The Stembridge Equality for Skew Dual Stable Grothendieck Polynomials

Fiona Abney-McPeek, Serena An, and Jakin Ng Mentor: Adela YiYu Zhang

MIT PRIMES Conference
October 17, 2020

Outline

- Schur polynomials
- Dual stable Grothendieck polynomials
- The Stembridge equality for skew dual stable Grothendieck polynomials

Partitions

Definition

Let $a_{1} \geq a_{2} \geq \cdots \geq a_{k} \geq 1$ be integers summing to n. Then the sequence ($a_{1}, a_{2}, \ldots, a_{k}$) is a partition of the integer n.

Example

The partitions of the positive integer 4 are $(4),(3,1),(2,2),(2,1,1)$, (1, 1, 1, 1).

Young Diagrams

Definition

The Young diagram of a partition $\lambda=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is a left-aligned array of boxes such that the i th row from the top has a_{i} boxes.

Example

The following is the Young diagram of the partition $(3,2,2)$ of 7 .

Young Diagrams of Skew Shapes

Definition

Given Young diagrams $\mu \subseteq \lambda$, the Young diagram of the skew shape λ / μ consists of the squares in λ but not μ.

Example

The following is the Young diagram of $(5,4,3,2,1) /(3,1)$.

Semi-Standard Young Tableaux

Definition

A semi-standard Young tableau (SSYT) contains numbers that strictly increase in each column and weakly increase in each row. Given a SSYT T, define the monomial

$$
x^{T}=\prod_{i} x_{i}^{(\text {number of entries of } i)}
$$

Example (SSYT of shape $(4,4,3,2) /(3,1))$

		2
	1	1

$$
x^{T}=x_{1}^{3} x_{2}^{3} x_{3} x_{4}^{2}
$$

Schur Polynomials

Definition

For a skew shape λ / μ, the skew Schur polynomial $s_{\lambda / \mu}$ with variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is a sum over all SSYT T of shape λ / μ :

$$
s_{\lambda / \mu}=\sum_{T} x^{T}
$$

Example

When $\lambda / \mu=(2,2) /(1)$, the following are all SSYT with $i<j<k$.

Thus,

$$
s_{(2,2) /(1)}=\sum_{i<j} x_{i}^{2} x_{j}+\sum_{i<j} x_{i} x_{j}^{2}+2 \sum_{i<j<k} x_{i} x_{j} x_{k}
$$

Schur Polynomials Are Symmetric

Theorem (Stanley)

The skew Schur polynomial $s_{\lambda / \mu}$ is a symmetric polynomial for all skew partitions λ / μ.

A symmetric polynomial stays the same when x_{i} and x_{j} are swapped.

Example

The polynomials

$$
\sum_{i} x_{i}=x_{1}+x_{2}+x_{3}+\cdots
$$

and

$$
\sum_{i<j} x_{i} x_{j}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+\cdots
$$

are symmetric.

Transposes

Definition

Reflecting a Young diagram μ across the top-left to bottom-right diagonal gives its transpose μ^{T}.

Example

The partitions $(4,2,1)$ and $(3,2,1,1)$ are transposes.

Stembridge Equality

Theorem (Stembridge)
 Let $\rho=(n, n-1, \ldots, 1)$. We have $s_{\rho / \mu}=s_{\rho / \mu^{T}}$ for all $\mu \subseteq \rho$.

$$
\rho / \mu
$$

$$
\rho / \mu^{T}
$$

Stembridge Equality

Theorem (Stembridge)
 Let $\rho=(n, n-1, \ldots, 1)$. We have $s_{\rho / \mu}=s_{\rho / \mu^{T}}$ for all $\mu \subseteq \rho$.

$$
\rho / \mu \quad \rho / \mu^{T}
$$

Research Project

Is it true that $g_{\rho / \mu}=g_{\rho / \mu^{T}}$ for skew dual stable Grothendieck polynomials?

Reverse Plane Partitions

Definition

A reverse plane partition (RPP) contains numbers that weakly increase in each row and in each column. Given an RPP P, define the monomial

$$
x^{\operatorname{ircont}(P)}=\prod_{i} x_{i}^{(\text {number of columns that contain } i)}
$$

Example

			2	4
	1	1	2	
1	1	5		
3	3			
3				

$$
x^{\operatorname{ircont}(P)}=x_{1}^{3} x_{2} x_{3}^{2} x_{4} x_{5}
$$

Dual Stable Grothendieck Polynomials

Definition

The skew dual stable Grothendieck polynomial $g_{\lambda / \mu}$ in the variables $x=\left(x_{1}, x_{2}, \ldots\right)$ is a sum over all RPPs P of shape λ / μ :

$$
g_{\lambda / \mu}=\sum_{P} x^{\operatorname{ircont}(\mathrm{P})}
$$

Example

When $\lambda / \mu=(2,2) /(1)$, the following are all RPPs with $i<j<k$.

Thus,

$$
g_{(2,2) /(1)}=\sum_{i} x_{i}^{2}+\sum_{i<j} x_{i} x_{j}+\sum_{i<j} x_{i}^{2} x_{j}+\sum_{i<j} x_{i} x_{j}^{2}+2 \sum_{i<j<k} x_{i} x_{j} x_{k} .
$$

Comparison

Note that the top degree of $g_{\lambda / \mu}$ is $s_{\lambda / \mu}$.

