Product Expansions of q-Character Polynomials

Adithya Balachandran, Andrew Huang, and Simon Sun Mentor: Dr. Nir Gadish

High Technology High School (NJ), Conestoga High School (PA), Bergen County Academies (NJ)

October 17-18, 2020
MIT PRIMES Conference

Background: Example

Let A be a nonzero $n \times n$ matrix with entries in the finite field \mathbb{F}_{q}.

Definition

Let $\operatorname{Fix}(A)=\mid\left\{v \in \mathbb{F}_{q}^{n} \mid A v=v\right.$ and $\left.v \neq 0\right\} \mid$ be a statistic on matrices of any size.

Question

What is $\mathbb{E}_{A}[\operatorname{Fix}(A)]$?

Background: Example

Let A be a nonzero $n \times n$ matrix with entries in the finite field \mathbb{F}_{q}.

Definition

Let $\operatorname{Fix}(A)=\mid\left\{v \in \mathbb{F}_{q}^{n} \mid A v=v\right.$ and $\left.v \neq 0\right\} \mid$ be a statistic on matrices of any size.

Question

What is $\mathbb{E}_{A}[\operatorname{Fix}(A)]$?

Expectation of Fix(A)

If A has entries in \mathbb{F}_{q}, then $\mathbb{E}_{A}[\operatorname{Fix}(A)]=1$.
We can extend this notion to counting subspaces rather than vectors.

The Statistic X_{B}

In this project, we look at the infinite collection of class function X_{B}, which is defined as follows:

Definition

Given a linear transformation A and vector space \mathbb{F}_{q}^{n}, we say that a subspace $W \subseteq \mathbb{F}_{q}^{n}$ is A-invariant if $A(W) \subseteq W$.

$$
A: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}
$$

The Statistic X_{B}

In this project, we look at the infinite collection of class function X_{B}, which is defined as follows:

Definition

Given a linear transformation A and vector space \mathbb{F}_{q}^{n}, we say that a subspace $W \subseteq \mathbb{F}_{q}^{n}$ is A-invariant if $A(W) \subseteq W$.

$$
A: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}
$$

Definition (Conjugacy)

The matrices A and B are conjugate if there exists an invertible matrix P such that $B=P^{-1} A P$. Conjugacy is an equivalence relation.

The Statistic X_{B} (A Generalization)

- v (vector)
- A acts like $I d$ on v
- $\operatorname{Fix}(A)$
- W (subspace)
- A acts like B on W
- $X_{B}(A)$

The Statistic X_{B} (A Generalization)

- v (vector)
- A acts like $I d$ on v
- $\operatorname{Fix}(A)$
- W (subspace)
- A acts like B on W
- $X_{B}(A)$

Definition (q-character polynomials)

Given a finite field \mathbb{F}_{q}, let B be an $m \times m$ matrix, where $m \geq 1$. If A is any $n \times n$ matrix,

$$
X_{B}(A)=\mid\left\{W \leq \mathbb{F}_{q}^{n} \mid \operatorname{dim} W=m \text { with } A(W) \subseteq W \text { and } A \mid W \sim B\right\} \mid .
$$

$X_{B} \operatorname{In}$ Action

Notation

Let the $n \times n$ identity matrix be I_{n}.

Example

$X_{l_{1}}\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right)=$?

X_{B} In Action

Notation

Let the $n \times n$ identity matrix be I_{n}.

Example

$X_{I_{1}}\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right)=$?

- $X_{l_{1}}\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right)=1$ line.

Motivation

Why is this interesting?

- Distribution of eigenvalues
- Calculating correlation between Jordan blocks
- Studying generalizations of Fix(A)

Research Problem

Dr. Gadish, our mentor, proved that X_{B} formed a ring under multiplication.

Theorem

Given matrices B_{1} and B_{2} of size k_{1} and k_{2} respectively, there exists the following expansion for the pointwise product $X_{B_{1}} \cdot X_{B_{2}}$.

$$
X_{B_{1}} \cdot X_{B_{2}}=\sum_{C} \lambda_{B_{1}, B_{2}}^{C} X_{C}
$$

for some scalars $\lambda_{B_{1}, B_{2}}^{C}$ where the sum ranges over conjugacy classes of invertible matrices C of size $\max \left(k_{1}, k_{2}\right) \leq k \leq k_{1}+k_{2}$.

