Irreducible Characters for Verma Modules for the Orthosymplectic Lie Superalgebra $\mathfrak{osp}(3|4)$

Honglin Zhu Mentor: Arun S. Kannan

Phillips Exeter Academy

October 17, 2020 MIT PRIMES Conference

Oct 17 1 / 18

Honglin Zhu

Irreducible Characters for Verma Modules

। Oct 17 2/18

イロト イヨト イヨト イヨ

Definition

A Lie algebra L is a vector space endowed with a bilinear map $[-, -]: L \times L \rightarrow L$ called the Lie bracket. The Lie bracket satisfies two rules:

Definition

A Lie algebra L is a vector space endowed with a bilinear map $[-, -] : L \times L \rightarrow L$ called the Lie bracket. The Lie bracket satisfies two rules:

1 For all
$$x, y \in L$$
, $[x, y] = -[y, x]$.

Definition

A Lie algebra L is a vector space endowed with a bilinear map $[-, -] : L \times L \to L$ called the Lie bracket. The Lie bracket satisfies two rules:

For all x, y ∈ L, [x, y] = -[y, x].
For all x, y, z ∈ L,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Some examples

Examples

 $\textcircled{0}~\mathbb{R}^3$ endowed with the cross product $\times.$

$$i \times j = k$$
, $j \times k = i$, $k \times i = j$.

< □ > < □ > < □ > < □ > < □ > < □ >

Some examples

Examples

① \mathbb{R}^3 endowed with the cross product \times .

$$i \times j = k$$
, $j \times k = i$, $k \times i = j$.

The set of endomorphisms on a finite dimensional vector space V (linear maps from V to itself), End(V), can be made into a Lie algebra, known as the general linear algebra gl(V), with

$$[x,y] := xy - yx.$$

General linear algebra

Definition

We can identify the general linear algebra $\mathfrak{gl}(V)$ with the set of all $n \times n$ matrices. And the Lie bracket is defined in terms of matrix multiplication.

Representation

Just as groups act on sets, Lie algebras can be made to act on vector spaces via representations.

Representation

Just as groups act on sets, Lie algebras can be made to act on vector spaces via representations.

Definition

A representation of a Lie algebra L is a Lie algebra homomorphism (a linear map that also preserves the bracket structure) $\phi : L \to \mathfrak{gl}(V)$, where V is some vector space. When the map is clear, we usually call V the representation. We also call V an *L*-module.

Examples

Examples

• The natural representation V of $\mathfrak{gl}(V)$.

< □ > < 同 > < 回 > < 回 > < 回 >

Examples

Examples

- The natural representation V of $\mathfrak{gl}(V)$.
- **2** The adjoint representation L of L:

ad : $L \to \mathfrak{gl}(L), x \mapsto [x, \cdot].$

▲ □ ▶ ▲ □ ▶ ▲ □

Semisimple Lie algebras

There is a certain type of Lie algebras called semisimple Lie algebras. Their representations have nice properties and it is an important topic in representation theory to study them.

Verma modules

Indexed by *weights* (denoted M_{λ} for the Verma module indexed by λ). Irreducible modules can be constructed from Verma modules. Denoted by L_{λ} the irreducible module of highest weight λ .

Verma modules

Indexed by *weights* (denoted M_{λ} for the Verma module indexed by λ). Irreducible modules can be constructed from Verma modules. Denoted by L_{λ} the irreducible module of highest weight λ .

Jordan-Hölder series

For a Verma module M_{λ} , there exists a sequence of submodules

$$M_{\lambda} = N_k \supset N_{k-1} \supset \cdots \supset N_1 \supset N_0 = 0$$

such that each quotient N_i/N_{i-1} is an irreducible module. We denote by $[M_{\lambda} : L_{\mu}]$ the multiplicity of L_{μ} in the sequence.

Verma modules

The Jordan-Hölder multiplicities of Verma modules of semisimple Lie algebras are controlled by the Weyl group.

The Jordan-Hölder multiplicities of Verma modules of semisimple Lie algebras are controlled by the Weyl group.

Verma modules can be similarly defined for basic Lie superalgebras, but their Jordan-Hölder multiplicities are not so well understood.

General linear Lie superalgebra

Definition

Let $V = \mathbb{C}^{k|l} = \mathbb{C}^k \oplus \mathbb{C}^l$. The Lie superalgebra $\mathfrak{gl}(k|l)$ is the set of $(k+l) \times (k+l)$ supermatrices

(even $k \times k$	odd $k \times I$
$\int \text{odd } I \times k$	even $I \times I$

with the superbracket defined as

$$[x, y] = xy - (-1)^{|x||y|} yx,$$

for homogeneous $x, y \in \mathfrak{gl}(k|I)$.

