On Updating and Querying Submatrices

Jason Yang
Mentor: Jun Wan
MIT PRIMES Computer Science

October 19, 2020

Range update-query problem

- A is an array of N numbers
- A range $R=[I, r]$ is the set of indices $\{i \mid I \leq i \leq r\}$
- update (R, v) : for all $i \in R$, set $A[i]$ to $A[i]+v$
- query (R) : return $\min _{i \in R} A[i]$

Segment tree + lazy propagation: $O(\log N)$ time updates and queries

Generalizations

Using different operators

- update $(R, v): \forall i \in R, A[i] \leftarrow A[i] \nabla v$
- query (R, v) : return $\triangle i \in R A[i]$

If ∇ and \triangle are associative, segment tree + lazy propagation usually works (but not always)
Ex. $(\nabla, \triangle)=$

- $(+,+)$
- $(*,+)$
- (\leftarrow, \min)

This problem and variants have applications in

- LCA in a tree
- image retrieval

Generalizations

2 dimensions:

- the array becomes a matrix
- ranges $\{i \mid I \leq i \leq r\}$ becomes submatrices $\left[I_{0}, r_{0}\right]\left[I_{1}, r_{1}\right]=\left\{i \mid I_{0} \leq i \leq r_{0}\right\} \times\left\{j \mid I_{1} \leq j \leq r_{1}\right\}$
We call this the submatrix update-query problem.

Previous Work

Generalizing segment tree seems to be very difficult

	update	query
$d=1$		
Segment Tree	$O(\log N)$	$O(\log N)$
$d=2$		
2D Segment Tree	$O(N \log N)$	$O\left(\log ^{2} N\right)$
Quadtree	$O(N)$	$O(N)$
$d=2$, special operator pairs (∇, \triangle)		
2D Fenwick Tree (Mishra) $O\left(16 \log ^{2} N\right)$ $O\left(16 \log ^{2} N\right)$ 2D Segment Tree (Ibtehaz) $O\left(\log ^{2} N\right)$ $O\left(\log ^{2} N\right)$ 2D Segment Tree (ours) $O\left(\log ^{2} N\right)$ $O\left(\log ^{2} N\right)$$~$		

Intuition

Why is generalizing the segment tree difficult?

Segment Tree: Definition/Preprocessing

A binary tree of nodes:

- each node n covers a range n_{R} and contains a value

$$
n_{V}=\min _{i \in n_{R}} A[i]
$$

When querying any range, we only have to look at $O(\log N)$ nodes

4															
4								13							
11				4				13				14			
11		30		17		4		13		95		14		21	
54	11	55	30	25	17	4	78	49	13	97	95	14	75	61	21

query $([2,12])=\min (30,4,13,14)=4$

Segment Tree: Updates

update (R, v) : change n_{V} for all n that overlap with R
$\Rightarrow O(N)$ nodes in worst-case

Segment Tree: Updates

- For all n s.t. $n_{R} \subseteq R$ (shown as green), n_{V} simply changes to $n_{V}+v$
- Split green nodes into $O(\log N)$ subtrees
- Attach a "lazy label" t_{Z} to every node t
- t_{Z} represents the command " $n_{V} \leftarrow n_{V}+t_{Z} \forall n$ in subtree at t "
- For each subtree, increase its root node's lazy label by v

4															
4								13							
11				4				13				14			
11		30		17		4		13		95		14		21	
54	11	55	30	25	17	4	78	49	13	97	95	14	75	61	21
update([1,10],20)															

Segment Trees: Updates

- For each n s.t. $\left(n_{R} \cap R \neq \emptyset\right) \wedge\left(n_{R} \nsubseteq R\right)$ (shown as yellow) in greatest-to-lowest depth, do

$$
n_{V} \leftarrow \min \left(\left(n_{l}\right)_{V}+\left(n_{l}\right)_{z},\left(n_{r}\right)_{V}+\left(n_{r}\right)_{z}\right)
$$

- Only $O(\log N)$ many such nodes

Segment Trees: Queries revised

- When looking at n_{V} from n, we must add all lazy values that affect it
- We must use $n_{V}+\sum_{m \supseteq n} m_{Z}$ instead of just n_{V}
- $\Rightarrow O\left(\log ^{2} N\right)$ time queries (because we look at $O(\log N)$ nodes)
- Can be improved to $O(\log N)$ time

14,0															
24,0								14							
31				4,20				33				14			
31		30,20		17		4		13,20		95		14		21	
54	$\begin{aligned} & 11 \\ & 20 \end{aligned}$	55	30	25	17	4	78	49	13	$\begin{aligned} & 97 \\ & 20 \end{aligned}$	95	14	75	61	21

$$
\text { query }([4,5])=17+20+0+0=37
$$

2D segment tree

A segment tree of segment trees:

- Construct segment tree across rows of $N \times M$ matrix A
- Each node n in this segment tree contains a segment tree n_{T} constructed over the array $B=$ eltwise- $\min _{i \in n_{R}} A[i]$

$$
(\nabla, \triangle)=(+, \min)
$$

| n_{R} | | 3 33
 2 | 76 | 42 | 5 | 95 | 32 | 95 | 36 | 98 | 72 | 21 | 46 | 41 | 43 | 37 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 74 | 5 | 42 | 7 | 17 | 40 | 27 | 58 | 9 | 87 | 52 | 92 | 28 | 68 | 25 | 34 | |

n_{T} represents the array

33	2	42	7	5	40	27	58	9	87	52	21	28	41	25	34

We can do queries in $O(\log N \log M)$ time:

- query $\left(R_{X} \times R_{Y}\right)=\min _{n \in S\left(R_{X}\right)} n_{T}$.query $\left(R_{Y}\right)$

2D segment tree

But updates are difficult...

update([4,10],-20)

	33	2	76	42	-15	75	12	75	16	78	52	21	46	41	43	37
	74	5	42	7	17	40	27	58	9	87	52	92	28	68	25	34

Same region in n_{T} can change in a complex way
Another problem: lazy propagation

2D Segment tree

By only using lazy propagation in inner segment trees, we do updates in $O(N \log M+M \log N)$ time and queries in $O(\log N \log M)$ time.

Impossible?

Perhaps it is impossible to get $O(\operatorname{polylog}(N))$ time updates and queries?

Min-plus matrix multiplication

Given $N \times N$ matrices A, B, min-plus product is $C_{i, j}=\min _{0 \leq k<N}\left(A_{i, k}+B_{k, j}\right)$

Min-plus matrix multiplication is known to be equivalent to all-pairs shortest paths

Reducing min-plus matrix multiplication to submatrix update-query

$$
\begin{aligned}
& C_{0,0}=\min \left(A_{0,0}+B_{0,0}, A_{0,1}+B_{1,0}, \cdots, A_{0, N-1}+B_{N-1,0}\right) \\
& C_{1,0}=\min \left(A_{1,0}+B_{0,0}, A_{1,1}+B_{1,0}, \cdots, A_{1, N-1}+B_{N-1,0}\right)
\end{aligned}
$$

$$
C_{N-1,0}=\min \left(A_{N-1,0}+B_{0,0}, A_{N-1,1}+B_{1,0}, \cdots, A_{N-1, N-1}+B_{N-1,0}\right)
$$

Reducing min-plus matrix multiplication to submatrix update-query

$C_{0,0}$	$A_{0,0}+B_{0,0}$	$A_{0,1}+B_{1,0}$	\cdots	$A_{0, N-1}+B_{N-1,0}$
$C_{1,0}$	$A_{1,0}+B_{0,0}$	$A_{1,1}+B_{1,0}$	\cdots	$A_{1, N-1}+B_{N-1,0}$
\vdots				
$C_{N-1,0}$	$A_{N-1,0}+B_{0,0}$	$A_{N-1,1}+B_{1,0}$	\cdots	$A_{N-1, N-1}+B_{N-1,0}$

Reducing min-plus matrix multiplication to submatrix update-query

$C_{0,0}$	$A_{0,0}+B_{0,0}$	$A_{0,1}+B_{1,0}$	\cdots	$A_{0, N-1}+B_{N-1,0}$
$C_{1,0}$	$A_{1,0}+B_{0,0}$	$A_{1,1}+B_{1,0}$	\cdots	$A_{1, N-1}+B_{N-1,0}$
$C_{N-1,0}$	$A_{N-1,0}+B_{0,0}$	$A_{N-1,1}+B_{1,0}$	\cdots	$A_{N-1, N-1}+B_{N-1,0}$

Reducing min-plus matrix multiplication to submatrix update-query

	$+B_{0,0}$	$+B_{1,0}$	\cdots	$+B_{N-1,0}$	
$C_{0,0}$	$A_{0,0}$	$A_{0,1}$		$A_{0, N-1}$	
$C_{1,0}$	$A_{1,0}$	$A_{1,1}$		$A_{1, N-1}$	
\vdots					
$C_{N-1,0}$	$A_{N-1,0}$	$A_{N-1,1}$		$A_{N-1, N-1}$	

- N elements of C can be found with N submatrix updates and N submatrix queries.
- We can then undo all updates and use different elements of B to get N other elements of C, and then repeat this.