Research Problem

Dr. Gadish, our mentor, proved that X_{B} formed a ring under multiplication.

Theorem

Given matrices B_{1} and B_{2} of size k_{1} and k_{2} respectively, there exists the following expansion for the pointwise product $X_{B_{1}} \cdot X_{B_{2}}$.

$$
X_{B_{1}} \cdot X_{B_{2}}=\sum_{C} \lambda_{B_{1}, B_{2}}^{C} X_{C}
$$

for some scalars $\lambda_{B_{1}, B_{2}}^{C}$ where the sum ranges over conjugacy classes of invertible matrices C of size $\max \left(k_{1}, k_{2}\right) \leq k \leq k_{1}+k_{2}$.

Goal

Characterize the scalars $\lambda_{B_{1}, B_{2}}^{C}$

Identity Matrices

Definition

The q-binomial coefficient $\binom{n}{k}_{q}$ is the number of k-dimensional subspaces in a n-dimensional space.

Fact

$$
\binom{n}{k}_{q}=\prod_{i=0}^{k-1} \frac{q^{n}-q^{i}}{q^{k}-q^{i}}
$$

Identity Matrices

Definition

The q-binomial coefficient $\binom{n}{k}_{q}$ is the number of k-dimensional subspaces in a n-dimensional space.

Fact

$$
\binom{n}{k}_{q}=\prod_{i=0}^{k-1} \frac{q^{n}-q^{i}}{q^{k}-q^{i}}
$$

Theorem

The following evaluation is true for identity matrices:

$$
X_{I_{k}}\left(I_{n}\right)=\binom{n}{k}_{q}
$$

Product of Statistics of Identity Matrices

Theorem (Product of Identity Matrices)

$$
X_{I_{n}} \cdot X_{I_{m}}=\sum_{k=0}^{\min (m, n)} X_{I_{m+n-k}}\binom{m+n-k}{k}_{q}\binom{m+n-2 k}{m-k}_{q} \cdot q^{(m-k)(n-k)}
$$

Proof.

- Pick two subspaces V and W of dimension m and n respectively.

Product of Statistics of Identity Matrices

Theorem (Product of Identity Matrices)

$$
X_{I_{n}} \cdot X_{I_{m}}=\sum_{k=0}^{\min (m, n)} X_{I_{m+n-k}}\binom{m+n-k}{k}_{q}\binom{m+n-2 k}{m-k}_{q} \cdot q^{(m-k)(n-k)}
$$

Proof.

- Pick two subspaces V and W of dimension m and n respectively.
- Consider $V+W$ and $V \cap W$. Let $\operatorname{dim}(V \cap W)=k$.

Product of Statistics of Identity Matrices

Theorem (Product of Identity Matrices)

$$
X_{I_{n}} \cdot X_{I_{m}}=\sum_{k=0}^{\min (m, n)} X_{I_{m+n-k}}\binom{m+n-k}{k}_{q}\binom{m+n-2 k}{m-k}_{q} \cdot q^{(m-k)(n-k)}
$$

Proof.

- Pick two subspaces V and W of dimension m and n respectively.
- Consider $V+W$ and $V \cap W$. Let $\operatorname{dim}(V \cap W)=k$.
- $X_{I_{m+n-k}}$ ways to pick $V+W$.
- $\binom{m+n-k}{k}_{q}$ ways to pick $V \cap W$.

Product of Statistics of Identity Matrices

Theorem (Product of Identity Matrices)

$$
X_{I_{n}} \cdot X_{I_{m}}=\sum_{k=0}^{\min (m, n)} X_{I_{m+n-k}}\binom{m+n-k}{k}_{q}\binom{m+n-2 k}{m-k}_{q} \cdot q^{(m-k)(n-k)} .
$$

Proof.

- Pick two subspaces V and W of dimension m and n respectively.
- Consider $V+W$ and $V \cap W$. Let $\operatorname{dim}(V \cap W)=k$.
- $X_{I_{m+n-k}}$ ways to pick $V+W$.
- $\binom{m+n-k}{k}_{q}$ ways to pick $V \cap W$.
- $\binom{m+n-2 k}{m-k}_{q} \cdot q^{(m-k)(n-k)}$ ways to pick extensions of $V \cap W$ to make V and W.

