The Stembridge Equality for Skew Dual Stable Grothendieck Polynomials

Fiona Abney-McPeek, Serena An, and Jakin Ng Mentor: Adela YiYu Zhang

MIT PRIMES Conference

October 17, 2020

- Schur polynomials
- Dual stable Grothendieck polynomials
- The Stembridge equality for skew dual stable Grothendieck polynomials

Let $a_1 \ge a_2 \ge \cdots \ge a_k \ge 1$ be integers summing to n. Then the sequence (a_1, a_2, \ldots, a_k) is a **partition** of the integer n.

Example

The partitions of the positive integer 4 are (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

The **Young diagram** of a partition $\lambda = (a_1, a_2, \ldots, a_k)$ is a left-aligned array of boxes such that the *i*th row from the top has a_i boxes.

Example

The following is the Young diagram of the partition (3, 2, 2) of 7.

Given Young diagrams $\mu \subseteq \lambda$, the **Young diagram** of the skew shape λ/μ consists of the squares in λ but not μ .

Example

The following is the Young diagram of (5, 4, 3, 2, 1)/(3, 1).

A semi-standard Young tableau (SSYT) contains numbers that strictly increase in each column and weakly increase in each row. Given a SSYT T, define the monomial

$$x^T = \prod_i x_i^{\text{(number of entries of }i)}.$$

Example (SSYT of shape (4, 4, 3, 2)/(3, 1))

			2
	1	1	4
1	2	2	
3	4		

$$x^T = x_1^3 x_2^3 x_3 x_4^2$$

Schur Polynomials

Definition

For a skew shape λ/μ , the **skew Schur polynomial** $s_{\lambda/\mu}$ with variables $x = (x_1, x_2, ...)$ is a sum over all SSYT T of shape λ/μ :

$$s_{\lambda/\mu} = \sum_T x^T.$$

Example

When $\lambda/\mu = (2, 2)/(1)$, the following are all SSYT with i < j < k.

Thus,

$$s_{(2,2)/(1)} = \sum_{i < j} x_i^2 x_j + \sum_{i < j} x_i x_j^2 + 2 \sum_{i < j < k} x_i x_j x_k.$$

Theorem (Stanley)

The skew Schur polynomial $s_{\lambda/\mu}$ is a symmetric polynomial for all skew partitions λ/μ .

A symmetric polynomial stays the same when x_i and x_j are swapped.

Example

The polynomials

$$\sum_{i} x_i = x_1 + x_2 + x_3 + \cdots$$

and

$$\sum_{i < j} x_i x_j = x_1 x_2 + x_1 x_3 + x_2 x_3 + \cdots$$

are symmetric.

Reflecting a Young diagram μ across the top-left to bottom-right diagonal gives its **transpose** μ^T .

Example

The partitions (4, 2, 1) and (3, 2, 1, 1) are transposes.

Stembridge Equality

Theorem (Stembridge)

Let
$$\rho = (n, n - 1, \dots, 1)$$
. We have $s_{\rho/\mu} = s_{\rho/\mu}$ for all $\mu \subseteq \rho$.

 ρ/μ

 ho/μ^T

Stembridge Equality

Theorem (Stembridge)

Let
$$\rho = (n, n - 1, \dots, 1)$$
. We have $s_{\rho/\mu} = s_{\rho/\mu}$ for all $\mu \subseteq \rho$.

Research Project

Is it true that $g_{\rho/\mu} = g_{\rho/\mu^T}$ for skew dual stable Grothendieck polynomials?

Fiona, Serena, and Jakin

October 2020 10 / 24

Reverse Plane Partitions

Definition

A reverse plane partition (RPP) contains numbers that weakly increase in each row and in each column. Given an RPP P, define the monomial

$$x^{\operatorname{ircont}(P)} = \prod_{i} x_{i}^{(\operatorname{number of columns that contain }i)}$$

Example

$$x^{\operatorname{ircont}(P)} = x_1^3 x_2 x_3^2 x_4 x_5$$

Dual Stable Grothendieck Polynomials

Definition

The skew dual stable Grothendieck polynomial $g_{\lambda/\mu}$ in the variables $x = (x_1, x_2, ...)$ is a sum over all RPPs P of shape λ/μ :

$$g_{\lambda/\mu} = \sum_{P} x^{\operatorname{ircont}(P)}$$

Example

When $\lambda/\mu = (2, 2)/(1)$, the following are all RPPs with i < j < k.

Thus,

$$g_{(2,2)/(1)} = \sum_{i} x_i^2 + \sum_{i < j} x_i x_j + \sum_{i < j} x_i^2 x_j + \sum_{i < j} x_i x_j^2 + 2 \sum_{i < j < k} x_i x_j x_k.$$

Comparison

Note that the top degree of $g_{\lambda/\mu}$ is $s_{\lambda/\mu}$.