Reducing min-plus matrix multiplication to submatrix update-query

```
    1: Initialize \((+, \min )\) update-query DS with \(A\)
    2: for \(j=0\) to \(N-1\) do
    3: update( \([0, N-1][k, k], B[k][j]) \forall 0 \leq k<N\)
    4: \(\quad C[i][j] \leftarrow\) query \(([i, i][0, N-1]) \forall 0 \leq i<N\)
    5: update \(([0, N-1][k, k],-B[k][j]) \forall 0 \leq k<N\)
```

Runs in $O\left(P(N)+N^{2}(U(N)+Q(N))\right.$ time, where $P(N), U(N), Q(N)$ are worst-case preprocessing, update, and query times resp. over a $N \times N$ matrix

Lower bounds

- We can replace matrix of an update-query data structure to A_{1} by doing update $\left([i, i][j, j],-Q([i, i][j, j])+A_{1}[i][j]\right) \forall 0 \leq i, j<N$
- \Rightarrow We can find many matrix multiplications while initializing only once

Lower bounds

- Product of two $K N \times K N$ matrices
- \Rightarrow block matrix product of two $K \times K$ matrices where each element is a $N \times N$ matrix instead of a number
- $\Rightarrow O\left(K^{3}\right)$ many $N \times N$ matrix multiplications using schoolbook algorithm
- $\Rightarrow K N \times K N$ min-plus matrix product in
$O\left(P(N)+K^{3} N^{2}(U(N)+Q(N))\right)$ time

Main theorem

- $N \times N$ min-plus matrix multiplication widely believed to not have $O\left(N^{3-\varepsilon}\right)$ time solution
- If true, then

$$
O\left(P(N)+K^{3} N^{2}(U(N)+Q(N))\right)>O\left((K N)^{3-\varepsilon}\right) \forall \varepsilon>0
$$

Theorem

If min-plus matrix multiplication cannot be done in $O\left(N^{3-\varepsilon}\right)$ time, then either $U(N)$ or $Q(N)>O\left(N^{1-\varepsilon}\right)$ for any $\varepsilon>0$, or $P(N)$ is superpolynomial

- A quadtree has $O(N)$ time updates and queries and $O\left(N^{2}\right)$ time preprocessing.
- Thus, our lower bound is tight up to $o\left(N^{\varepsilon}\right)$ factors.

Next steps/open questions

For submatrix updates and queries:

- Is sublinear (ex. $O\left(\frac{N}{\log N}\right)$) update and query time w/ polynomial preprocessing time possible for $(\nabla, \triangle)=(+, \min) ?$
- Are $O(\log N \log M)$ time updates and queries possible for more operator pairs?
- i.e. beyond cases where $\nabla=\triangle$ and ∇ is commutative and associative (ex. min,,$+{ }^{*}$, AND)
- If ∇ is noncommutative, are $O($ poly $(N, M))$ updates and queries possible at all?
- 1D case solved with segment tree + lazy propagation (but lazy part is more complex)

Acknowledgments

would like to thank

- Jun Wan for his mentorship
- Dr. Gerovitch and MIT PRIMES for making this project possible
- My parents for their support
- You for listening

References

Timothy M. Chan, Kasper Green Larsen, Mihai Patrascu. Orthogonal Range Searching on the RAM, Revisited. arXiv:1103.5510, 2011.國 Minakshi Banerjee, Sanghamitra Bandyopadhyay, and Sankar K. Pal. A Clustering Approach to Image Retrieval Using Range Based Query and Mahalanobis Distance. In Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam, pages 79-91. Springer, 2013.
(Michael A Bender and Martin Farach-Colton. The Ica problem revisited. In Latin American Symposium on Theoretical Informatics, pages 88-94. Springer, 2000.

Changxi Zheng, Guobin Shen, Shipeng Li, and Scott Shenker. Distributed segment tree: Support of range query and cover query over dht. In IPTPS, 2006.
國 Stabbing Queries.
http:
//www.cs.nthu.edu.tw/~wkhon/ds/ds10/tutorial/tutorial6.pdf

References

盖
Peter M Fenwick. A new data structure for cumulative frequency tables. Software: Practice and Experience, 24(3):327-336, 1994.

Pushkar Mishra. A new algorithm for updating and querying sub-arrays of multidimensional arrays. arXiv:1311.6093, 2016.
R
Nabil Ibtehaz, M. Kaykobad, and M. Sohel Rahman. Multidimensional segment trees can do range queries and updates in logarithmic time. arXiv:1811.01226, 2018.
目
Segment Tree - Competitive Programming Algorithms https://cp-algorithms.com/data_structures/segment_tree.html

Animesh Fatehpuria. 2DRangeSumQuerywithUpdates.cpp https://github.com/animeshf/Competitive_Programming/blob/ master/Algorithms/DataStructures/2DSegmentTree

References

目
François Le Gall. Powers of Tensors and Fast Matrix Multiplication. arXiv:1401.7714, 2014.

Ryan Williams. Faster all-pairs shortest paths via circuit complexity. arXiv:1312.6680v2, 2014.Virginia Vassilevska Williams and Yinzhan Xu. Truly Subcubic Min-Plus Product for Less Structured Matrices, with Applications. arXiv:1910.04911, 2018.