Reductions: Field Extensions

The product of statistics associated with identity matrices is complicated. The general formula even more so. We can reduce the problem with reductions.

Example (Field Extensions)

Consider the following matrix:

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

No real eigenvalues.

Reductions: Field Extensions

The product of statistics associated with identity matrices is complicated. The general formula even more so. We can reduce the problem with reductions.

Example (Field Extensions)

Consider the following matrix:

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

No real eigenvalues. Over the complex numbers, however, it does have eigenvalues:

$$
\left(\begin{array}{ll}
i & 0 \\
0 & i
\end{array}\right)
$$

Reduction

It is sufficient to assume that the matrix is in Jordan form.

Reductions

Reduction (Disjoint Eigenvalues)
 If A and B have disjoint eigenvalues then $X_{A} \cdot X_{B}=X_{\binom{A 0}{0 B}}$.

Reductions

Reduction (Disjoint Eigenvalues)

If A and B have disjoint eigenvalues then $X_{A} \cdot X_{B}=X_{\binom{A 0}{0 B}}$.

Reduction (Changing Eigenvalues)

The choice of eigenvalue does not matter. For example,

$$
X_{\binom{\lambda 1}{0 \lambda}}\left(\left(\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right)\right)=X_{\binom{\mu 1}{0 \mu}}\left(\left(\begin{array}{lll}
\mu & 1 & 0 \\
0 & \mu & 1 \\
0 & 0 & \mu
\end{array}\right)\right) .
$$

Final Reduction

It suffices to calculate our product expansion coefficients with the assumption that the matrices are unipotent.

Procedure for Calculating Coefficients

Example

There exists an expansion $X_{(1)} \times X_{(1)}=a X_{(1)}+b X_{\binom{10}{01}}+c X_{\binom{11}{01}}$.

- Plug in (1), we see that $X_{(1)}((1))=1$, so

$$
1 \times 1=1 \times a+b \times 0+c \times 0 .
$$

Therefore, $a=1$.

Procedure for Calculating Coefficients

Example

There exists an expansion $X_{(1)} \times X_{(1)}=a X_{(1)}+b X_{\binom{10}{01}}+c X_{\binom{11}{01}}$.

- Plug in (1), we see that $X_{(1)}((1))=1$, so

$$
1 \times 1=1 \times a+b \times 0+c \times 0 .
$$

Therefore, $a=1$.

- Plug in $\binom{10}{01}$, we see that $\left.X_{\binom{10}{01}}((1))=q+1, X_{\binom{10}{01}}\binom{10}{01}\right)=1$.

$$
(q+1) \times(q+1)=1 \times(q+1)+b \times 1+c \times 0 .
$$

Therefore, $b=q(q+1)$.

Procedure for Calculating Coefficients

Example

There exists an expansion $X_{(1)} \times X_{(1)}=a X_{(1)}+b X_{\binom{10}{01}}+c X_{\binom{11}{01}}$.

- Plug in (1), we see that $X_{(1)}((1))=1$, so

$$
1 \times 1=1 \times a+b \times 0+c \times 0 .
$$

Therefore, $a=1$.

- Plug in $\binom{10}{01}$, we see that $\left.X_{\binom{10}{01}}((1))=q+1, X_{\binom{10}{01}}\binom{10}{01}\right)=1$.

$$
(q+1) \times(q+1)=1 \times(q+1)+b \times 1+c \times 0 .
$$

Therefore, $b=q(q+1)$.

- Plugging in $\binom{11}{01}$, we see that $c=0$.

Procedure for Calculating Coefficients

Example

There exists an expansion $X_{(1)} \times X_{(1)}=a X_{(1)}+b X_{\binom{10}{01}}+c X_{\binom{11}{01}}$.

- Plug in (1), we see that $X_{(1)}((1))=1$, so

$$
1 \times 1=1 \times a+b \times 0+c \times 0 .
$$

Therefore, $a=1$.

- Plug in $\binom{10}{01}$, we see that $\left.X_{\binom{10}{01}}((1))=q+1, X_{\binom{10}{01}}\binom{10}{01}\right)=1$.

$$
(q+1) \times(q+1)=1 \times(q+1)+b \times 1+c \times 0 .
$$

Therefore, $b=q(q+1)$.

- Plugging in $\binom{11}{01}$, we see that $c=0$.