Example (Schur)

Example (Dual Stable Grothendieck)

$$\frac{\vec{i}}{|\vec{i}|} \quad \frac{\vec{j}}{|\vec{j}|} \quad \frac{\vec{i}}{|\vec{j}|} \quad \frac{\vec{i}}{|\vec{j}|} \quad \frac{\vec{i}}{|\vec{j}|} \quad \frac{\vec{j}}{|\vec{k}|} \quad \frac{\vec{j}}{|\vec{k}|}$$
$$g_{(2,2)/(1)} = \sum_{i} x_i^2 + \sum_{i < j} x_i x_j + \left(\sum_{i < j} x_i^2 x_j + \sum_{i < j} x_i x_j^2 + 2\sum_{i < j < k} x_i x_j x_k\right)$$

Main Result: Stembridge for Dual Grothendieck Polynomials

Theorem (A., A., N.)

Let $\rho = (n, n - 1, ..., 1)$. We have $g_{\rho/\mu} = g_{\rho/\mu^T}$ for $\mu = (k)$ and transpose $(1^k) = (1, ..., 1)$.

Example

We prove that $g_{\rho/(k)} = g_{\rho/(1^k)}$ in two steps:

- First, translate this to a problem about comparing the Littlewood-Richardson coefficients $c^{\rho}_{\mu\nu}$;
- Then, use a combinatorial description of these coefficients to show that they are equal for $\mu = (k)$ and (1^k) .

Theorem (Buch)

In the expansion

$$g_{\rho/\mu} = \sum_{\nu} c^{\rho}_{\mu\nu} g_{\nu},$$

the coefficient $c^{\rho}_{\mu\nu}$ is equal to $(-1)^{|\rho|-|\mu|-|\nu|}$ times the number of set-valued tableaux T of shape $\nu * \mu$ such that the reverse reading word of T is a lattice word with content ρ .

Theorem (Lam and Pylyavskyy)

The dual stable Grothendieck polynomials g_{ν} are symmetric functions and form a basis for the ring of symmetric functions.

So, we have
$$g_{\rho/\mu} = g_{\rho/\mu^T} \iff c^{\rho}_{\mu\nu} = c^{\rho}_{\mu^T\nu}$$
 for all ν .

A set-valued tableau contains sets of positive integers such that the entries weakly increase along rows and strictly increase along columns.

Example

We have $\{1, 2, 3\} \le \{3, 5\}$ and $\{1, 2, 3\} < \{4, 6, 8\}$.

Example

A tableau T having **content** $\rho = (n, n - 1, ..., 1)$ means that there are n 1's, n - 1 2's, and so on in T.

The **reverse reading word** of a tableau T is read right to left along a row, starting with the top row and moving down, and with the elements within a cell read largest to smallest.

A reverse reading word is a **lattice word** if the *n*th instance of i + 1 comes after the *n*th instance of *i*.

Example

1121322 is a lattice word, but 121221 is not.

Expansion of Skew Dual Stable Grothendieck Polynomials

Theorem (Buch)

In the expansion

$$g_{\rho/\mu} = \sum_{\nu} c^{\rho}_{\mu\nu} g_{\nu},$$

the coefficient $c^{\rho}_{\mu\nu}$ is equal to $(-1)^{|\rho|-|\mu|-|\nu|}$ times the number of set-valued tableaux T of shape $\nu * \mu$ such that the reverse reading word of T is a lattice word with content ρ .

We will show that $c^{\rho}_{(k)\nu} = c^{\rho}_{(1^k)\nu}$ for all ν . In other words, the number of set-valued tableaux T such that its reverse reading word is a lattice word with content ρ is the same for the shapes $\nu * (k)$ and $\nu * (1^k)$.

Lemma

If the reverse reading word of T is a lattice word, where T is of a non-skew shape ν , then all cells in the ith row contain only $\{i\}$.

Bijection

So
$$c^{\rho}_{(k)\nu} = c^{\rho}_{(1^k)\nu}$$
, and $g_{\rho/(k)} = g_{\rho/(1^k)}$.

We would like to thank

- Adela YiYu Zhang, our mentor, for guiding us on our research and advice on the presentation,
- Darij Grinberg, for proposing the problem,
- PRIMES-USA, for the research opportunity,
- Family and friends

- Ethan Alwaise et al. "Coincidences among skew stable and dual stable Grothendieck polynomials." *INVOLVE*, 2018.
- Anders Skovsted Buch. "A Littlewood-Richardson Rule for the K-Theory of Grassmannians." *Acta Mathematica*, 2002.
- Thomas Lam and Pavlo Pylyavskyy. "Combinatorial Hopf algebras and K-homology of Grassmanians." *International Mathematics Research Notices*, 2007.
- Richard Stanley. *Enumerative Combinatorics: Volume 2.* Cambridge, 1999.