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Natural Spaces

Spheres — Sn

S1 :

S2 :

Unbased mapping spaces, denoted Map(Y,X) or XY — the space
of continuous maps Y → X.
XSn is well understood for n = 1 and the based case. We study
the unbased case for general n.
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Cohomology

Cohomology — algebraic invariant of topological spaces denoted
H∗(X).

Graded ring:

Elements can be added and multiplied.

Elements can be broken up into homogeneus elements with a
degree ∈ N.

Mod 2 cohomology =⇒ F2 vector space.
Unstable Steenrod Algebra: Maps

Sqi : Hn(X)→ Hn+i(X)

satisfying

Sqi(x) = 0 i > |x| (instability condition)

Sqi(xy) =
∑
a+b=i

Sqa(x)Sqb(y)

Sq|x|x = x2.
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Examples

H∗(Sn) = F2[x]/x2 with |x| = n.

n-dimensional space — cohomology only goes up to degree n.
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Maps Between Spaces

Maps between spaces induces a map between Steenrod Algebras

f : X → Y

f∗ : H∗(Y )→ H∗(X).

f∗ is compatible with addition, multiplication, degree, and
Steenrod squares

f∗(x+ y) = f∗(x) + f∗(y)

f∗(xy) = f∗(x)f∗(y)

|f∗(x)| = |x|
Sqif∗(x) = f∗(Sqix).
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Nonequivariant case

Want to compute H∗(XSn).

Create an approximation functor Ωn and an approximation map
Ωn(H∗(X))→ H∗(XSn) which is an isomorphism for
X = K(Z/2,m).
For A an unstable Steenrod algebra, define Ωn(A) as the free F2

algebra generated by x, dx ∈ A with |dx| = |x| − n modulo the
following relations:

dx+ dy = d(x+ y)

d(xy) = d(x)y + d(y)x

d(Sqnx) = (dx)2

d(Sqix) = 0 i < n.

The map f : Sn ×XSn → X, (p, f)→ f(p)
induces the map

f∗ : H∗(X)→ H∗(Sn ×XSn) = H∗(Sn)⊗H∗(XSn),

x→ 1⊗ x+ c⊗ dx.
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Borel Cohomology

A G-space is a space with a group action by G.

Example: Z/nZ action on S1 by rotation by 2π
n

SO(n+ 1) : group of symmetries of Sn.
Example: SO(2) = S1. This gives S1 the structure of a S1-space.

XSn has structure of a SO(n+ 1)-space by precomposition.
The Borel cohomology or G−equivariant cohomology of a
G-space X is

H∗(XhG)

where XhG is defined as EG×G X where G acts diagonally and
EG is the total space of the universal G-principal bundle
EG→ BG.

We wish to compute

H∗(XSn

hSO(n+1)).
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Equivariant Approximation

Define `n(A) to be the free algebra on generators
φi(x), δ(x) (0 ≤ i ≤ n) for each homogeneous x ∈ A of degree
2|x| − i and |x| − n respectively, along with w2 . . . wn with
|wi| = i, modulo the following relations

φi(x+ y) = φi(x) + φi(y) + wn−iδ(xy) (w1 = 0, w0 = 1)

δ(x+ y) = δ(x) + δ(y)

δ(xy)δ(z) + δ(yz)δ(x) + δ(zx)δ(y) +
∑
cIwI = 0

wn+1δ(a) = 0

δ(a)φi(b) = δ(aSqib) + δ0nδ(ab)δ(b) +
∑
c′IwI

φk(xy) =
∑
i+j=k φi(x)φj(y) +

∑2n
`=n+1

∑
i+j=` φi(x)φj(y)

∑2≤α1...αm≤n+1
α1+...αm=`−k
αm>n−k

∏m
f=1 wαf


Sqφn−k(x) = (

∑
wi)
−1
∑
j≥0

∑
i

(k+|x|−j
i−2j

)
φn−i−k+2j(Sq

jx)

Sq(δ(x)) = (
∑
wi)
−1δ((x)).

`n comes with an approximation map
`n(H∗(X))→ H∗(XSn

hSO(n+1)) which is an isomorphism for

X = K(Z/2,m).
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Spectral Sequence

Cohomology spectral sequence: Ep,qr an object in an abelian
category on the rth “page” (typically) for r ≥ 2 and a differential

d∗,∗r : E∗,∗r → E∗+r,∗−r+1
r such that E∗,∗r+1 = ker(d∗,∗r )/im(d∗,∗r ).
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Spectral Sequence

We want to compute SO(n+ 1) Borel cohomology of XSn for
X = K(Z/2,m) and m > n.

Use the Serre spectral sequence for

XSn → XSn

hSO(n+1) → BSO(n+ 1).

Ep,q2 = Hp(BSO(n+ 1))⊗Hq(XSn)→ H∗(XSn

hSO(n+1)).

H∗(BSO(n+ 1)) = F2[w2 . . . wn+1].
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