So, $X_{(1)} \times X_{(1)}=X_{(1)}+q(q+1) X_{\binom{10}{01}}$

Procedure for Calculating Coefficients

Algorithm to Calculate the Coefficients $\lambda_{B_{1}, B_{2}}^{C}$

1: for $k=\max \left\{\operatorname{dim}\left(B_{1}\right), \operatorname{dim}\left(B_{2}\right)\right\}$ to $\operatorname{dim}\left(B_{1}\right)+\operatorname{dim}\left(B_{2}\right)$ do
2: \quad Choose a conjugacy class C of k-dimensional matrices
3: \quad Determine $X_{B_{1}}(C), X_{B_{2}}(C)$, and $X_{M}(C)$ where $\operatorname{dim}(M)<\operatorname{dim}(C)$
4: \quad Set $\lambda_{B_{1}, B_{2}}^{C}=X_{B_{1}}(C) \cdot X_{B_{2}}(C)-\sum_{\operatorname{dim}(M)<\operatorname{dim}(C)} \lambda_{B_{1}, B_{2}}^{M} X_{M}(C)$
5: Repeat with all other conjugacy classes of matrices of dimension k
6: end for loop

Evaluating $X_{J_{k}}(A)$

Notation
 $J_{a_{1}, a_{2}, \ldots, a_{n}}=J_{a_{1}}(1) \oplus J_{a_{2}}(1) \oplus \cdots \oplus J_{a_{n}}(1)$

Evaluating $X_{J_{k}}(A)$

Notation

$J_{a_{1}, a_{2}, \ldots, a_{n}}=J_{a_{1}}(1) \oplus J_{a_{2}}(1) \oplus \cdots \oplus J_{a_{n}}(1)$
Theorem

$$
X_{J_{k}}\left(J_{a_{1}, a_{2}, \ldots, a_{r}, b_{1}, b_{2}, \ldots, b_{s}}\right)=\binom{r}{1}_{q} q^{\sum_{i} b_{i}+(k-1)(r-1)}
$$

where $a_{i} \geq k$ and $b_{i}<k$.

Evaluating $X_{J_{k}}(A)$

Notation

$J_{a_{1}, a_{2}, \ldots, a_{n}}=J_{a_{1}}(1) \oplus J_{a_{2}}(1) \oplus \cdots \oplus J_{a_{n}}(1)$
Theorem

$$
X_{J_{k}}\left(J_{a_{1}, a_{2}, \ldots, a_{r}, b_{1}, b_{2}, \ldots, b_{s}}\right)=\binom{r}{1}_{q} q^{\sum_{i} b_{i}+(k-1)(r-1)}
$$

where $a_{i} \geq k$ and $b_{i}<k$.

Proof (sketch).

- Count k-dim subspaces, A-invariant and A acts as a Jordan block of size k.

Evaluating $X_{J_{k}}(A)$

Notation

$J_{a_{1}, a_{2}, \ldots, a_{n}}=J_{a_{1}}(1) \oplus J_{a_{2}}(1) \oplus \cdots \oplus J_{a_{n}}(1)$

Theorem

$$
X_{J_{k}}\left(J_{a_{1}, a_{2}, \ldots, a_{r}, b_{1}, b_{2}, \ldots, b_{s}}\right)=\binom{r}{1}_{q} q^{\sum_{i} b_{i}+(k-1)(r-1)}
$$

where $a_{i} \geq k$ and $b_{i}<k$.

Proof (sketch).

- Count k-dim subspaces, A-invariant and A acts as a Jordan block of size k.
- Count vectors that generate such such subspaces, adjust for overcounting

Evaluating $X_{J_{k}}(A)$

Theorem

$$
X_{J_{k}}\left(J_{a_{1}, a_{2}, \ldots, a_{r}, b_{1}, b_{2}, \ldots, b_{s}}\right)=\binom{r}{1}_{q} q^{\sum_{i} b_{i}+(k-1)(r-1)}
$$

where $a_{i} \geq k$ and $b_{i}<k$.

Observations:

Evaluating $X_{J_{k}}(A)$

Theorem

$$
X_{J_{k}}\left(J_{a_{1}, a_{2}, \ldots, a_{r}, b_{1}, b_{2}, \ldots, b_{s}}\right)=\binom{r}{1}_{q} q^{\sum_{i} b_{i}+(k-1)(r-1)}
$$

where $a_{i} \geq k$ and $b_{i}<k$.

