
Relay Protocol For Approximate 
Byzantine Consensus

Matthew Ding

PRIMES CS/Bio Fall Conference

18 October 2020



What is Distributed Computing?

• Information and resources are distributed across a network of 
different machines

• We want to collectively solve a problem through communication and 
collaboration



The Byzantine Generals Problem

• Paper published by Lamport, Shostak, and Pease in 1982

• Group of generals camped outside of a city

• The goal is for each general to decide on the same course of action: 
either “attack” or “retreat”

General 
3

General 
2

General 
1

City

ATTACK

ATTACK



The Byzantine Generals Problem (continued)

• There exist secret “byzantine generals”, who may act arbitrarily and 
whose goal is to prevent “honest generals” from achieving their goals

• Coined the term “byzantine fault”: a machine that can arbitrarily 
deviate from an agreed upon protocol in opposition to other users
• Very strict assumption, but sometimes necessary in real life



A More Mathematical Representation

• Byzantine consensus problems are usually represented as graphs

• In a directed graph:
• Nodes represent machines (generals)

• An edge from node i to node j represents a communication link from i to j



Approximate Byzantine Consensus

• Introduced by Dolev et al.

• Each node holds a real number value as their current state

• Nodes achieve approximate consensus on their states with one 
another rather than exact consensus

• Motivation: Exact consensus is impossible in certain scenarios



What to Solve For

• We may achieve arbitrary exactness by continuing the protocol for an 
infinite number of rounds

• Aim to satisfy two conditions:
• Convergence: Every node’s state approaches the same value as the number of 

iterations approaches infinity

• Validity: This convergence point is within the range of the initial states



Existing Algorithm

• Developed by Vaidya et al. in 2012

• During each iteration, each node transmits their current state to all 
neighbors

• Each node performs a trimmed-mean step to determine our new 
state for the next iteration

• Proven that each node achieves consensus on the same value over 
time



Trimmed-Mean Step

• Given a list of at least 2f+1 values:
1. Sort the list

2. Eliminate the greatest and least f values

3. Output the arithmetic mean of the remaining values

• Vaidya’s algorithm: at least 2f + 1 neighbors, where f is the 
number of Byzantine nodes

• This is a robust aggregation step for up to f byzantine nodes



Trimmed Mean Step Example

Example trimmed mean step with 
n=10 and f = 3

Example of standard mean aggregation step 
with n=10 and f=3

V.S.

Honest

Byzantine

Honest

Byzantine



Our Contributions

• Signatures
• Incredibly important in byzantine consensus, but new to approximate 

consensus algorithms

• Reliable proof of who created a message



Our Contributions (Part 2)

• Relays
• Using signatures, we can now reliably relay messages across a graph

• Even if a message has been relayed across multiple nodes, we can reliably 
detect the node of origin

Iteration 1 Iteration 2 Iteration 3



Our Contributions (Part 3)

• With relays and signatures, nodes don’t need to be adjacent to 
communicate with each other
• All honest nodes in a graph may send and receive messages to every other 

honest node

• Allows us to assume much less strict network connectivity 
assumptions
• Vaidya 2012: Necessary (but insufficient) assumption that each node has 2f+1 

neighbors

• Our protocol: Only assumes bidirectional connectivity



Our Algorithm: Relay-ABC

• Define D to represent the longest distance between any two honest 
nodes
• Within D iterations, any message sent from one honest node will have 

reached every other honest node

• Every node stores most recent state values of every other node

• Every node relays state values of every node to all neighbors

• Each state value in a message is tagged with iteration number and 
signature

• Trimmed-mean is used with state values of all nodes instead of just 
neighbors



A Worst-Case Scenario

• Honest nodes far outnumber byzantine 
nodes, but they are not very strongly 
connected among themselves
• Every honest node has strictly more 

byzantine neighbors than honest 
neighbors

• Only with relays can nodes in this 
graph achieve consensus

3

4
5

6

7

8

9

0
1

2

byzantine node
honest node

n = 10, f = 3



Vaidya’s Proof of Convergence

• Vaidya (2012) introduced a proof of convergence using transition 
matrices

• Given 𝑛 honest nodes, uses a 𝑛 x 1 state vector to represent their 
states at a given iteration

• Uses 𝑛 x 𝑛 transition matrices to model the transition between 
iterations (different every round)



Transition Matrix Example

M[0] v[0] v[1]

M[0] = Transition Matrix

v[0] = state vector of iteration 0 
(initial states)

v[1] = state vector of iteration 1



Transition Matrix Example (Part 2)

M[1] = Transition Matrix

v[1] = state vector of iteration 1

v[2] = state vector of iteration 2

M[1] v[1] v[2]



Transition Matrix Example (Part 3)

M[0], M[1]… = Transition Matrices

v[0] = state vector of iteration 0 
(initial states)

v[8] = state vector of iteration 8

M[0]*M[1]*…*M[7] v[0] v[8]



Our Relay Proof of Convergence

• We model our state vector as a 𝑛𝐷 x 1 matrix, which contains the 
states of all 𝑛 honest nodes across 𝐷 iterations

• The transition matrix is expanded to 𝑛𝐷 x 𝑛𝐷

• We show this expanded version models our algorithm and achieves 
convergence



Expanded Transition Matrix Example

M[0]*M[1]*M[2] v[0] v[3]

M[0], M[1]… = Transition Matrices

v[0] = state vector of iteration 0 
(initial states)

v[3] = state vector of iteration 3



Future Work

• Quantifying convergence rates

• Byzantine machine learning



Acknowledgements

• MIT PRIMES

• My mentor: Hanshen Xiao

• My parents

Thank you!


