\equiv Borel cohomology of S^{n} mapping spaces \equiv

Justin Wu • October 17, 2020
Mentor: Ishan Levy
MIT PRIMES Conference

Natural Spaces

Spheres - S^{n}

Natural Spaces

Spheres - S^{n}
S^{1} :

S^{2} :

Unbased mapping spaces, denoted $\operatorname{Map}(Y, X)$ or X^{Y} - the space of continuous maps $Y \rightarrow X$.

Natural Spaces

Spheres - S^{n}
S^{1} :

S^{2} :

Unbased mapping spaces, denoted $\operatorname{Map}(Y, X)$ or X^{Y} - the space of continuous maps $Y \rightarrow X$.
$X^{S^{n}}$ is well understood for $n=1$ and the based case. We study the unbased case for general n.

Cohomology

Cohomology - algebraic invariant of topological spaces denoted $H^{*}(X)$.

Cohomology

Cohomology - algebraic invariant of topological spaces denoted $H^{*}(X)$.
Graded ring:

- Elements can be added and multiplied.
- Elements can be broken up into homogeneus elements with a degree $\in \mathbb{N}$.

Cohomology

Cohomology - algebraic invariant of topological spaces denoted $H^{*}(X)$.
Graded ring:

- Elements can be added and multiplied.
- Elements can be broken up into homogeneus elements with a degree $\in \mathbb{N}$.
Mod 2 cohomology $\Longrightarrow \mathbb{F}_{2}$ vector space.

Cohomology

Cohomology - algebraic invariant of topological spaces denoted $H^{*}(X)$.
Graded ring:

- Elements can be added and multiplied.
- Elements can be broken up into homogeneus elements with a degree $\in \mathbb{N}$.
Mod 2 cohomology $\Longrightarrow \mathbb{F}_{2}$ vector space.
Unstable Steenrod Algebra: Maps

$$
S q^{i}: H^{n}(X) \rightarrow H^{n+i}(X)
$$

satisfying

$$
\begin{gathered}
S q^{i}(x)=0 \quad i>|x| \quad \text { (instability condition) } \\
S q^{i}(x y)=\sum_{a+b=i} S q^{a}(x) S q^{b}(y) \\
S q^{|x|} x=x^{2}
\end{gathered}
$$

Examples

$$
H^{*}\left(S^{n}\right)=\mathbb{F}_{2}[x] / x^{2} \text { with }|x|=n .
$$

Examples

$H^{*}\left(S^{n}\right)=\mathbb{F}_{2}[x] / x^{2}$ with $|x|=n$.
n-dimensional space - cohomology only goes up to degree n.

Maps Between Spaces

Maps between spaces induces a map between Steenrod Algebras

$$
\begin{aligned}
f: X & \rightarrow Y \\
f^{*}: H^{*}(Y) & \rightarrow H^{*}(X) .
\end{aligned}
$$

f^{*} is compatible with addition, multiplication, degree, and Steenrod squares

$$
\begin{gathered}
f^{*}(x+y)=f^{*}(x)+f^{*}(y) \\
f^{*}(x y)=f^{*}(x) f^{*}(y) \\
\left|f^{*}(x)\right|=|x| \\
S q^{i} f^{*}(x)=f^{*}\left(S q^{i} x\right)
\end{gathered}
$$

Nonequivariant case

Want to compute $H^{*}\left(X^{S^{n}}\right)$.

Nonequivariant case

Want to compute $H^{*}\left(X^{S^{n}}\right)$.
Create an approximation functor Ω_{n} and an approximation map $\Omega_{n}\left(H^{*}(X)\right) \rightarrow H^{*}\left(X^{S^{n}}\right)$ which is an isomorphism for $X=K(\mathbb{Z} / 2, m)$.