Observations:

- Size of largest Jordan Block in A does not matter

Evaluating $X_{J_{k}}(A)$

Theorem

$$
X_{J_{k}}\left(J_{a_{1}, a_{2}, \ldots, a_{r}, b_{1}, b_{2}, \ldots, b_{s}}\right)=\binom{r}{1}_{q} q^{\sum_{i} b_{i}+(k-1)(r-1)}
$$

where $a_{i} \geq k$ and $b_{i}<k$.

Observations:

- Size of largest Jordan Block in A does not matter
- Polynomial in q

Main Result: Evaluating $X_{B}(A)$

Theorem

Let $B=J_{b_{1}, b_{1}, \ldots, b_{2}, \ldots, b_{n}}$ where $b_{1}>b_{2}>\cdots>b_{n}$ and there are c_{i} copies of $J_{b_{i}}$ in B. Let $A=J_{a_{1}, a_{2}, \ldots, a_{k}}$ where $a_{1} \geq a_{2} \geq \cdots \geq a_{k}$. Let t_{i} be the largest integer such that $a_{t_{i}} \geq b_{i}$. Then,
$X_{B}(A)=\left(\prod_{i=1}^{n}\binom{t_{i}-\sum_{j=1}^{i-1} c_{i}}{c_{i}}_{q}\right) \cdot q^{-\sum_{i<j} c_{i} c_{j}+\sum_{i=1}^{n} c_{i}\left(\left(b_{i}-1\right)\left(t_{i}-c_{i}-2 \sum_{j=1}^{i-1} c_{j}\right)+\sum_{j=t_{i}+1}^{k} a_{j}\right)}$.
The proof is analogous.

Statistics of Single Jordan Blocks

Theorem

For $b>a$,

$$
\begin{aligned}
X_{J_{b}} \cdot X_{J_{a}} & =X_{J_{b}}+q(q-1) X_{J_{b, 1}}+\cdots+q^{2 a-3}(q-1) X_{J_{b, a-1}}+q^{2 a} X_{J_{b, a}} \\
X_{J_{b}}^{2} & =X_{J_{b}}+q(q-1) X_{J_{b, 1}}+\cdots+q^{2 b-3}(q-1) X_{J_{b, b-1}}+q^{2 b-1}(q+1) X_{J_{b, b}}
\end{aligned}
$$

Statistics of Single Jordan Blocks

Theorem

For $b>a$,

$$
\begin{aligned}
X_{J_{a}} \cdot X_{J_{b}} & =X_{J_{b}}+q(q-1) X_{J_{b, 1}}+\cdots+q^{2 a-3}(q-1) X_{J_{b, a-1}}+q^{2 a} X_{J_{b, a}} \\
X_{J_{b}}^{2} & =X_{J_{b}}+q(q-1) X_{J_{b, 1}}+\cdots+q^{2 b-3}(q-1) X_{J_{b, b-1}}+q^{2 b-1}(q+1) X_{J_{b, b}}
\end{aligned}
$$

Interesting observations:

Statistics of Single Jordan Blocks

Theorem

For $b>a$,

$$
\begin{aligned}
X_{J_{\mathrm{a}}} \cdot X_{\mathrm{J}_{\mathrm{b}}} & =X_{\mathrm{J}_{\mathrm{b}}}+q(q-1) X_{J_{\mathrm{b}, 1}}+\cdots+q^{2 a-3}(q-1) X_{J_{\mathrm{b}, \mathrm{a}-1}}+q^{2 a} X_{J_{\mathrm{b}, \mathrm{a}}} \\
X_{J_{\mathrm{b}}}^{2} & =X_{J_{\mathrm{b}}}+q(q-1) X_{J_{\mathrm{b}, 1}}+\cdots+q^{2 b-3}(q-1) X_{J_{\mathrm{b}, b-1}}+q^{2 b-1}(q+1) X_{J_{\mathrm{b}, \mathrm{~b}}}
\end{aligned}
$$

Interesting observations:

