Refinements of Product Formulas for Volumes of Flow Polytopes

William Shi ¹ Mentor: Prof. Alejandro Morales ²

¹Northview High School

²UMass Amherst

October 17, 2020 MIT PRIMES Conference

William Shi

Northview High School

Integral Polytopes

► An integral polytope P in ℝⁿ is the convex hull of finitely many vertices v in ℤⁿ.

Integral Polytopes

► An integral polytope P in ℝⁿ is the convex hull of finitely many vertices v in ℤⁿ.

► Equivalently, *P* is the intersection of finitely many half spaces.

Flow Polytopes	The CRY Polytope	Refining the Morris Identity	

Volume of Polytopes

normalized volume of $P := \dim(P)! \cdot (\text{euclidean volume of } P)$

1

Normalized Volume 1

William Shi

Northview High Schoo

6

Flow Polytopes	The CRY Polytope	Refining the Morris Identity	
00●00	00000	000000	

Graphs

▶ For a loopless graph $G = (\{0, 1, ..., n, n+1\}, E)$, we orient edge (i, j) from $i \rightarrow j$ if i < j.

Flow Polytopes 00●00	The CRY Polytope	Refining the Morris Identity	

Graphs

▶ For a loopless graph $G = (\{0, 1, ..., n, n+1\}, E)$, we orient edge (i, j) from $i \rightarrow j$ if i < j.

► The source has net flow 1, the sink has net flow -1, and other vertices have net flow 0.

William Shi

Flow Polytopes 000●0	The CRY Polytope 00000	Refining the Morris Identity 000000	

Flows

A flow is a function $f: E \to \mathbb{R}^m_{\geq 0}$ that satisfies the net flow vector $(1,0,\ldots,0,-1).$

 $x_{01} + x_{02} + x_{03} = 1$ $x_{12} + x_{13} - x_{01} = 0$

$$x_{23} - x_{02} - x_{12} = 0$$

William Shi

Northview High Schoo

Flow Polytopes	The CRY Polytope	Refining the Morris Identity	
00000			

Flow Polytopes

▶ The flow polytope \mathcal{F}_G is the set of all flows on G.

William Shi

Northview High Schoo

Refining the Morris Identity

Final Remarks

The Chan-Robbins-Yuen Polytope

▶ The Chan-Robbins-Yuen (CRY) Polytope is defined by

 $CRY_{n+1} := \mathcal{F}_{K_{n+2}}.$

William Shi

Northview High School

The Chan-Robbins-Yuen Polytope

▶ The Chan-Robbins-Yuen (CRY) Polytope is defined by

$$CRY_{n+1} := \mathcal{F}_{K_{n+2}}.$$

Theorem (Zeilberger 1999)

The volume of the CRY polytope is given by

$$\text{vol } CRY_{n+1} = \prod_{i=1}^{n-1} C_i,$$

where $C_i = \frac{1}{i+1} {2i \choose i}$ is the *i*th Catalan number.

The Morris Identity

Theorem (Zeilberger 1999, Baldoni-Vergne 2001)

For $n, a, b \in \mathbb{Z}^+$ and $c \in \mathbb{Z}_{\geq 0}$, define the constant term

$$M_n(a, b, c) := CT_x \prod_{i=1}^n (1-x_i)^{-b} x_i^{-a+1} \prod_{1 \le i < j \le n} (x_j - x_i)^{-c},$$

where $CT_x := CT_{x_n} \cdots CT_{x_1}$. Then

$$M_n(a, b, c) = \prod_{j=0}^{n-1} \frac{\Gamma(a-1+b+(n-1+j)\frac{c}{2})\Gamma(\frac{c}{2}+1)}{\Gamma(a+j\frac{c}{2})\Gamma(b+j\frac{c}{2})\Gamma(\frac{c}{2}(j+1)+1)}.$$

William Shi

Refining the Morris Identity

Final Remarks

Catalan and Narayana Numbers

▶ The **Catalan number** $C_n = \frac{1}{n+1} \binom{2n}{n}$ counts the lattice paths from (0,0) to (*n*, *n*) not passing below the diagonal.