Example (Schur)

$$
\begin{aligned}
& s_{(2,2) /(1)}=\sum_{i<j} x_{i}^{2} x_{j}+\sum_{i<j} x_{i} x_{j}^{2}+2 \sum_{i<j<k} x_{i} x_{j} x_{k}
\end{aligned}
$$

Example (Dual Stable Grothendieck)

$$
\begin{aligned}
& g_{(2,2) /(1)}=\sum_{i} x_{i}^{2}+\sum_{i<j} x_{i} x_{j}+\left(\sum_{i<j} x_{i}^{2} x_{j}+\sum_{i<j} x_{i} x_{j}^{2}+2 \sum_{i<j<k} x_{i} x_{j} x_{k}\right)
\end{aligned}
$$

Main Result: Stembridge for Dual Grothendieck Polynomials

> Theorem (A., A., N.)
> Let $\rho=(n, n-1, \ldots, 1)$. We have $g_{\rho / \mu}=g_{\rho / \mu^{T}}$ for $\mu=(k)$ and transpose $\left(1^{k}\right)=(1, \ldots, 1)$.

Example

$$
g_{(3,2,1) /(2)}=g_{(2,1)} g_{(1)}=g_{(3,2,1) /(1,1)}
$$

Sketch of Proof of Main Result

We prove that $g_{\rho /(k)}=g_{\rho /\left(1^{k}\right)}$ in two steps:

- First, translate this to a problem about comparing the Littlewood-Richardson coefficients $c_{\mu \nu}^{\rho}$;
- Then, use a combinatorial description of these coefficients to show that they are equal for $\mu=(k)$ and $\left(1^{k}\right)$.

Littlewood-Richardson Coefficients

Theorem (Buch)

In the expansion

$$
g_{\rho / \mu}=\sum_{\nu} c_{\mu \nu}^{\rho} g_{\nu}
$$

the coefficient $c_{\mu \nu}^{\rho}$ is equal to $(-1)^{|\rho|-|\mu|-|\nu|}$ times the number of set-valued tableaux T of shape $\nu * \mu$ such that the reverse reading word of T is a lattice word with content ρ.

Theorem (Lam and Pylyavskyy)

The dual stable Grothendieck polynomials g_{ν} are symmetric functions and form a basis for the ring of symmetric functions.

So, we have $g_{\rho / \mu}=g_{\rho / \mu^{T}} \Longleftrightarrow c_{\mu \nu}^{\rho}=c_{\mu^{T} \nu}^{\rho}$ for all ν.

Set-Valued Tableaux

Definition

A set-valued tableau contains sets of positive integers such that the entries weakly increase along rows and strictly increase along columns.

Example

We have $\{1,2,3\} \leq\{3,5\}$ and $\{1,2,3\}<\{4,6,8\}$.

Example

Definitions

Example $(\nu * \mu)$

Definition

A tableau T having content $\rho=(n, n-1, \ldots, 1)$ means that there are n 1's, $n-1$'s, and so on in T.

Reverse Reading Words

Definition

The reverse reading word of a tableau T is read right to left along a row, starting with the top row and moving down, and with the elements within a cell read largest to smallest.

Example

432215533654

Lattice Words

Definition

A reverse reading word is a lattice word if the nth instance of $i+1$ comes after the nth instance of i.

Example

1121322 is a lattice word, but 121221 is not.

Expansion of Skew Dual Stable Grothendieck Polynomials

Theorem (Buch)

In the expansion

$$
g_{\rho / \mu}=\sum_{\nu} c_{\mu \nu}^{\rho} g_{\nu}
$$

the coefficient $c_{\mu \nu}^{\rho}$ is equal to $(-1)^{|\rho|-|\mu|-|\nu|}$ times the number of set-valued tableaux T of shape $\nu * \mu$ such that the reverse reading word of T is a lattice word with content ρ.

We will show that $c_{(k) \nu}^{\rho}=c_{\left(1^{k}\right) \nu}^{\rho}$ for all ν. In other words, the number of set-valued tableaux T such that its reverse reading word is a lattice word with content ρ is the same for the shapes $\nu *(k)$ and $\nu *\left(1^{k}\right)$.

Bijection

Lemma

If the reverse reading word of T is a lattice word, where T is of a non-skew shape ν, then all cells in the ith row contain only $\{i\}$.

Bijection

So $c_{(k) \nu}^{\rho}=c_{\left(1^{k}\right) \nu}^{\rho}$, and $g_{\rho /(k)}=g_{\rho /\left(1^{k}\right)}$.

Acknowledgments

We would like to thank

- Adela YiYu Zhang, our mentor, for guiding us on our research and advice on the presentation,
- Darij Grinberg, for proposing the problem,
- PRIMES-USA, for the research opportunity,
- Family and friends

References

Ethan Alwaise et al. "Coincidences among skew stable and dual stable Grothendieck polynomials." INVOLVE, 2018.
围 Anders Skovsted Buch. "A Littlewood-Richardson Rule for the K-Theory of Grassmannians." Acta Mathematica, 2002.

䍰 Thomas Lam and Pavlo Pylyavskyy. "Combinatorial Hopf algebras and K-homology of Grassmanians." International Mathematics Research Notices, 2007.
Richard Stanley. Enumerative Combinatorics: Volume 2. Cambridge, 1999.

