Product Expansions of *q*-Character Polynomials

Adithya Balachandran, Andrew Huang, and Simon Sun Mentor: Dr. Nir Gadish

High Technology High School (NJ), Conestoga High School (PA), Bergen County Academies (NJ)

October 17-18, 2020 MIT PRIMES Conference

Let A be a nonzero $n \times n$ matrix with entries in the finite field \mathbb{F}_q .

Definition Let Fix(A) = $|\{v \in \mathbb{F}_q^n \mid Av = v \text{ and } v \neq 0\}|$ be a statistic on matrices of any size.

Question

What is $\mathbb{E}_A[Fix(A)]$?

Let A be a nonzero $n \times n$ matrix with entries in the finite field \mathbb{F}_q .

Definition Let Fix(A) = $|\{v \in \mathbb{F}_q^n | Av = v \text{ and } v \neq 0\}|$ be a statistic on matrices of any size.

Question

What is $\mathbb{E}_A[Fix(A)]$?

Expectation of Fix(A)

If A has entries in \mathbb{F}_q , then $\mathbb{E}_A[Fix(A)] = 1$.

We can extend this notion to counting subspaces rather than vectors.

イロト イヨト イヨト

The Statistic X_B

In this project, we look at the infinite collection of class function X_B , which is defined as follows:

Definition

Given a linear transformation A and vector space \mathbb{F}_q^n , we say that a subspace $W \subseteq \mathbb{F}_q^n$ is **A-invariant** if $A(W) \subseteq W$.

The Statistic X_B

In this project, we look at the infinite collection of class function X_B , which is defined as follows:

Definition

Given a linear transformation A and vector space \mathbb{F}_q^n , we say that a subspace $W \subseteq \mathbb{F}_q^n$ is **A-invariant** if $A(W) \subseteq W$.

Definition (Conjugacy)

The matrices A and B are **conjugate** if there exists an invertible matrix P such that $B = P^{-1}AP$. Conjugacy is an equivalence relation.

Adithya, Andrew, and Simon

q-Character Polynomials

- v (vector)
- A acts like Id on v
- Fix(*A*)

- W (subspace)
- A acts like B on W
- $X_B(A)$

< ∃ ►

- v (vector)
- A acts like Id on v
- Fix(*A*)

- W (subspace)
- A acts like B on W
- $X_B(A)$

Definition (q-character polynomials)

Given a finite field \mathbb{F}_q , let B be an $m \times m$ matrix, where $m \ge 1$. If A is any $n \times n$ matrix,

$$X_B(A) = |\{W \leq \mathbb{F}_q^n \mid \dim W = m \text{ with } A(W) \subseteq W \text{ and } A|_W \sim B\}|.$$

X_B In Action

Notation

Let the $n \times n$ identity matrix be I_n .

Example

 $X_{I_1}((\begin{smallmatrix}1&1\\0&1\end{smallmatrix}))=?$

→ Ξ →

X_B In Action

Notation

Let the $n \times n$ identity matrix be I_n .

Example

 $X_{I_1}((\begin{smallmatrix}1&1\\0&1\end{smallmatrix}))=?$

• $X_{l_1}((\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix})) = 1$ line.

▶ ★ 臣 ▶ ★

Why is this interesting?

- Distribution of eigenvalues
- Calculating correlation between Jordan blocks
- Studying generalizations of Fix(A)

Dr. Gadish, our mentor, proved that X_B formed a ring under multiplication.

Theorem

Given matrices B_1 and B_2 of size k_1 and k_2 respectively, there exists the following expansion for the pointwise product $X_{B_1} \cdot X_{B_2}$.

$$X_{B_1} \cdot X_{B_2} = \sum_C \lambda_{B_1, B_2}^C X_C$$

for some scalars λ_{B_1,B_2}^C where the sum ranges over conjugacy classes of invertible matrices C of size $\max(k_1,k_2) \leq k \leq k_1 + k_2$.

Dr. Gadish, our mentor, proved that X_B formed a ring under multiplication.