- Largest block of each term is b

Statistics of Single Jordan Blocks

Theorem

For $b>a$,

$$
\begin{aligned}
X_{J_{a}} \cdot X_{J_{b}} & =X_{J_{b}}+\mathbf{q}(\mathbf{q}-1) X_{J_{b, 1}}+\cdots+\mathbf{q}^{2 \mathrm{a}-3}(\mathbf{q}-1) X_{J_{b, a-1}}+\mathbf{q}^{2 \mathrm{a}} X_{J_{b, a}} \\
X_{J_{b}}^{2} & =X_{J_{b}}+q(q-1) X_{J_{b, 1}}+\cdots+q^{2 b-3}(q-1) X_{J_{b, b-1}}+q^{2 b-1}(q+1) X_{J_{b, b}}
\end{aligned}
$$

Interesting observations:

- Largest block of each term is b
- Expansion coefficients of $X_{J_{b}} \cdot X_{J_{a}}$ are stable (independent of b)

Statistics of Single Jordan Blocks

Theorem

For $b>a$,

$$
\begin{aligned}
X_{J_{\mathrm{a}}} \cdot X_{J_{b}} & =X_{\mathrm{J}_{\mathrm{b}}}+q(q-1) X_{\mathrm{J}_{\mathrm{b}}, 1}+\cdots+q^{2 a-3}(q-1) X_{\mathrm{J}_{\mathrm{b}, \mathrm{a}-1}}+q^{2 \mathrm{a}} X_{\mathrm{J}_{\mathrm{b}, \mathrm{a}}} \\
X_{J_{b}}^{2} & =X_{\mathrm{J}_{\mathrm{b}}}+q(q-1) X_{\mathrm{J}_{\mathrm{b}, 1}}+\cdots+q^{2 b-3}(q-1) X_{\mathrm{J}_{\mathrm{b}, \mathrm{~b}-1}}+q^{2 b-1}(q+1) X_{\mathrm{b}, \mathrm{~b}}
\end{aligned}
$$

Interesting observations:

- Largest block of each term is b
- Expansion coefficients of $X_{J_{b}} \cdot X_{J_{a}}$ are stable (independent of b)
- X_{C} appears only if C has at most 2 blocks

Statistics of Single Jordan Blocks

Theorem

For $b>a$,

$$
\begin{aligned}
X_{J_{a}} \cdot X_{J_{b}} & =X_{J_{b}}+q(q-1) X_{J_{b, 1}}+\cdots+q^{2 a-3}(q-1) X_{J_{b, a-1}}+q^{2 a} X_{J_{b, a}} \\
X_{J_{b}}^{2} & =X_{J_{b}}+q(q-1) X_{J_{b, 1}}+\cdots+q^{2 b-3}(q-1) X_{J_{b, b-1}}+q^{2 b-1}(q+1) X_{J_{b, b}}
\end{aligned}
$$

Interesting observations:

- Largest block of each term is b
- Expansion coefficients of $X_{J_{b}} \cdot X_{J_{a}}$ are stable (independent of b)
- X_{C} appears only if C has at most 2 blocks

Corollary

$X_{J_{i}}$ generate all $X_{J_{b, a}}$.

Application of the Expansion of $X_{J_{2}} \cdot X_{J_{b}}$

Application of the Expansion of $X_{J_{2}} \cdot X_{J_{b}}$

Definition

Correlation measures the association between two variables and is between -1 and 1 .

Application of the Expansion of $X_{J_{a}} \cdot X_{J_{b}}$

Definition

Correlation measures the association between two variables and is between -1 and 1 .

Formula

$$
\operatorname{corr}\left(X_{J_{1}}, X_{J_{2}}\right)=\frac{\mathbb{E}\left[X_{J_{2}} \cdot X_{J_{1}}\right]-\mathbb{E}\left[X_{J_{2}}\right] \mathbb{E}\left[X_{J_{1}}\right]}{\sqrt{\left(\mathbb{E}\left[X_{J_{1}}^{2}\right]-\mathbb{E}\left[X_{J_{1}}\right]^{2}\right)\left(\mathbb{E}\left[X_{J_{2}}^{2}\right]-\mathbb{E}\left[X_{J_{2}}\right]^{2}\right)}}
$$

Application of the Expansion of $X_{J_{a}} \cdot X_{J_{b}}$

Definition

Correlation measures the association between two variables and is between -1 and 1 .

