On Updating and Querying Submatrices

Jason Yang Mentor: Jun Wan

MIT PRIMES Computer Science

October 19, 2020

Jason YangMentor: Jun Wan On Updating and Querying Submatrices

- A is an array of N numbers
- A range R = [I, r] is the set of indices $\{i | I \le i \le r\}$
- update(R, v): for all $i \in R$, set A[i] to A[i] + v
- query(R): return $\min_{i \in R} A[i]$

Segment tree + lazy propagation: $O(\log N)$ time updates and queries

Using different operators

- $update(R, v): \forall i \in R, A[i] \leftarrow A[i] \bigtriangledown v$
- query(R, v) : return $\triangle_{i \in R} A[i]$

If \bigtriangledown and \bigtriangleup are associative, segment tree + lazy propagation usually works (but not always)

- Ex. $(\bigtriangledown, \bigtriangleup) =$
 - (+,+)
 - (*,+)
 - (\leftarrow , min)

This problem and variants have applications in

- LCA in a tree
- image retrieval

- 2 dimensions:
 - the array becomes a matrix
 - ranges $\{i | l \le i \le r\}$ becomes submatrices $[l_0, r_0][l_1, r_1] = \{i | l_0 \le i \le r_0\} \times \{j | l_1 \le j \le r_1\}$

We call this the submatrix update-query problem.

Generalizing segment tree seems to be very difficult

	update	query						
d = 1								
Segment Tree	$O(\log N)$	$O(\log N)$						
d = 2								
2D Segment Tree	$O(N \log N)$	$O(\log^2 N)$						
Quadtree	O(N)	O(N)						
d=2, special operator pairs $(igta, igta)$								
2D Fenwick Tree (Mishra)	$O(16 \log^2 N)$	$O(16\log^2 N)$						
2D Segment Tree (Ibtehaz)	$O(\log^2 N)$	$O(\log^2 N)$						
2D Segment Tree (ours)	$O(\log^2 N)$	$O(\log^2 N)$						

・ 戸 ト ・ ヨ ト ・ ヨ ト

э

Why is generalizing the segment tree difficult?

A ≥ ►

< ∃ →

э

Segment Tree: Definition/Preprocessing

A binary tree of nodes:

• each node *n* covers a range n_R and contains a value $n_V = \min_{i \in n_R} A[i]$

When querying any range, we only have to look at $O(\log N)$ nodes

query([2,12])=min(30,4,13,14)=4

update(R, v): change n_V for all n that overlap with $R \Rightarrow O(N)$ nodes in worst-case

A ≥ ►

Segment Tree: Updates

- For all *n* s.t. $n_R \subseteq R$ (shown as green), n_V simply changes to $n_V + v$
- Split green nodes into $O(\log N)$ subtrees
- Attach a "lazy label" t_Z to every node t
 - t_Z represents the command " $n_V \leftarrow n_V + t_Z \forall n$ in subtree at t"
- For each subtree, increase its root node's lazy label by v

Segment Trees: Updates

- For each n s.t. (n_R ∩ R ≠ Ø) ∧ (n_R ⊈ R) (shown as yellow) in greatest-to-lowest depth, do
 n_V ← min((n_l)_V + (n_l)_Z, (n_r)_V + (n_r)_Z)
- Only O(log N) many such nodes

Segment Trees: Queries revised

- When looking at n_V from n, we must add all lazy values that affect it
 - We must use $n_V + \sum_{m \supseteq n} m_Z$ instead of just n_V
- ⇒ O(log² N) time queries (because we look at O(log N) nodes)
 - Can be improved to $O(\log N)$ time

query([4,5])=17+20+0+0=37

・ 同 ト ・ ヨ ト ・ ヨ ト …

A segment tree of segment trees:

- Construct segment tree across rows of $N \times M$ matrix A
- Each node n in this segment tree contains a segment tree n_T constructed over the array B =eltwise-min_{i∈n_R}A[i]

(▽,△)=(+,min)

n		33	2	76	42	5	95	32	95	36	98	72	21	46	41	43	37
"R		74	5	42	7	17	40	27	58	9	87	52	92	28	68	25	34

 $n_{\scriptscriptstyle T}$ represents the array

We can do queries in $O(\log N \log M)$ time:

•
$$query(R_X \times R_Y) = \min_{n \in S(R_X)} n_T.query(R_Y)$$

But updates are difficult...