Theorem

Given matrices B_1 and B_2 of size k_1 and k_2 respectively, there exists the following expansion for the pointwise product $X_{B_1} \cdot X_{B_2}$.

$$X_{B_1} \cdot X_{B_2} = \sum_C \lambda_{B_1, B_2}^C X_C$$

for some scalars λ_{B_1,B_2}^C where the sum ranges over conjugacy classes of invertible matrices C of size $\max(k_1,k_2) \leq k \leq k_1 + k_2$.

Goal

Characterize the scalars λ_{B_1,B_2}^C

• • • • • • • • • • • •

Definition

The *q*-binomial coefficient $\binom{n}{k}_q$ is the number of *k*-dimensional subspaces in a *n*-dimensional space.

Fact

$$\binom{n}{k}_{q} = \prod_{i=0}^{k-1} \frac{q^{n} - q^{i}}{q^{k} - q^{i}}.$$

Definition

The *q*-binomial coefficient $\binom{n}{k}_q$ is the number of *k*-dimensional subspaces in a *n*-dimensional space.

Fact

$$\binom{n}{k}_q = \prod_{i=0}^{k-1} \frac{q^n - q^i}{q^k - q^i}.$$

Theorem

The following evaluation is true for identity matrices:

$$X_{I_k}(I_n) = \binom{n}{k}_q$$

• • • • • • • • • • • •

Theorem (Product of Identity Matrices)

$$X_{I_n} \cdot X_{I_m} = \sum_{k=0}^{\min(m,n)} X_{I_{m+n-k}} \binom{m+n-k}{k}_q \binom{m+n-2k}{m-k}_q \cdot q^{(m-k)(n-k)}.$$

Proof.

• Pick two subspaces V and W of dimension m and n respectively.

Theorem (Product of Identity Matrices)

$$X_{I_n} \cdot X_{I_m} = \sum_{k=0}^{\min(m,n)} X_{I_{m+n-k}} \binom{m+n-k}{k}_q \binom{m+n-2k}{m-k}_q \cdot q^{(m-k)(n-k)}.$$

Proof.

- Pick two subspaces V and W of dimension m and n respectively.
- Consider V + W and $V \cap W$. Let $\dim(V \cap W) = k$.

Theorem (Product of Identity Matrices)

$$X_{I_n} \cdot X_{I_m} = \sum_{k=0}^{\min(m,n)} X_{I_{m+n-k}} \binom{m+n-k}{k}_q \binom{m+n-2k}{m-k}_q \cdot q^{(m-k)(n-k)}.$$

Proof.

- Pick two subspaces V and W of dimension m and n respectively.
- Consider V + W and $V \cap W$. Let $\dim(V \cap W) = k$.

•
$$X_{I_{m+n-k}}$$
 ways to pick $V + W$.
• $\binom{m+n-k}{k}_q$ ways to pick $V \cap W$.

Theorem (Product of Identity Matrices)

$$X_{I_n} \cdot X_{I_m} = \sum_{k=0}^{\min(m,n)} X_{I_{m+n-k}} \binom{m+n-k}{k}_q \binom{m+n-2k}{m-k}_q \cdot q^{(m-k)(n-k)}.$$

Proof.

- Pick two subspaces V and W of dimension m and n respectively.
- Consider V + W and $V \cap W$. Let $\dim(V \cap W) = k$.

•
$$X_{I_{m+n-k}}$$
 ways to pick $V + W$.

•
$$\binom{m+n-k}{k}_a$$
 ways to pick $V \cap W$.

• $\binom{m+n-2k}{m-k}_q \cdot q^{(m-k)(n-k)}$ ways to pick extensions of $V \cap W$ to make V and W.

Reductions: Field Extensions

The product of statistics associated with identity matrices is complicated. The general formula even more so. We can reduce the problem with reductions.

Example (Field Extensions)

Consider the following matrix:

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

No real eigenvalues.

Reductions: Field Extensions

The product of statistics associated with identity matrices is complicated. The general formula even more so. We can reduce the problem with reductions.

Example (Field Extensions)

Consider the following matrix:

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

No real eigenvalues. Over the complex numbers, however, it does have eigenvalues:

 $\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$

Reduction

It is sufficient to assume that the matrix is in Jordan form.