Formula

$$
\operatorname{corr}\left(X_{J_{1}}, X_{J_{2}}\right)=\frac{\mathbb{E}\left[X_{J_{2}} \cdot X_{J_{1}}\right]-\mathbb{E}\left[X_{J_{2}}\right] \mathbb{E}\left[X_{J_{1}}\right]}{\sqrt{\left(\mathbb{E}\left[X_{J_{1}}^{2}\right]-\mathbb{E}\left[X_{J_{1}}\right]^{2}\right)\left(\mathbb{E}\left[X_{J_{2}}^{2}\right]-\mathbb{E}\left[X_{J_{2}}\right]^{2}\right)}}
$$

- $X_{J_{2}} \cdot X_{J_{1}}=X_{J_{2}}+q^{2} X_{J_{2,1}}$

Application of the Expansion of $X_{J_{2}} \cdot X_{J_{b}}$

Definition

Correlation measures the association between two variables and is between -1 and 1 .

Formula

$$
\operatorname{corr}\left(X_{J_{1}}, X_{J_{2}}\right)=\frac{\mathbb{E}\left[X_{J_{2}} \cdot X_{J_{1}}\right]-\mathbb{E}\left[X_{J_{2}}\right] \mathbb{E}\left[X_{J_{1}}\right]}{\sqrt{\left(\mathbb{E}\left[X_{J_{1}}^{2}\right]-\mathbb{E}\left[X_{J_{1}}\right]^{2}\right)\left(\mathbb{E}\left[X_{J_{2}}^{2}\right]-\mathbb{E}\left[X_{J_{2}}\right]^{2}\right)}}
$$

- $X_{J_{2}} \cdot X_{J_{1}}=X_{J_{2}}+q^{2} X_{J_{2,1}}$
- $X_{J_{1}}^{2}=X_{J_{1}}+q(q+1) X_{J_{1,1}}$

Application of the Expansion of $X_{J_{2}} \cdot X_{J_{b}}$

Definition

Correlation measures the association between two variables and is between -1 and 1 .

Formula

$$
\operatorname{corr}\left(X_{J_{1}}, X_{J_{2}}\right)=\frac{\mathbb{E}\left[X_{J_{2}} \cdot X_{J_{1}}\right]-\mathbb{E}\left[X_{J_{2}}\right] \mathbb{E}\left[X_{J_{1}}\right]}{\sqrt{\left(\mathbb{E}\left[X_{J_{1}}^{2}\right]-\mathbb{E}\left[X_{J_{1}}\right]^{2}\right)\left(\mathbb{E}\left[X_{J_{2}}^{2}\right]-\mathbb{E}\left[X_{J_{2}}\right]^{2}\right)}}
$$

- $X_{J_{2}} \cdot X_{J_{1}}=X_{J_{2}}+q^{2} X_{J_{2,1}}$
- $X_{J_{1}}^{2}=X_{J_{1}}+q(q+1) X_{J_{1,1}}$
- $X_{J_{2}}^{2}=X_{J_{2}}+q(q-1) X_{J_{2,1}}+q^{3}(q+1) X_{J_{2,2}}$

Application of the Expansion of $X_{J_{2}} \cdot X_{J_{b}}$

Definition

Correlation measures the association between two variables and is between -1 and 1 .

Formula

$$
\operatorname{corr}\left(X_{J_{1}}, X_{J_{2}}\right)=\frac{\mathbb{E}\left[X_{J_{2}} \cdot X_{J_{1}}\right]-\mathbb{E}\left[X_{J_{2}}\right] \mathbb{E}\left[X_{J_{1}}\right]}{\sqrt{\left(\mathbb{E}\left[X_{J_{1}}^{2}\right]-\mathbb{E}\left[X_{J_{1}}\right]^{2}\right)\left(\mathbb{E}\left[X_{J_{2}}^{2}\right]-\mathbb{E}\left[X_{J_{2}}\right]^{2}\right)}}
$$

- $X_{J_{2}} \cdot X_{J_{1}}=X_{J_{2}}+q^{2} X_{J_{2,1}}$
- $X_{J_{1}}^{2}=X_{J_{1}}+q(q+1) X_{J_{1,1}}$
- $X_{J_{2}}^{2}=X_{J_{2}}+q(q-1) X_{J_{2,1}}+q^{3}(q+1) X_{J_{2,2}}$

Result

For all $n \geq 4, \operatorname{corr}\left(X_{J_{1}}, X_{J_{2}}\right)=\frac{\sqrt{q+1}}{q}$.