Nonequivariant case

Want to compute $H^{*}\left(X^{S^{n}}\right)$.
Create an approximation functor Ω_{n} and an approximation map $\Omega_{n}\left(H^{*}(X)\right) \rightarrow H^{*}\left(X^{S^{n}}\right)$ which is an isomorphism for $X=K(\mathbb{Z} / 2, m)$.
For A an unstable Steenrod algebra, define $\Omega_{n}(A)$ as the free \mathbb{F}_{2} algebra generated by $x, d x \in A$ with $|d x|=|x|-n$ modulo the following relations:

$$
\begin{gathered}
d x+d y=d(x+y) \\
d(x y)=d(x) y+d(y) x \\
d\left(S q^{n} x\right)=(d x)^{2} \\
d\left(S q^{i} x\right)=0 \quad i<n .
\end{gathered}
$$

Nonequivariant case

Want to compute $H^{*}\left(X^{S^{n}}\right)$.
Create an approximation functor Ω_{n} and an approximation map $\Omega_{n}\left(H^{*}(X)\right) \rightarrow H^{*}\left(X^{S^{n}}\right)$ which is an isomorphism for $X=K(\mathbb{Z} / 2, m)$.
For A an unstable Steenrod algebra, define $\Omega_{n}(A)$ as the free \mathbb{F}_{2} algebra generated by $x, d x \in A$ with $|d x|=|x|-n$ modulo the following relations:

$$
\begin{gathered}
d x+d y=d(x+y) \\
d(x y)=d(x) y+d(y) x \\
d\left(S q^{n} x\right)=(d x)^{2} \\
d\left(S q^{i} x\right)=0 \quad i<n .
\end{gathered}
$$

The map $f: S^{n} \times X^{S^{n}} \rightarrow X,(p, f) \rightarrow f(p)$ induces the map

$$
\begin{gathered}
f^{*}: H^{*}(X) \rightarrow H^{*}\left(S^{n} \times X^{S^{n}}\right)=H^{*}\left(S^{n}\right) \otimes H^{*}\left(X^{S^{n}}\right), \\
x \rightarrow 1 \otimes x+c \otimes d x .
\end{gathered}
$$

Borel Cohomology

A G-space is a space with a group action by G.

Borel Cohomology

A G-space is a space with a group action by G. Example: $\mathbb{Z} / n \mathbb{Z}$ action on S^{1} by rotation by $\frac{2 \pi}{n}$

Borel Cohomology

A G-space is a space with a group action by G. Example: $\mathbb{Z} / n \mathbb{Z}$ action on S^{1} by rotation by $\frac{2 \pi}{n}$
$S O(n+1)$: group of symmetries of S^{n}.
Example: $S O(2)=S^{1}$. This gives S^{1} the structure of a S^{1}-space.

Borel Cohomology

A G-space is a space with a group action by G. Example: $\mathbb{Z} / n \mathbb{Z}$ action on S^{1} by rotation by $\frac{2 \pi}{n}$
$S O(n+1)$: group of symmetries of S^{n}.
Example: $S O(2)=S^{1}$. This gives S^{1} the structure of a S^{1}-space.
$X^{S^{n}}$ has structure of a $S O(n+1)$-space by precomposition.

Borel Cohomology

A G-space is a space with a group action by G. Example: $\mathbb{Z} / n \mathbb{Z}$ action on S^{1} by rotation by $\frac{2 \pi}{n}$
$S O(n+1)$: group of symmetries of S^{n}.
Example: $S O(2)=S^{1}$. This gives S^{1} the structure of a S^{1}-space.
$X^{S^{n}}$ has structure of a $S O(n+1)$-space by precomposition.
The Borel cohomology or G-equivariant cohomology of a G-space X is

$$
H^{*}\left(X_{h G}\right)
$$

where $X_{h G}$ is defined as $E G \times_{G} X$ where G acts diagonally and $E G$ is the total space of the universal G-principal bundle $E G \rightarrow B G$.

Borel Cohomology

A G-space is a space with a group action by G. Example: $\mathbb{Z} / n \mathbb{Z}$ action on S^{1} by rotation by $\frac{2 \pi}{n}$
$S O(n+1)$: group of symmetries of S^{n}.
Example: $S O(2)=S^{1}$. This gives S^{1} the structure of a S^{1}-space.
$X^{S^{n}}$ has structure of a $S O(n+1)$-space by precomposition.
The Borel cohomology or G-equivariant cohomology of a G-space X is

$$
H^{*}\left(X_{h G}\right)
$$

where $X_{h G}$ is defined as $E G \times_{G} X$ where G acts diagonally and $E G$ is the total space of the universal G-principal bundle $E G \rightarrow B G$.