Reduction (Disjoint Eigenvalues)

If A and B have disjoint eigenvalues then $X_A \cdot X_B = X_{\begin{pmatrix} A0\\ 0B \end{pmatrix}}$.

Reduction (Disjoint Eigenvalues)

If A and B have disjoint eigenvalues then $X_A \cdot X_B = X_{\begin{pmatrix} A0\\ 0B \end{pmatrix}}$.

Reduction (Changing Eigenvalues)

The choice of eigenvalue does not matter. For example,

$$X_{\begin{pmatrix}\lambda 1\\0\lambda\end{pmatrix}}\left(\begin{pmatrix}\lambda & 1 & 0\\ 0 & \lambda & 1\\ 0 & 0 & \lambda\end{pmatrix}\right) = X_{\begin{pmatrix}\mu 1\\0\mu\end{pmatrix}}\left(\begin{pmatrix}\mu & 1 & 0\\ 0 & \mu & 1\\ 0 & 0 & \mu\end{pmatrix}\right).$$

Final Reduction

It suffices to calculate our product expansion coefficients with the assumption that the matrices are unipotent.

Example

There exists an expansion $X_{(1)} \times X_{(1)} = aX_{(1)} + bX_{(10)} + cX_{(11)}$.

• Plug in (1), we see that $X_{(1)}((1)) = 1$, so

$$1 \times 1 = 1 \times a + b \times 0 + c \times 0.$$

Therefore, a = 1.

Example

There exists an expansion $X_{(1)} \times X_{(1)} = aX_{(1)} + bX_{(10)} + cX_{(11)}$.

• Plug in (1), we see that $X_{(1)}((1)) = 1$, so

$$1 \times 1 = 1 \times a + b \times 0 + c \times 0.$$

Therefore, a = 1.

• Plug in $\binom{10}{01}$, we see that $X_{\binom{10}{01}}((1)) = q + 1$, $X_{\binom{10}{01}}(\binom{10}{01}) = 1$.

$$(q+1) \times (q+1) = 1 \times (q+1) + b \times 1 + c \times 0.$$

Therefore, b = q(q + 1).

Example

There exists an expansion $X_{(1)} \times X_{(1)} = aX_{(1)} + bX_{(10)} + cX_{(11)}$.

• Plug in (1), we see that $X_{(1)}((1)) = 1$, so

$$1 \times 1 = 1 \times a + b \times 0 + c \times 0.$$

Therefore, a = 1.

• Plug in $\binom{10}{01}$, we see that $X_{\binom{10}{01}}((1)) = q + 1$, $X_{\binom{10}{01}}(\binom{10}{01}) = 1$.

$$(q+1) \times (q+1) = 1 \times (q+1) + b \times 1 + c \times 0.$$

Therefore, b = q(q + 1).

• Plugging in $\binom{11}{01}$, we see that c = 0.

Example

There exists an expansion $X_{(1)} \times X_{(1)} = aX_{(1)} + bX_{(10)} + cX_{(11)}$.

• Plug in (1), we see that $X_{(1)}((1)) = 1$, so

$$1 \times 1 = 1 \times a + b \times 0 + c \times 0.$$

Therefore, a = 1.

• Plug in $\binom{10}{01}$, we see that $X_{\binom{10}{01}}((1)) = q + 1$, $X_{\binom{10}{01}}(\binom{10}{01}) = 1$.

 $(q+1) \times (q+1) = 1 \times (q+1) + b \times 1 + c \times 0.$

Therefore, b = q(q + 1).

• Plugging in $\binom{11}{01}$, we see that c = 0.

So,
$$X_{(1)} \times X_{(1)} = X_{(1)} + q(q+1)X_{(10)}$$

Algorithm to Calculate the Coefficients λ_{B_1,B_2}^C

- 1: for $k = \max\{\dim(B_1), \dim(B_2)\}$ to $\dim(B_1) + \dim(B_2)$ do
- 2: Choose a conjugacy class *C* of *k*-dimensional matrices
- 3: Determine $X_{B_1}(C)$, $X_{B_2}(C)$, and $X_M(C)$ where dim $(M) < \dim(C)$
- 4: Set $\lambda_{B_1,B_2}^C = X_{B_1}(C) \cdot X_{B_2}(C) \sum_{\dim(M) < \dim(C)} \lambda_{B_1,B_2}^M X_M(C)$
- 5: Repeat with all other conjugacy classes of matrices of dimension k
- 6: end for loop