Another problem: lazy propagation

→ < ∃ →</p>

э

By only using lazy propagation in inner segment trees, we do updates in $O(N \log M + M \log N)$ time and queries in $O(\log N \log M)$ time.

伺 ト イヨ ト イヨト

Perhaps it is impossible to get O(polylog(N)) time updates and queries?

• • = • • = •

э

Given $N \times N$ matrices A, B, min-plus product is $C_{i,j} = \min_{0 \le k < N} (A_{i,k} + B_{k,j})$

Min-plus matrix multiplication is known to be equivalent to all-pairs shortest paths

$$C_{0,0} = \min(A_{0,0} + B_{0,0}, A_{0,1} + B_{1,0}, \cdots, A_{0,N-1} + B_{N-1,0})$$

$$C_{1,0} = \min(A_{1,0} + B_{0,0}, A_{1,1} + B_{1,0}, \cdots, A_{1,N-1} + B_{N-1,0})$$

...

$$C_{N-1,0} = \min(A_{N-1,0} + B_{0,0}, A_{N-1,1} + B_{1,0}, \cdots, A_{N-1,N-1} + B_{N-1,0})$$

<i>C</i> _{0,0}	$A_{0,0} + B_{0,0}$	$A_{0,1} + B_{1,0}$	• • •	$A_{0,N-1} + B_{N-1,0}$
<i>C</i> _{1,0}	$A_{1,0} + B_{0,0}$	$A_{1,1} + B_{1,0}$	• • •	$A_{1,N-1} + B_{N-1,0}$
		:		
C _{N-1,0}	$A_{N-1,0} + B_{0,0}$	$A_{N-1,1} + B_{1,0}$	•••	$A_{N-1,N-1} + B_{N-1,0}$

<i>C</i> _{0,0}	$A_{0,0}+B_{0,0}$	$A_{0,1}+B_{1,0}$	•••	$A_{0,N-1}+B_{N-1,0}$
<i>C</i> _{1,0}	$A_{1,0}+B_{0,0}$	$A_{1,1}+B_{1,0}$	• • •	$A_{1,N-1}+B_{N-1,0}$
		:		
$C_{N-1,0}$	$A_{N-1,0}+B_{0,0}$	$A_{N-1,1}+B_{1,0}$		$A_{N-1,N-1}+B_{N-1,0}$

	$+B_{0,0}$	$+B_{1,0}$	• • •	$+B_{N-1,0}$
C _{0,0}	A _{0,0}	A _{0,1}		$A_{0,N-1}$
<i>C</i> _{1,0}	A _{1,0}	$A_{1,1}$		$A_{1,N-1}$
		÷		
$C_{N-1,0}$	$A_{N-1,0}$	$A_{N-1,1}$		$A_{N-1,N-1}$

- N elements of C can be found with N submatrix updates and N submatrix queries.
- We can then undo all updates and use different elements of *B* to get *N* other elements of *C*, and then repeat this.

- 1: Initialize $(+, \min)$ update-query DS with A
- 2: **for** j = 0 to N 1 **do**
- 3: $update([0, N-1][k, k], B[k][j]) \ \forall 0 \le k < N$
- 4: $C[i][j] \leftarrow query([i, i][0, N-1]) \ \forall 0 \le i < N$
- 5: $update([0, N-1][k, k], -B[k][j]) \ \forall 0 \le k < N$

Runs in $O(P(N) + N^2(U(N) + Q(N)))$ time, where P(N), U(N), Q(N) are worst-case preprocessing, update, and query times resp. over a $N \times N$ matrix

- We can replace matrix of an update-query data structure to A₁ by doing update([i, i][j, j], -Q([i, i][j, j]) + A₁[i][j]) ∀0 ≤ i, j < N

 - $\bullet \; \Rightarrow \; \mbox{We can find many matrix multiplications while initializing only once}$

