Parallel Batch-Dynamic
Subgraph Maintenance

By Alex Fan and Alvin Lu
Mentored by Jessica Shi and Julian Shun

Outline

- Overview of the problem

- 3-vertex subgraph counting
- Parallel algorithm
- Implementation

- Evaluation

- Conclusion

Graph processing

- Graphs represent a wide variety of complex networks, finding patterns
within is very important

KIR2DL FOAR

PAXE) FCER]G

PDGFA
PR
\ /W’EGF
ConEDg
— Y.

M

KIKAT377 MAGMAS

PACIFIC OCEAN

GY e o 7o R

INDLYN OCEAN v B {

ODC34 (indides EG997) RAF;P' b A / RINT m“\ | /..,{. ey e s -

\ XRCC3. ides EG:7517) i
g = - \ 7N T e o QT https://images. alrllneroutemaps com/maps/Unlted A|rl|nes asia_pacif
el G — = REp— RPuf// R\ ic.gif
N , - SIS o
ATF7IP] P e \ \\‘ Y S A qeHLy COL8A1
s D) Wi s i v NS R
A / NGE—PARB1 \ G s PouzFy / \ = \
Creszp oW / €ep '/ Pry¢2 BN —Geoai Rl G‘"‘”
/ \ o iYH1 \
ASFIB 7 : mm wuz
WS el \ i .
o B118
ASCC3L1 (inéludes EG:23020) X ;E 3
\ 151Ps
po TRiNR1
5\ __fcors2)
o FnBle——————C IRFe
WDRB2 (indludgs EG:80335)

©:2000:2000 Igenuty Systos, n. A8 rhts esarved.

https://upload.wikimedia.org/wikipedia/commons/thumb/7/72/Network_of_how_100_of_the_528_genes_identified_with_signifi
cant_differential_expression_relate_to_DISC1_and_its_core_interactors.png/400px-Network_of_how_100_of_the_528_genes_ide
ntified_with_significant_differential_expression_relate_to_DISC1_and_its_core_interactors.png

https://blog.soton.ac.uk/skillted/files/2015/04/social-network-grid.jpg

Parallelism

- Widely used: in phones, in large data centers, GPUs are parallelized
- All publicly available graphs fit in shared memory
- Process large datasets efficiently

2 Processors

1 Processor

https://4.bp.blogspot.com/-DNSsmoZxJql/VROUXMOxy-I/AAAAAAAAAHS/20gKNUXfdgU/s1600/single%2Bvs%2Bmultiprocessor%2Bsys
tems.gif

https://media.wired.com/photos/5b19a3fd985bbd041c32d0c3/125:94/w_2130,h_1602,c_limit/Summit-supercomputer---side-view-(w
ide-shot)-TAFA.jpg

Dynamic Model

- Model which considers added and removed edges, real world graphs are

often changing
- Perform real time updates, and update computation under model

efficiently
()

o

Ge = (V, Eyr) Gie1 = (V, Ei+1)

https://media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10732-017-9327-z/MediaObjects/10732_2017_9327_Figl_HTML.gif

Dynamic Subgraph Counting

- Problem: Maintain subgraph counting in a batch parallel and dynamic
setting
- Given a graph G and a batch of updates, find the new number of
specific 3-vertex subgraphs in parallel (e.g. triangles)

DDA DB
V2RV VA WA

D BB DB
VA VA A

. https://lh3.googleusercontent.com/proxy/07GSoPdC6VF8YSqe8WxgM_5zDcTEqkN08c_C
. kCl9Yi__VonUIPvyYFyDSgINHU4zQeFmE9plw-WMsy4TITpT6bucE1H5grb-ObuoryjnW7s81

Xz-v4UoHWSt7V6yNLdl
https://www.andrew.cmu.edu/user/dwise/15418/icon.png y

Other Works

Lots of works on counting but none are dynamic and parallel

- Serial, static 5-vertex counting: A. Pinar, C. Seshadhri, V. Vishal
- Parallel, static 4-vertex counting: N. Ahmed, J. Neville, R. Rossi
- Serial, dynamic 3-vertex counting: D. Eppstein, E. Spiro

Applications

- Given an interactome, find patterns of interactions between different
moleculesin a cell

- Identify groups in social and communication networks to help people
connect more easily (e.g. Facebook friend suggestions)

- Find subgraphs in air traffic to coordinate flights

https://interactome3d.irbbarcelona.org/images/graphic_network.pn;

Goal

- New parallel algorithm for dynamic
subgraph counting

- Strong theoretical bounds for runtime
and memory

- Complete evaluation for counting
triangles

- Foundation to extend to four-vertex
subgraphs as well.