Notation

$$J_{a_1,a_2,\ldots,a_n}=J_{a_1}(1)\oplus J_{a_2}(1)\oplus\cdots\oplus J_{a_n}(1)$$

Image: A match a ma

Notation

$$J_{a_1,a_2,\ldots,a_n}=J_{a_1}(1)\oplus J_{a_2}(1)\oplus\cdots\oplus J_{a_n}(1)$$

Theorem

$$X_{J_k}(J_{a_1,a_2,...,a_r,b_1,b_2,...,b_s}) = \binom{r}{1}_q q^{\sum b_i + (k-1)(r-1)}_q$$

where $a_i \ge k$ and $b_i < k$.

< □ > < 同 > < 回 > < Ξ > < Ξ

Notation

$$J_{\boldsymbol{a}_1,\boldsymbol{a}_2,\ldots,\boldsymbol{a}_n}=J_{\boldsymbol{a}_1}(1)\oplus J_{\boldsymbol{a}_2}(1)\oplus\cdots\oplus J_{\boldsymbol{a}_n}(1)$$

Theorem

$$X_{J_k}(J_{a_1,a_2,...,a_r,b_1,b_2,...,b_s}) = \binom{r}{1}_q q^{\sum b_i + (k-1)(r-1)}_q$$

where $a_i \ge k$ and $b_i < k$.

Proof (sketch).

• Count *k*-dim subspaces, *A*-invariant and *A* acts as a Jordan block of size *k*.

Notation

$$J_{\boldsymbol{a}_1,\boldsymbol{a}_2,\ldots,\boldsymbol{a}_n}=J_{\boldsymbol{a}_1}(1)\oplus J_{\boldsymbol{a}_2}(1)\oplus\cdots\oplus J_{\boldsymbol{a}_n}(1)$$

Theorem

$$X_{J_k}(J_{a_1,a_2,...,a_r,b_1,b_2,...,b_s}) = \binom{r}{1}_q q^{\sum b_i + (k-1)(r-1)}_q$$

where $a_i \ge k$ and $b_i < k$.

Proof (sketch).

- Count *k*-dim subspaces, *A*-invariant and *A* acts as a Jordan block of size *k*.
- Count vectors that generate such such subspaces, adjust for overcounting

$$X_{J_k}(J_{a_1,a_2,...,a_r,b_1,b_2,...,b_s}) = \binom{r}{1}_q q^{\sum b_i + (k-1)(r-1)}_q$$

where $a_i \ge k$ and $b_i < k$.

Observations:

• • • • • • • • • • • •

$$X_{J_k}(J_{a_1,a_2,...,a_r,b_1,b_2,...,b_s}) = \binom{r}{1}_q q^{\sum b_i + (k-1)(r-1)}_q$$

where $a_i \ge k$ and $b_i < k$.

Observations:

• Size of largest Jordan Block in A does not matter

$$X_{J_k}(J_{a_1,a_2,...,a_r,b_1,b_2,...,b_s}) = \binom{r}{1}_q q^{\sum b_i + (k-1)(r-1)}_q$$

where $a_i \ge k$ and $b_i < k$.

Observations:

- Size of largest Jordan Block in A does not matter
- Polynomial in q

Let $B = J_{b_1,b_1,...,b_2,...,b_n}$ where $b_1 > b_2 > \cdots > b_n$ and there are c_i copies of J_{b_i} in B. Let $A = J_{a_1,a_2,...,a_k}$ where $a_1 \ge a_2 \ge \cdots \ge a_k$. Let t_i be the largest integer such that $a_{t_i} \ge b_i$. Then,

$$X_B(A) = \left(\prod_{i=1}^n \binom{t_i - \sum_{j=1}^{i-1} c_i}{c_i}_q\right)_q \cdot q^{-\sum_{i < j} c_i c_j + \sum_{i=1}^n c_i \left((b_i - 1)(t_i - c_i - 2\sum_{j=1}^{i-1} c_j) + \sum_{j=t_j+1}^k a_j\right)}.$$

The proof is analogous.