伺 ト イヨ ト イヨト

- Product of two $KN \times KN$ matrices
 - \Rightarrow block matrix product of two $K \times K$ matrices where each element is a $N \times N$ matrix instead of a number
 - ⇒ O(K³) many N × N matrix multiplications using schoolbook algorithm
- $\Rightarrow KN \times KN$ min-plus matrix product in $O(P(N) + K^3N^2(U(N) + Q(N)))$ time

- $N \times N$ min-plus matrix multiplication widely believed to not have $O(N^{3-\varepsilon})$ time solution
- If true, then $O(P(N) + K^3N^2(U(N) + Q(N))) > O((KN)^{3-\varepsilon}) \,\,\forall \varepsilon > 0$

Theorem

If min-plus matrix multiplication cannot be done in $O(N^{3-\varepsilon})$ time, then either U(N) or $Q(N) > O(N^{1-\varepsilon})$ for any $\varepsilon > 0$, or P(N) is superpolynomial

- A quadtree has O(N) time updates and queries and $O(N^2)$ time preprocessing.
- Thus, our lower bound is tight up to $o(N^{\varepsilon})$ factors.

For submatrix updates and queries:

- Is sublinear (ex. O(^N/_{log N})) update and query time w/ polynomial preprocessing time possible for (∇, △) = (+, min)?
- Are $O(\log N \log M)$ time updates and queries possible for more operator pairs?
 - i.e. beyond cases where $\bigtriangledown = \triangle$ and \bigtriangledown is commutative and associative (ex. min, +, *, AND)
- If
 ¬ is noncommutative, are O(poly(N, M)) updates and queries possible at all?
 - 1D case solved with segment tree + lazy propagation (but lazy part is more complex)

・ 同 ト ・ ヨ ト ・ ヨ ト …

I would like to thank

- Jun Wan for his mentorship
- Dr. Gerovitch and MIT PRIMES for making this project possible
- My parents for their support
- You for listening

References

- Timothy M. Chan, Kasper Green Larsen, Mihai Patrascu. Orthogonal Range Searching on the RAM, Revisited. arXiv:1103.5510, 2011.
- Minakshi Banerjee, Sanghamitra Bandyopadhyay, and Sankar K. Pal. A Clustering Approach to Image Retrieval Using Range Based Query and Mahalanobis Distance. In *Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam*, pages 79-91. Springer, 2013.
 - Michael A Bender and Martin Farach-Colton. The lca problem revisited. In Latin American Symposium on Theoretical Informatics, pages 88–94. Springer, 2000.
- Changxi Zheng, Guobin Shen, Shipeng Li, and Scott Shenker. Distributed segment tree: Support of range query and cover query over dht. In IPTPS, 2006.
- Stabbing Queries.

http:

//www.cs.nthu.edu.tw/~wkhon/ds/ds10/tutorial/tutorial6.pdf

- A 🗇 🕨 A 🖻 🕨 A 🖻

- Peter M Fenwick. A new data structure for cumulative frequency tables. Software: Practice and Experience, 24(3):327–336, 1994.
- Pushkar Mishra. A new algorithm for updating and querying sub-arrays of multidimensional arrays. arXiv:1311.6093, 2016.
- Nabil Ibtehaz, M. Kaykobad, and M. Sohel Rahman. Multidimensional segment trees can do range queries and updates in logarithmic time. arXiv:1811.01226, 2018.
- - Segment Tree Competitive Programming Algorithms https://cp-algorithms.com/data_structures/segment_tree.html
 - Animesh Fatehpuria. 2DRangeSumQuerywithUpdates.cpp https://github.com/animeshf/Competitive_Programming/blob/ master/Algorithms/DataStructures/2DSegmentTree

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- François Le Gall. Powers of Tensors and Fast Matrix Multiplication. arXiv:1401.7714, 2014.
- Ryan Williams. Faster all-pairs shortest paths via circuit complexity. arXiv:1312.6680v2, 2014.
 - Virginia Vassilevska Williams and Yinzhan Xu. Truly Subcubic Min-Plus Product for Less Structured Matrices, with Applications. arXiv:1910.04911, 2018.

/□ ▶ ◀ ⋽ ▶ ◀