1) \frac{c}{2}} .
$$

A New Constant Term Identity

- We define the constant term: $\Psi_{n}(k, a, b, c):=$

$$
\mathrm{CT}_{x}\left[t^{k}\right] \prod_{i=1}^{n}\left(1-x_{i}\right)^{-b} x_{i}^{-a+1}\left(1+t \frac{x_{i}}{1-x_{i}}\right) \prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)^{-c}
$$

Theorem (Morales-S. 2020)
For $n, a, b \in \mathbb{Z}^{+}$and $c, k \in \mathbb{Z}_{\geq 0}$ with $k \leq n$, we have

$$
\Psi_{n}(k, a, b, c)=\binom{n}{k} M_{n}(a, b, c) \prod_{j=1}^{k} \frac{a-1+(n-j) \frac{c}{2}}{b+(j-1) \frac{c}{2}} .
$$

- The proof uses several recurrence relations.

Generalizing $K_{n+2}^{a, b, c}$

For $S \subseteq[n]$, the graph $K_{n+2}^{a, b, c}(S)$ takes $K_{n+2}^{a, b, c}$, adds n edges $(0, n+1)$, and for each $i \in S$, deletes an edge $(0, i)$ and adds an edge ($i, n+1$).

Polytope Interpretation for $\Psi_{n}(k, a, b, c)$

Theorem (Morales-S. 2020)
For $n, a, b \in \mathbb{Z}^{+}$and $c, k \in \mathbb{Z}_{\geq 0}$ with $k \leq n$,

$$
\Psi_{n}(k, a, b, c)=\sum_{S \in\binom{[n]}{k}} \operatorname{vol} \mathcal{F}_{K_{n+2}^{a, b, c}(S)}
$$

Example: Polytope Interpretation

Subdividing $\mathcal{F}_{K_{n+2}^{\text {a,b,c }}}$

- The subdivision lemma (Postnikov-Stanley) gives a map that reduces a flow polytope to two interior disjoint polytopes.

Subdividing $\mathcal{F}_{K_{n+2}^{a, b, c}}$

- The subdivision lemma (Postnikov-Stanley) gives a map that reduces a flow polytope to two interior disjoint polytopes.

- We apply this to the flow polytope on the graph $K_{n+2}^{a, b+1, c}$.

Refining the Morris Identity

Corollary (Morales-S. 2020)
For $n, a, b \in \mathbb{Z}^{+}$and $c \in \mathbb{Z}_{\geq 0}$,

$$
M_{n}(a, b+1, c)=\sum_{k=0}^{n} \Psi_{n}(k, a, b, c)
$$

Summary of the Results

$$
\begin{aligned}
& \prod_{i=1}^{n-1} C_{i}=\sum_{k=1}^{n-1} N(n-1, k) \prod_{i=1}^{n-2} C_{i} \\
& \operatorname{vol} C R Y_{n+1}=\prod_{i=1}^{n-1} C_{i} \longrightarrow \operatorname{vol} \mathcal{F}_{K_{n+2}^{1,1,1}(S)}=N(n-1, k) \prod_{i=1}^{n-2} C_{i} \\
& \operatorname{vol} \mathcal{F}_{K_{n+2}^{a, b, c}}=M_{n}(a, b, c) \\
& \qquad M_{n}(a, b, c)=\sum_{k=0}^{n} \Psi_{n}(k, a, b, c) \\
& \Psi_{n}(k, a, b, c)=\binom{n}{k} \prod_{j=1}^{k} \frac{a-1+(n-j) \frac{c}{2}}{b+(j-1) \frac{c}{2}} M_{K_{n+2}^{a, b, c}(S)}=\Psi_{n}(k, a, b, c)
\end{aligned}
$$

Acknowledgements

- My mentor, Prof. Alejandro Morales
- MIT PRIMES-USA Program
- Dr. Tanya Khovanova and Ms. Boya Song
- My family

Thank You!

$$
\begin{aligned}
& \prod_{i=1}^{n-1} C_{i}=\sum_{k=1}^{n-1} N(n-1, k) \prod_{i=1}^{n-2} C_{i} \\
& \operatorname{vol} C R Y_{n+1}=\prod_{i=1}^{n-1} C_{i} \longrightarrow \quad \operatorname{vol} \mathcal{F}_{K_{n+2}^{1,1,1}(S)}=N(n-1, k) \prod_{i=1}^{n-2} C_{i} \\
& \operatorname{vol} \mathcal{F}_{K_{n+2}^{a, b, c}}=M_{n}(a, b, c) \\
& M_{n}(a, b, c)=\sum_{k=0}^{n} \Psi_{n}(k, a, b, c) \\
& \Psi_{n}(k, a, b, c)=\binom{n}{k} \prod_{j=1}^{k} \frac{\operatorname{vol} \mathcal{F}_{K_{n+2}^{a, b, c}(S)}=\Psi_{n}(k, a, b, c)}{b+(j-1) \frac{c}{2}} M_{n}(a, b, c)
\end{aligned}
$$