Statistics of Single Jordan Blocks

Theorem

For b > a,

$$egin{aligned} X_{J_b} \cdot X_{J_a} &= X_{J_b} + q(q-1) X_{J_{b,1}} + \dots + q^{2a-3}(q-1) X_{J_{b,a-1}} + q^{2a} X_{J_{b,a}} \ X_{J_b}^2 &= X_{J_b} + q(q-1) X_{J_{b,1}} + \dots + q^{2b-3}(q-1) X_{J_{b,b-1}} + q^{2b-1}(q+1) X_{J_{b,b}} \end{aligned}$$

→ ∃ →

Theorem

For b > a,

$$egin{aligned} X_{J_a} \cdot X_{J_b} &= X_{J_b} + q(q-1) X_{J_{b,1}} + \dots + q^{2a-3}(q-1) X_{J_{b,a-1}} + q^{2a} X_{J_{b,a}} \ X_{J_b}^2 &= X_{J_b} + q(q-1) X_{J_{b,1}} + \dots + q^{2b-3}(q-1) X_{J_{b,b-1}} + q^{2b-1}(q+1) X_{J_{b,b}} \end{aligned}$$

Interesting observations:

Image: Image:

► < ∃ ►</p>

Theorem

For b > a,

$$\begin{aligned} X_{J_a} \cdot X_{J_b} &= X_{J_b} + q(q-1)X_{J_{b,1}} + \dots + q^{2a-3}(q-1)X_{J_{b,a-1}} + q^{2a}X_{J_{b,a}} \\ X_{J_b}^2 &= X_{J_b} + q(q-1)X_{J_{b,1}} + \dots + q^{2b-3}(q-1)X_{J_{b,b-1}} + q^{2b-1}(q+1)X_{J_{b,b}} \end{aligned}$$

Interesting observations:

• Largest block of each term is b

Theorem

For b > a,

$$\begin{aligned} X_{J_a} \cdot X_{J_b} &= X_{J_b} + \mathbf{q}(\mathbf{q} - \mathbf{1}) X_{J_{b,1}} + \dots + \mathbf{q}^{2\mathbf{a} - 3} (\mathbf{q} - \mathbf{1}) X_{J_{b,a-1}} + \mathbf{q}^{2\mathbf{a}} X_{J_{b,a}} \\ X_{J_b}^2 &= X_{J_b} + q(q-1) X_{J_{b,1}} + \dots + q^{2b-3} (q-1) X_{J_{b,b-1}} + q^{2b-1} (q+1) X_{J_{b,b}} \end{aligned}$$

Interesting observations:

- Largest block of each term is b
- Expansion coefficients of $X_{J_b} \cdot X_{J_a}$ are stable (independent of b)

Theorem

For b > a,

$$X_{J_a} \cdot X_{J_b} = X_{\mathbf{J}_b} + q(q-1)X_{\mathbf{J}_{b,1}} + \dots + q^{2a-3}(q-1)X_{\mathbf{J}_{b,a-1}} + q^{2a}X_{\mathbf{J}_{b,a}}$$
$$X_{J_b}^2 = X_{\mathbf{J}_b} + q(q-1)X_{\mathbf{J}_{b,1}} + \dots + q^{2b-3}(q-1)X_{\mathbf{J}_{b,b-1}} + q^{2b-1}(q+1)X_{\mathbf{J}_{b,b}}$$

Interesting observations:

- Largest block of each term is b
- Expansion coefficients of $X_{J_b} \cdot X_{J_a}$ are stable (independent of b)
- X_C appears only if C has at most 2 blocks

Theorem

For b > a,

$$egin{aligned} X_{J_a} \cdot X_{J_b} &= X_{J_b} + q(q-1) X_{J_{b,1}} + \dots + q^{2a-3}(q-1) X_{J_{b,a-1}} + q^{2a} X_{J_{b,a}} \ X_{J_b}^2 &= X_{J_b} + q(q-1) X_{J_{b,1}} + \dots + q^{2b-3}(q-1) X_{J_{b,b-1}} + q^{2b-1}(q+1) X_{J_{b,b}} \end{aligned}$$

Interesting observations:

- Largest block of each term is b
- Expansion coefficients of $X_{J_b} \cdot X_{J_a}$ are stable (independent of b)
- X_C appears only if C has at most 2 blocks

Corollary X_{J_i} generate all $X_{J_{b,a}}$.