Conjectures

Conjectures

Conjecture: Expansion for $X_{J_{n}} \cdot X_{J_{m, m}}$

If $n>m$ are two positive integers,

$$
X_{J_{n}} \cdot X_{J_{m, m}}=q^{m} X_{J_{n, m}}+\sum_{k=1}^{m-1} q^{3 k+m-1}(q-1) X_{J_{n, m, k}}+q^{4 m} X_{J_{n, m, m}}
$$

We conjecture similar expansions for $X_{J_{n}} \cdot X_{J_{m, k}}$.

Conjectures

Conjecture: Expansion for $X_{J_{n}} \cdot X_{J_{m, m}}$

If $n>m$ are two positive integers,

$$
X_{J_{n}} \cdot X_{J_{m, m}}=q^{m} X_{J_{n, m}}+\sum_{k=1}^{m-1} q^{3 k+m-1}(q-1) X_{J_{n, m, k}}+q^{4 m} X_{J_{n, m, m}}
$$

We conjecture similar expansions for $X_{J_{n}} \cdot X_{J_{m, k}}$.

Conjecture: Maximum Number of Jordan Blocks
$X_{J_{a_{1}, a_{2}, \ldots, a_{n}}} \cdot X_{J_{b_{1}, b_{2}, \ldots, b_{m}}}=\sum \lambda_{C} X_{J_{c_{1}, c_{2}, \ldots, c_{k}}}$ where $\max (m, n) \leq k \leq m+n$.

Conjectures

Conjecture: Expansion for $X_{J_{n}} \cdot X_{J_{m, m}}$
If $n>m$ are two positive integers,

$$
X_{J_{n}} \cdot X_{J_{m, m}}=q^{m} X_{J_{n, m}}+\sum_{k=1}^{m-1} q^{3 k+m-1}(q-1) X_{J_{n, m, k}}+q^{4 m} X_{J_{n, m, m}}
$$

We conjecture similar expansions for $X_{J_{n}} \cdot X_{J_{m, k}}$.

Conjecture: Maximum Number of Jordan Blocks
$X_{J_{a_{1}, a_{2}, \ldots, a_{n}}} \cdot X_{J_{b_{1}, b_{2}, \ldots, b_{m}}}=\sum \lambda_{C} X_{J_{c_{1}, c_{2}, \ldots, c_{k}}}$ where $\max (m, n) \leq k \leq m+n$.
Conjecture: Single Jordan Blocks Generate the Ring
$X_{C} \in \mathbb{Q}\left[X_{J_{1}}, X_{J_{2}}, X_{J_{3}}, \ldots\right]$ for all C

Conclusion

Why are our results important?

Conclusion

Why are our results important?

- We can use the expansions to compute $\mathbb{E}\left[X_{B_{1}} X_{B_{2}} X_{B_{3}} \cdots\right]$. Correlations, variance, higher joint moments, ...

Conclusion

Why are our results important?

- We can use the expansions to compute $\mathbb{E}\left[X_{B_{1}} X_{B_{2}} X_{B_{3}} \cdots\right]$. Correlations, variance, higher joint moments, ...
- If $G L_{n}\left(\mathbb{F}_{q}\right) \curvearrowright V, W$, then $V \otimes W$, viewed as a $G L_{n}\left(\mathbb{F}_{q}\right)$-module, can be decomposed in a direct sum of simple $G L_{n}\left(\mathbb{F}_{q}\right)$-modules. Our coefficients can be used to determine the multiplicities, which were seen to stabilize.

Acknowledgements

- Dr. Nir Gadish, for being our mentor
- MIT PRIMES-USA Program, for providing us the opportunity to conduct research
- Dr. Tanya Khovanova, Dr. Slava Gerovitch, Prof. Pavel Etingof
- Our parents

References

Michael Artin. Algebra. Second. Pearson, 2011.
Nir Gadish. "Categories of FI type: a unified approach to generalizing representation stability and character polynomials". In: Journal of Algebra 480 (2017), pp. 450-486.
Nir Gadish. "Dimension-independent statistics of $G I_{n}\left(F_{q}\right)$ via character polynomials". In: (2019). DOI: 10.1090/proc/14781. eprint: arXiv:1803.04155.
圊 Gilbert Strang. Introduction to Linear Algebra. Fourth. Wellesley, MA: Wellesley-Cambridge Press, 2009.