$\mathfrak{osp}(3|4)$

The Lie superalgebra of interest is the orthosymplectic Lie superalgebra $\mathfrak{osp}(3|4)$, whose even part is $\mathfrak{g}_{\overline{0}} = \mathfrak{sp}(4) \oplus \mathfrak{so}(3)$.

The problem

The Jordan-Hölder multiplicities for Verma modules of basic Lie superalgebras are no longer solely controlled by the Weyl group due to a phenomenon called the atypicality of weights.

The problem

The Jordan-Hölder multiplicities for Verma modules of basic Lie superalgebras are no longer solely controlled by the Weyl group due to a phenomenon called the atypicality of weights.

We focus on the atypical case and calculate the Jordan-Hölder multiplicities for the Verma modules of $\mathfrak{osp}(3|4)$.

Projective modules

Projective modules

Also indexed by weights: for each irreducible highest weight module, there exists a unique projective cover. Denoted P_{λ} .

Projective modules

Projective modules

Also indexed by weights: for each irreducible highest weight module, there exists a unique projective cover. Denoted P_{λ} .

Standard filtration

For each projective module P_{λ} , there exists a sequence of submodules

$$P_{\lambda} = N_k \supset N_{k-1} \supset \cdots \supset N_1 \supset N_0 = 0$$

such that each quotient N_i/N_{i-1} is a Verma module. We denote by $(P_{\lambda} : M_{\mu})$ the multiplicity of M_{μ} in the sequence.

BGG reciprocity

Theorem (BGG reciprocity)

For weights $\lambda, \mu \in \mathfrak{h}^*$, we have

$$(P_{\lambda}:M_{\mu})=[M_{\mu}:L_{\lambda}].$$

▲ □ ▶ ▲ □ ▶ ▲ □

We employ the tool of translation functors.

E ► E ∽ Q @ Oct 17 15 / 18

< 行

Our Strategy

We employ the tool of translation functors.

$$P_{\mu} \longrightarrow P_{\mu} \otimes V \longrightarrow \operatorname{pr}_{\lambda}(P_{\mu} \otimes V) \longrightarrow P_{\lambda}.$$

Our Strategy

We employ the tool of translation functors.

$$P_{\mu} \longrightarrow P_{\mu} \otimes V \longrightarrow \operatorname{pr}_{\lambda}(P_{\mu} \otimes V) \longrightarrow P_{\lambda}.$$

If $P_{\mu} = M_{\mu_1} + M_{\mu_2} + \dots + M_{\mu_n}$ and V has weights $\nu_1, \nu_2, \dots, \nu_k$, then $P_{\mu} \otimes V = \sum M_{\mu_i + \nu_j}.$

<日

<</p>

Results

Theorem

With some exceptions, all Verma Modules of atypical integral highest weight have Jordan-Hölder series given by

$$M_{\lambda} = \sum_{\sigma \lambda \preceq \lambda} \left(L_{\sigma \lambda} + L_{\sigma \lambda - \alpha} + L_{\sigma \lambda - \alpha - \beta} \right).$$

Acknowledgements

I would like to thank my mentor, Arun S. Kannan, for his guidance. I would also like to thank MIT PRIMES for providing this research opportunity.

References

- K. Erdmann and M. J. Wildon. *Introduction to Lie Algebras.* Springer, 2010. ISBN: 9781846280405.
- J. E. Humphreys. Representations of Semisimple Lie Algebras in the BGG Category O. Graduate studies in mathematics. American Mathematical Society, 2008. ISBN: 9780821846780.
- J. E. Humphreys. *Introduction to Lie Algebras and Representation Theory* Graduate texts in mathematics. Springer, 2000. ISBN: 9780387900520.
- S. J. Cheng and W. Wang. *Dualities and Representations of Lie Superalgebras.* Graduate studies in mathematics. American Mathematical Society, 2012. ISBN: 9780821891186.
- A. S. Kannan. "Characters for projective modules in the BGG category O for general linear Lie superalgebras". In: *Journal of Algebra* 532 (2019), pp. 231–267. ISSN: 0021-8693.
 - A. S. Kannan and H. Zhu. "Characters for projective modules in the BGG category \mathcal{O} for the orthosymplectic Lie superalgebra $\mathfrak{osp}(3|4)$ ". In: *arXiv* preprint arXiv:2006.06788 (2020).

A D F A B F A B F A B