
Reducing Round
Complexity of Byzantine

Broadcast
Linda Chen

Mentor: Jun Wan

Byzantine Agreement and Broadcast
● n users, up to f are corrupted
● Honest users must agree

Byzantine Agreement Byzantine Broadcast

b

b

b

b b

b

Properties of Byzantine Broadcast
At the end of the protocol, each user i outputs bi

Consistency: all honest users agree

i

j

l

k

Exchange
messages

b

b

b

b

: output bj

: output bi

: output bl

: corrupt user

Properties of Byzantine Broadcast

Validity: if the leader is honest, all honest users output the leader’s bit

Liveness: all honest users will eventually terminate

i

j

l

k

Exchange
messages

b

b

b

b

: output bj

: output bi

: output bl

Assumptions
Synchronous: messages sent in round r are received before round r+1

Digital signatures: each message is accompanied by a user’s signature

Honest Majority (f < n/2) Dishonest Majority (f > n/2)

Honest or Dishonest Majority

Static or Adaptive Adversary
Static adversary: corrupts up to f users at the beginning of the protocol

Adaptive adversary: corrupts users in the middle of the protocol

● If a user is corrupted in round r, the adversary can inject, modify, or remove
messages sent in round r

● Users that are corrupted stay corrupted

Expected Round Complexity Results

Best Previous
Result Our Result

Honest Majority
Static Adversary 10 8

Honest Majority
Adaptive Adversary 16 10

Dishonest Majority 3d per epoch 3d-2 per epoch

● Communication complexity is Õ(n4); previous honest majority result is O(n2)

Attacks by Corrupt Users
1. w sends equivocating messages → u and v detect equivocation from w

2. w does not send message to u → v knows at least one of u or w is corrupt

u

w

v0sig(w)

1sig(w)

u

w

v

0sig(w)
1sig(w)

u

w

v

Previous work: Trust Graph
● n nodes, edge between nodes = trust
● Maximum diameter of d = ⌈n/h⌉ + ⌊n/h⌋ - 1

w sends equivocating messages: w does not send to u:

w

u

w

Previous work: TrustCast Protocol
● s wants to send a message to all users
● For every round 1 ≤ r ≤ d:

○ If a user does not receive s’ message, remove edges with all neighbors that are distance less
than r from s

s v u

If u does not receive s’ message in round 3, remove edge with v

Byzantine Broadcast Protocol
For each epoch:

● Propose: the leader TrustCasts its input bit to other users
● Vote: users TrustCast the leader’s proposal to other users
● Commit: if a user receives votes on the leader’s proposal from everyone in

their trust graph, output the proposed bit and TrustCast a commit message to
other users

Terminate: if a user receives commit messages from everyone in their trust graph,
terminate

Reducing Round Complexity of TrustCast Protocol
● d rounds of TrustCast: every user u either (1) received s’ message or (2) s

is removed from u’s trust graph
● d-1 rounds of TrustCast: either (1), (2), or s is distance d from u in u’s trust

graph

u does not receive s’ message

s u…

d

Reduced Round Complexity: Propose

L u…

<d

● For Propose and Vote phases: use modified TrustCast protocol
● Propose: at least one honest user u receives proposal

Reduced Round Complexity: Vote
Vote: every honest user u receives a vote on the leader’s proposal from at least
one other honest user v

● If all honest users are distance d from u or distance d from L, then there
needs to be more than n users

L v…

<d

u…

<d

Dishonest Majority Round Complexity
● Propose: d-1 rounds
● Vote: d-1 rounds
● Commit: d rounds

3d-2 rounds per epoch

Honest Majority: Trust Array
● Trust array: u.A[v,w] = 1 (trust) or 0 (not trust)
1. w sends equivocating messages

all users u set u.A[v,w] = 0 for all v

2. w does not send message to v

 all users u set u.A[v,w] = 0

Honest Majority Protocol
● d = ⌈n/h⌉ + ⌊n/h⌋ - 1 = 2
● Propose, Vote: d-1=1 round
● Commit: d=2 rounds
● To send messages: broadcast to all users
● To commit: u receives votes from all users v such that u.A[u,v] * u.A[v,L] = 1
● To terminate: u receives f+1 commit messages

Honest Majority Protocol

 Propose Vote Commit (1) Commit (2)

c

b

c

b

c

b

a a a

c

b

a

c

b

a terminate

terminate

Honest Majority, Adaptive Adversary
Adaptive adversary repeatedly corrupts the leader

● Delay leader election

Adaptive adversary forges equivocating proposals after leader election

● Propose round 1: every user broadcasts a proposal
● Propose round 2: relay all proposals

● If leader is honest, all users terminate in that epoch
● Expected 2 epochs

Honest Majority Round Complexity

Static Adversary 4 rounds per epoch Expected 8 rounds total

Adaptive Adversary 5 rounds per epoch Expected 10 rounds total

● Mentor: Jun Wan
● MIT PRIMES program

Thank you!

Acknowledgments