Refining the Morris Identity

Final Remarks

Catalan and Narayana Numbers

▶ The **Catalan number** $C_n = \frac{1}{n+1} {\binom{2n}{n}}$ counts the lattice paths from (0,0) to (*n*, *n*) not passing below the diagonal.

$$C_3 = 5$$

▶ The Catalan numbers are refined by the **Narayana numbers** $N(n,k) = \frac{1}{n} \binom{n}{k} \binom{n}{k-1}$, which also count the number of peaks.

$$C_3 = 5$$

N(3 | 1) - 1 N(3 | 2) - 3 N(3 | 3) - 1

William Shi

Subdividing the CRY Polytope

► Zeilberger used "Aomoto's extension of Selberg's integral" to refine $M_n(1,1,1)$ as a sum of $N(n-1,k)C_{n-2}\cdots C_1$.

Subdividing the CRY Polytope

- ► Zeilberger used "Aomoto's extension of Selberg's integral" to refine $M_n(1,1,1)$ as a sum of $N(n-1,k)C_{n-2}\cdots C_1$.
- ► Mészáros (2011) gave a collection of interior disjoint polytopes with volumes that sum to N(n-1, k)C_{n-2}···C₁.

Refining the Morris Identity

Final Remarks

Generalizing the CRY Polytope

▶ $K_{n+2}^{a,b,c}$ has vertices $\{0, \ldots, n+1\}$ and for $i \in [n]$, edge (0, i) a times, (i, n+1) b times, and (i, j) c times for $i < j \le n$.

Refining the Morris Identity

Final Remarks

Generalizing the CRY Polytope

▶ $K_{n+2}^{a,b,c}$ has vertices $\{0, \ldots, n+1\}$ and for $i \in [n]$, edge (0, i) a times, (i, n+1) b times, and (i, j) c times for $i < j \le n$.

Theorem (Corteel-Kim-Mészáros 2017)

For $n, a, b \in \mathbb{Z}^+$ and $c \in \mathbb{Z}_{\geq 0}$,

$$\operatorname{vol} \mathcal{F}_{K^{a,b,c}_{n+2}} = M_n(a,b,c).$$

William Shi

Northview High School

Refining the Morris Identity

Final Remarks

Generalizing the CRY Polytope

▶ $K_{n+2}^{a,b,c}$ has vertices $\{0, \ldots, n+1\}$ and for $i \in [n]$, edge (0,i) a times, (i, n+1) b times, and (i,j) c times for i < j ≤ n.

Theorem (Corteel-Kim-Mészáros 2017)

For $n, a, b \in \mathbb{Z}^+$ and $c \in \mathbb{Z}_{\geq 0}$,

$$\operatorname{vol} \mathcal{F}_{K^{a,b,c}_{n+2}} = M_n(a,b,c).$$

▶ **Q1:** Is there a refinement of $M_n(a, b, c)$?

William Shi

Refining the Morris Identity

Final Remarks

Generalizing the CRY Polytope

▶ $K_{n+2}^{a,b,c}$ has vertices $\{0, \ldots, n+1\}$ and for $i \in [n]$, edge (0,i) a times, (i, n+1) b times, and (i,j) c times for i < j ≤ n.

Theorem (Corteel-Kim-Mészáros 2017)

For $n, a, b \in \mathbb{Z}^+$ and $c \in \mathbb{Z}_{\geq 0}$,

$$\operatorname{vol} \mathcal{F}_{K^{a,b,c}_{n+2}} = M_n(a,b,c).$$

- ▶ **Q1:** Is there a refinement of $M_n(a, b, c)$?
- ▶ Q2: Does such a refinement have a geometric interpretation?

William Shi

A New Constant Term Identity

• We define the constant term: $\Psi_n(k, a, b, c) :=$

$$\mathsf{CT}_{x}[t^{k}] \prod_{i=1}^{n} (1-x_{i})^{-b} x_{i}^{-a+1} \left(1 + t \frac{x_{i}}{1-x_{i}} \right) \prod_{1 \le i < j \le n} (x_{j} - x_{i})^{-c}.$$

A New Constant Term Identity

• We define the constant term: $\Psi_n(k, a, b, c) :=$

$$\mathsf{CT}_{x}[t^{k}] \prod_{i=1}^{n} (1-x_{i})^{-b} x_{i}^{-a+1} \left(1 + t \frac{x_{i}}{1-x_{i}} \right) \prod_{1 \le i < j \le n} (x_{j} - x_{i})^{-c}$$

Theorem (Morales-S. 2020)

For $n, a, b \in \mathbb{Z}^+$ and $c, k \in \mathbb{Z}_{\geq 0}$ with $k \leq n$, we have

$$\Psi_n(k, a, b, c) = \binom{n}{k} M_n(a, b, c) \prod_{j=1}^k \frac{a - 1 + (n - j)\frac{c}{2}}{b + (j - 1)\frac{c}{2}}.$$