We wish to compute

$$
H^{*}\left(X_{h S O(n+1)}^{S^{n}}\right)
$$

Equivariant Approximation

Define $\ell_{n}(A)$ to be the free algebra on generators $\phi_{i}(x), \delta(x) \quad(0 \leq i \leq n)$ for each homogeneous $x \in A$ of degree $2|x|-i$ and $|x|-n$ respectively, along with $w_{2} \ldots w_{n}$ with $\left|w_{i}\right|=i$, modulo the following relations

- $\phi_{i}(x+y)=\phi_{i}(x)+\phi_{i}(y)+w_{n-i} \delta(x y)\left(w_{1}=0, w_{0}=1\right)$
- $\delta(x+y)=\delta(x)+\delta(y)$
- $\delta(x y) \delta(z)+\delta(y z) \delta(x)+\delta(z x) \delta(y)+\sum c_{I} w_{I}=0$
- $w_{n+1} \delta(a)=0$
- $\delta(a) \phi_{i}(b)=\delta\left(a S q_{i} b\right)+\delta_{0 n} \delta(a b) \delta(b)+\sum c_{I}^{\prime} w_{I}$
- $\phi_{k}(x y)=\sum_{i+j=k} \phi_{i}(x) \phi_{j}(y)+$

$$
\sum_{\ell=n+1}^{2 n} \sum_{i+j=\ell} \phi_{i}(x) \phi_{j}(y)\left(\begin{array}{c}
\sum_{2 \leq \alpha_{1} \ldots \alpha_{m} \leq n+1}^{\alpha_{1}+\ldots \alpha_{m}=\ell-k} \\
\alpha_{m}>n-k
\end{array} \prod_{f=1}^{m} w_{\alpha_{f}}\right)
$$

- $S q \phi_{n-k}(x)=\left(\sum w_{i}\right)^{-1} \sum_{j \geq 0} \sum_{i}\binom{k+|x|-j}{i-2 j} \phi_{n-i-k+2 j}\left(S q^{j} x\right)$
- $S q(\delta(x))=\left(\sum w_{i}\right)^{-1} \delta((x))$.
ℓ_{n} comes with an approximation map
$\ell_{n}\left(H^{*}(X)\right) \rightarrow H^{*}\left(X_{h S O(n+1)}^{S^{n}}\right)$ which is an isomorphism for
$X=K(\mathbb{Z} / 2, m)$.

Spectral Sequence

Cohomology spectral sequence: $E_{r}^{p, q}$ an object in an abelian category on the rth "page" (typically) for $r \geq 2$ and a differential $d_{r}^{*, *}: E_{r}^{*, *} \rightarrow E_{r}^{*+r, *-r+1}$ such that $E_{r+1}^{*, *}=\operatorname{ker}\left(d_{r}^{*, *}\right) / \operatorname{im}\left(d_{r}^{*, *}\right)$.

Spectral Sequence

We want to compute $S O(n+1)$ Borel cohomology of $X^{S^{n}}$ for $X=K(\mathbb{Z} / 2, m)$ and $m>n$.

Spectral Sequence

We want to compute $S O(n+1)$ Borel cohomology of $X^{S^{n}}$ for $X=K(\mathbb{Z} / 2, m)$ and $m>n$.
Use the Serre spectral sequence for

$$
\begin{aligned}
& X^{S^{n}} \rightarrow X_{h S O(n+1)}^{S^{n}} \rightarrow B S O(n+1) . \\
& E_{2}^{p, q}=H^{p}(B S O(n+1)) \otimes H^{q}\left(X^{S^{n}}\right) \rightarrow H^{*}\left(X_{h S O(n+1)}^{S^{n}}\right) \text {. } \\
& H^{*}(B S O(n+1))=\mathbb{F}_{2}\left[w_{2} \ldots w_{n+1}\right] . \\
& 2 m-i \mid S q_{i} x \\
& m-n \left\lvert\, \begin{array}{cccccc}
m & & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
\hline
\end{array}\right.
\end{aligned}
$$

Acknowledgments

would like to thank

- Ishan Levy
- Haynes Miller
- MIT PRIMES.

References

Marcel Bökstedtt and Iver Ottosen. "Homotopy orbits of free loop spaces". In: Fundamenta Mathematicae 163 (1999), pp. 251-275.