(日)

Definition

Correlation measures the association between two variables and is between -1 and 1.

Definition

Correlation measures the association between two variables and is between -1 and 1.

Formula

$$\operatorname{corr}(X_{J_1}, X_{J_2}) = \frac{\mathbb{E}[X_{J_2} \cdot X_{J_1}] - \mathbb{E}[X_{J_2}]\mathbb{E}[X_{J_1}]}{\sqrt{(\mathbb{E}[X_{J_1}^2] - \mathbb{E}[X_{J_1}]^2)(\mathbb{E}[X_{J_2}^2] - \mathbb{E}[X_{J_2}]^2)}}$$

< ⊒ >

Definition

Correlation measures the association between two variables and is between -1 and 1.

Formula

$$\operatorname{corr}(X_{J_1}, X_{J_2}) = \frac{\mathbb{E}[X_{J_2} \cdot X_{J_1}] - \mathbb{E}[X_{J_2}]\mathbb{E}[X_{J_1}]}{\sqrt{(\mathbb{E}[X_{J_1}^2] - \mathbb{E}[X_{J_1}]^2)(\mathbb{E}[X_{J_2}^2] - \mathbb{E}[X_{J_2}]^2)}}$$

• $X_{J_2} \cdot X_{J_1} = X_{J_2} + q^2 X_{J_{2,1}}$

• • = • •

Definition

Correlation measures the association between two variables and is between -1 and 1.

Formula

$$\operatorname{corr}(X_{J_1}, X_{J_2}) = \frac{\mathbb{E}[X_{J_2} \cdot X_{J_1}] - \mathbb{E}[X_{J_2}]\mathbb{E}[X_{J_1}]}{\sqrt{(\mathbb{E}[X_{J_1}^2] - \mathbb{E}[X_{J_1}]^2)(\mathbb{E}[X_{J_2}^2] - \mathbb{E}[X_{J_2}]^2)}}$$

•
$$X_{J_2} \cdot X_{J_1} = X_{J_2} + q^2 X_{J_{2,1}}$$

• $X_{J_1}^2 = X_{J_1} + q(q+1)X_{J_{1,1}}$

→ Ξ →

Definition

Correlation measures the association between two variables and is between -1 and 1.

Formula

$$\operatorname{corr}(X_{J_1}, X_{J_2}) = \frac{\mathbb{E}[X_{J_2} \cdot X_{J_1}] - \mathbb{E}[X_{J_2}]\mathbb{E}[X_{J_1}]}{\sqrt{(\mathbb{E}[X_{J_1}^2] - \mathbb{E}[X_{J_1}]^2)(\mathbb{E}[X_{J_2}^2] - \mathbb{E}[X_{J_2}]^2)}}$$

•
$$X_{J_2} \cdot X_{J_1} = X_{J_2} + q^2 X_{J_{2,1}}$$

• $X_{J_1}^2 = X_{J_1} + q(q+1)X_{J_{1,1}}$
• $X_{J_2}^2 = X_{J_2} + q(q-1)X_{J_{2,1}} + q^3(q+1)X_{J_{2,2}}$

→ Ξ →

Definition

Correlation measures the association between two variables and is between -1 and 1.

Formula

$$\operatorname{corr}(X_{J_1}, X_{J_2}) = \frac{\mathbb{E}[X_{J_2} \cdot X_{J_1}] - \mathbb{E}[X_{J_2}]\mathbb{E}[X_{J_1}]}{\sqrt{(\mathbb{E}[X_{J_1}^2] - \mathbb{E}[X_{J_1}]^2)(\mathbb{E}[X_{J_2}^2] - \mathbb{E}[X_{J_2}]^2)}}$$

•
$$X_{J_2} \cdot X_{J_1} = X_{J_2} + q^2 X_{J_{2,1}}$$

• $X_{J_1}^2 = X_{J_1} + q(q+1)X_{J_{1,1}}$
• $X_{J_2}^2 = X_{J_2} + q(q-1)X_{J_{2,1}} + q^3(q+1)X_{J_{2,2}}$