William Shi

Northview High Schoo

A New Constant Term Identity

• We define the constant term: $\Psi_n(k, a, b, c) :=$

$$\mathsf{CT}_{x}[t^{k}] \prod_{i=1}^{n} (1-x_{i})^{-b} x_{i}^{-a+1} \left(1 + t \frac{x_{i}}{1-x_{i}} \right) \prod_{1 \le i < j \le n} (x_{j} - x_{i})^{-c}$$

Theorem (Morales-S. 2020)

For $n, a, b \in \mathbb{Z}^+$ and $c, k \in \mathbb{Z}_{\geq 0}$ with $k \leq n$, we have

$$\Psi_n(k, a, b, c) = \binom{n}{k} M_n(a, b, c) \prod_{j=1}^k \frac{a - 1 + (n - j)\frac{c}{2}}{b + (j - 1)\frac{c}{2}}.$$

▶ The proof uses several recurrence relations.

William Shi

Generalizing $K_{n+2}^{a,b,c}$

For $S \subseteq [n]$, the graph $\mathcal{K}_{n+2}^{a,b,c}(S)$ takes $\mathcal{K}_{n+2}^{a,b,c}$, adds n edges (0, n+1), and for each $i \in S$, deletes an edge (0, i) and adds an edge (i, n+1).

William Shi

Northview High Schoo

Polytope Interpretation for $\Psi_n(k, a, b, c)$

Theorem (Morales-S. 2020)

For
$$n, a, b \in \mathbb{Z}^+$$
 and $c, k \in \mathbb{Z}_{>0}$ with $k \leq n$,

$$\Psi_n(k, a, b, c) = \sum_{S \in \binom{[n]}{k}} \operatorname{vol} \mathcal{F}_{\mathcal{K}^{a, b, c}_{n+2}(S)}.$$

William Shi

Northview High School

Refining the Morris Identity

Example: Polytope Interpretation

William Shi

Northview High Schoo

Subdividing $\mathcal{F}_{\mathcal{K}^{a,b,c}_{n+2}}$

The subdivision lemma (Postnikov-Stanley) gives a map that reduces a flow polytope to two interior disjoint polytopes.

William Shi

Northview High Schoo

Subdividing $\mathcal{F}_{\mathcal{K}^{a,b,c}_{n+2}}$

The subdivision lemma (Postnikov-Stanley) gives a map that reduces a flow polytope to two interior disjoint polytopes.

• We apply this to the flow polytope on the graph $K_{n+2}^{a,b+1,c}$.

William Shi

Northview High Schoo

Refining the Morris Identity

Refining the Morris Identity

Corollary (Morales-S. 2020)

For $n, a, b \in \mathbb{Z}^+$ and $c \in \mathbb{Z}_{\geq 0}$,

$$M_n(a,b+1,c) = \sum_{k=0}^n \Psi_n(k,a,b,c).$$

William Shi

Northview High Schoo

Refining the Morris Identity

Summary of the Results

$$\begin{split} &\prod_{i=1}^{n-1} C_i = \sum_{k=1}^{n-1} N(n-1,k) \prod_{i=1}^{n-2} C_i \\ &\text{vol } CRY_{n+1} = \prod_{i=1}^{n-1} C_i & \longrightarrow \\ &\text{vol } \mathcal{F}_{K_{n+2}^{a,b,c}} = M_n(a,b,c) & & \text{vol } \mathcal{F}_{K_{n+2}^{a,b,c}(S)} = N(n-1,k) \prod_{i=1}^{n-2} C_i \\ & & \downarrow \\ &\text{vol } \mathcal{F}_{K_{n+2}^{a,b,c}} = M_n(a,b,c) & & \text{vol } \mathcal{F}_{K_{n+2}^{a,b,c}(S)} = \Psi_n(k,a,b,c) \\ & & M_n(a,b,c) = \sum_{k=0}^{n} \Psi_n(k,a,b,c) \\ & & \Psi_n(k,a,b,c) = \binom{n}{k} \prod_{j=1}^{k} \frac{a-1+(n-j)\frac{c}{2}}{b+(j-1)\frac{c}{2}} M_n(a,b,c) \end{split}$$

William Shi

Northview High Schoo

Acknowledgements

- ▶ My mentor, Prof. Alejandro Morales
- MIT PRIMES-USA Program
- Dr. Tanya Khovanova and Ms. Boya Song
- ► My family

The CRY Polytope	Refining the Morris Identity	Final Remarks 00●

Thank You!

William Shi

Northview High Schoo