Important paradigms

e Workand Span Model Parallel Computing DAG
o Work =Total operations = number of nodes in
DAG

o Span =The maximum number of nodes on a
dependency chain = Longest path

o Work-Efficient = The total work is the same as
the best sequential version for the specific
problem

© Running time <work/P + O(span) where P is the
number of processors

Parallel primitives

e Parallel Filter: Given an array of elements, filter out certain elements and
concatenate the gaps afterward.
o Bounds: O(N) work and O(logN) span
e Parallel Reduce: Given an array of elements, reduce them to a single
“sum” under a commutative and associative operator.
o Bounds: O(N) work and O(logN) span
e Parallel Prefix Sum: Given a list of numbers, generate a list of prefix sums.
Formally, prefix[i] =Z(j= 1 to i) arr[i]
o Bounds: O(N) work and O(logN) span

Parallel primitives

e Parallel Integer Sort: Sort a given list of integers.
o Bounds: O(N) work and O(logN) span

e Parallel Hashing: Hashes a list of elements to achieve fast random access.
o Bounds: O(N) work and O(logN) span

hash
keys function hashes
_ 00
John Smith
01
Lisa Smith -
03
04
Sam Doe
05

Sandra Dee
https://en.wikipedia.org/wiki/Hash_function 15

https://en.wikipedia.org/wiki/Hash_function

Dynamic subgraph counting
algorithm

Serial version from D. Eppstein and E. Spiro. The h-Index of a Graph and its
Application to Dynamic Subgraph Statistics. J. Graph Algorithms &

Applications, 16(2): 543-567, 2012

HSet: Dynamic h-index

HSet Overview

HSet keeps track of all vertices
Maintains set H
- h-index=h=|H|
- Largest h such that there are at least h vertices with degree greater
than orequaltoh
Serial® maintains H in O(1) time for a single modified edge
HSet will help reduce computation in triangle counting

!Serial version from D. Eppstein and E. Spiro. The h-Index of a Graph and its Application to Dynamic Subgraph
Statistics. J. Graph Algorithms & Applications, 16(2): 543-567,2012

HSet - Outline

1. Remove endpoints of modified edge from HSet
2. Modify the edge

3. Re-add the endpoints back into HSet

HSet - Parallelizing

- Algorithm by Eppstein and Spiro inherently sequential
- Multiple operations cause contention in HSet

- Our Parallelized version
- Given a batch, h can change by at most |batch|=b
- Prefix sum gets the number of vertices gained/lost, predicts new h

- Expected work of O(b) and span O(log b) w.h.p.
- Limited by taking the prefix sum and sorting the batch

Parallel HSet - Initial Graph

- vertex 4H
b = [batch| @ =vertex

° =vertex €H
h=2

= untracked vertices

\é (not in HSet)
AN

= Existing edge

N
. =Edgenotyet added

All vertices by degree

Degree 0 1 2 3

Vertices 1] {3} {0, 1} {2}

Parallel HSet - Removing Vertices

h=2

Batch = all endpoints of all edges ={0, 1, 3}
Remove in parallel

Degree 0 1 2 3

Vertices 1] {3}1->0 {0,1}> 0@ {2}

Parallel HSet - Removing Vertices

h=2
of Vertices w/ deg=h
aboveH =1 vertex
|
Degree 0 1 2 3

Vertices J 1) 4] {2}

Parallel HSet - Removing Vertices

Degree 0 1 2 3

Verticess | @)) {2}

Prefix Sum Table: from h down to max(0, h - b)

Degree h=2 1 max(0, h-b)=0 lgnore size of table[h]
. - Already included in
Size 0 0 aboveH

Prefix Sum |0 0 0

Parallel HSet - Removing Vertices

aboveH =1
Largest degree such that
Prefix Sum Table aboveH + prefixSum[deg] = deg
Degree 2 1 0
Prefix Sum (vertices gained) 0 0 0

of vertices above that degree 140<2 1+0=21 1+0=0

Parallel HSet - Removing Vertices

Set new h to be the largest degree where
aboveH + prefixSum[deg] = deg

h=1

Degree 0 1 2 3

Vertices J 1) 4] {2}

Parallel HSet - Add (or Delete) Edges

h=1

Add or delete edges (which modifies the degrees)

Degree 0 1 2 3

Vertices J 1) 4] {2}

Parallel HSet - Re-adding Vertices

h=1

Batch = all endpoints of all edges ={0, 1, 3}
- Addin parallel

Degree 0 1 2 3

Vertices 1) 1) 1] {2}>1{0, 1, 2, 3}

Parallel HSet - Re-adding Vertices

h=1

of Vertices w/ deg=h
1

Y

aboveH =4 vertices

Degree 0 1 2 3

Vertices 1) 1) 1] {2}>1{0, 1, 2, 3}

Parallel HSet - Re-adding Vertices

Degree 0 1

Vertices J %)

Prefix Sum Table: fromhuptoh+b

Degree h=1 2 3
Size 0 0 4

Prefix Sum 0 0 4

Parallel HSet - Re-adding Vertices

aboveH =4
Smallest degree such that
Prefix Sum Table aboveH - prefixSum[deg] < deg
Degree 1 2 3 4
Prefix Sum (vertices lost) 0 0 4 4
of vertices above thatdegree 4-021 4-022 4-4<3 4-4<4

Parallel HSet - Re-adding Vertices

Set new h to be the smallest degree where
aboveH - prefixSum[deg] < deg

h=3

Degree 0 1 2 3

Vertices 1])) {0,1,2, 3}

Parallel HSet - Result

h=3

Can determine if a vertex is in H by comparing it’s
degree to the h-index
- Also accounts for vertices with degree equal
to h-index but are notin H