Result

For all
$$n \geq 4$$
, corr $(X_{J_1}, X_{J_2}) = rac{\sqrt{q+1}}{q}$

Conjectures

・ロト ・ 日 ト ・ 目 ト ・

Conjectures

Conjecture: Expansion for $X_{J_n} \cdot X_{J_{m,m}}$

If n > m are two positive integers,

$$X_{J_n} \cdot X_{J_{m,m}} = q^m X_{J_{n,m}} + \sum_{k=1}^{m-1} q^{3k+m-1}(q-1) X_{J_{n,m,k}} + q^{4m} X_{J_{n,m,m}}.$$

We conjecture similar expansions for $X_{J_n} \cdot X_{J_{m,k}}$.

Conjecture: Expansion for $X_{J_n} \cdot X_{J_{m,m}}$

If n > m are two positive integers,

$$X_{J_n} \cdot X_{J_{m,m}} = q^m X_{J_{n,m}} + \sum_{k=1}^{m-1} q^{3k+m-1} (q-1) X_{J_{n,m,k}} + q^{4m} X_{J_{n,m,m}}.$$

We conjecture similar expansions for $X_{J_n} \cdot X_{J_{m,k}}$.

Conjecture: Maximum Number of Jordan Blocks

$$X_{J_{a_1,a_2,\ldots,a_n}} \cdot X_{J_{b_1,b_2,\ldots,b_m}} = \sum \lambda_C X_{J_{c_1,c_2,\ldots,c_k}}$$
 where $\max(m,n) \le k \le m+n$.

Conjecture: Expansion for $X_{J_n} \cdot X_{J_{m,m}}$

If n > m are two positive integers,

$$X_{J_n} \cdot X_{J_{m,m}} = q^m X_{J_{n,m}} + \sum_{k=1}^{m-1} q^{3k+m-1} (q-1) X_{J_{n,m,k}} + q^{4m} X_{J_{n,m,m}}.$$

We conjecture similar expansions for $X_{J_n} \cdot X_{J_{m,k}}$.

Conjecture: Maximum Number of Jordan Blocks

 $X_{J_{a_1,a_2,\ldots,a_n}} \cdot X_{J_{b_1,b_2,\ldots,b_m}} = \sum \lambda_C X_{J_{c_1,c_2,\ldots,c_k}}$ where max $(m,n) \le k \le m+n$.

Conjecture: Single Jordan Blocks Generate the Ring

 $X_C \in \mathbb{Q}[X_{J_1}, X_{J_2}, X_{J_3}, \ldots]$ for all C

Adithya, Andrew, and Simon

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Why are our results important?

Why are our results important?

 We can use the expansions to compute E[X_{B1}X_{B2}X_{B3}···]. Correlations, variance, higher joint moments, ... Why are our results important?

- We can use the expansions to compute E[X_{B1}X_{B2}X_{B3}···]. Correlations, variance, higher joint moments, ...
- If GL_n(𝔽_q) ¬ V, W, then V ⊗ W, viewed as a GL_n(𝔽_q)-module, can be decomposed in a direct sum of simple GL_n(𝔽_q)-modules. Our coefficients can be used to determine the multiplicities, which were seen to stabilize.

- Dr. Nir Gadish, for being our mentor
- MIT PRIMES-USA Program, for providing us the opportunity to conduct research
- Dr. Tanya Khovanova, Dr. Slava Gerovitch, Prof. Pavel Etingof
- Our parents

- Michael Artin. Algebra. Second. Pearson, 2011.
- Nir Gadish. "Categories of FI type: a unified approach to generalizing representation stability and character polynomials". In: *Journal of Algebra* 480 (2017), pp. 450–486.
- Nir Gadish. "Dimension-independent statistics of Gl_n(F_q) via character polynomials". In: (2019). DOI: 10.1090/proc/14781. eprint: arXiv:1803.04155.
 - Gilbert Strang. *Introduction to Linear Algebra*. Fourth. Wellesley, MA: Wellesley-Cambridge Press, 2009.