Degree 0 1 2 3

Vertices 1])) {0,1,2, 3}

Triangle
Counting

Serial version from D. Eppstein and E. Spiro. The h-Index of a Graph and its Application to Dynamic
Subgraph Statistics. J. Graph Algorithms & Applications, 16(2): 543-567, 2012

How do we find triangles?

e

Endpoints

N \

Center

Wedges! aka 2-Paths

Triangles and 4-vertex subgraphs
are made of wedges

W(u,v) = # of wedges endpoints u
and v

Finding triangles from wedges

e Foreachadded edge W(u,v),
triangles become complete

Maintaining wedges

e Brute force for all the neighbors

e Foredge (u,v), endpoint v, and
each of its neighbors w, we add
1 to W(w,u)

Question: Wouldn’t this be too slow?

Summary of Current Algorithm

Add # of Wedges to Count

TOO SLOW!
O(N) per edge

Adjust Wedges Map

Note that edge deletion is symmetric

Optimization using HSet

We will use the previously introduced HSet

e ForW(u,v), keep track of wedges with centers outside of the HSet

° = vertex ¢H
° =vertex €H

= untracked vertices
(not in HSet)

Optimization using HSet

Problem: Missing triangles with centers in HSet.

Solution: Iterate through HSet and check if it can
form another triangle

O(h) work per edge since we only iterated through
the HSet

Optimization using HSet

\
\ 1. Iterate through each of the
\ endpoints that are not in the HSet
A \ 2. Foredge (u,v), and each of its
\ neighbors w, we can add 1 to
\ W(w,u)

O(h) work per edge since there are at mosth
neighbors

Optimization using HSet

Problem: Nodes can cease to be in HSet.

Solution: For each pair of neighbors u
and v, we add 1 to W(u,v)

HSet changes O(1/h) per edge

amortized, so the actual complexity is
still O(h)

Note that the converse when a node gets into HSet works the exact same way

Summary of Optimized Algorithm

Add # of Wedges to Count

Time Complexity: O(h)
Iterate through HSet

Deletion works symmetrically
as well.

Adjust Wedges Map

Update HSet and Wedges

Problem arises when parallelized

Problem: Won’t be able to update the wedges in
time, therefore triangles on the left will not be
counted

Solution: For each endpoint outside of HSet,
iterate through all of its neighbors, and check if
they form a triangle

Since there are at most 2h neighbors, the work is at
most O(h)

Another problem: Duplicate Triangles

Problem: Triangles like the on the left would be
counted twice

Solution: We categorized all triangles into 11
types, each with their frequency. Instead of adding
1, we add 1/frequency

Evaluation

Implementation Detail: Storing HSet

e Threshold: Stores nodes with degree greater than a
threshold in a hash table and the rest in a dynamic array
o Advantage: Saves memory for sparse high-degree
vertices
o Disadvantage: Lots of overhead, difficult to adjust
threshold
e Dynamic Array: Store nodes bucketed by their degreein a
dynamic array
o Advantage: Very little overhead, easy to manipulate.
o Disadvantage: Takes memory proportional to the
largest degree

Implementation Detail: Space Optimization

Storing Wedges Map W(u,v)

e Hash Table: We hash W(u,v) by the pair (u,v).
o Advantage: Strong theoretical bounds O(min(N?,Nh?))
space
o Disadvantage: Overhead in access/insertion due to
cache misses
e 2D Ragged Array: A 2D ragged array with the two side points
as theindices
o Advantage: Very little overhead
o Disadvantage: It takes up O(N?) space

Environment

- Google Cloud Computing VM (60 hyper threads, 240 GB memory)
- Single Machine

- Intel Xeon Scalable Processor (Cascade Lake)

.

N\
\]
|5
I
I::
;
in
i:a

Google Cloud

https://www.freecodecamp.org/news/content/images/2020/10/gcp.png

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.intel.com%2Fcontent%2

Fwww9%2Fus%2Fen%2Fproducts%2Fprocessors%2Fxeon%2Fw-processors%2Fw-3175x.
html&psig=AOvVaw0-nJF6lvyw80q-5TNfTcFf&ust=1603075410545000&source=images&c
d=vfe&ved=0CAIQjRxqFwoTCKiGjbWPvewCFQAAAAAdAAAAABAF

Experimental Data

- DBLP: Co-authorship network

- 317080 Vertices

- 1049866 Edges

- 2224385 Triangles

- 53.7sfor static insertion

- 2.65s per batch of 100000 edges
- Youtube: Video sharing social network where users can make friends

- 1134890 Vertices

- 2987624 Edges

- 3056386 Triangles

- 368.2s for static insertion

- 7.31sfor batch of 100000 edges

Conclusion

- Current Work
- Strong theoretical bound: O(bh) work and O(log b + log h) span
- Complete analysis for Triangle Counting
- No significant difference between dynamic array and threshold
implementation

- Future Work

- 4-vertex subgraph counting
- Extended experiments on code

Acknowledgements

- MIT PRIMES
- Jessica and Julian
- Family and friends who have supported us

Questions?

