
Parallel Batch-Dynamic 
Subgraph Maintenance
By Alex Fan and Alvin Lu
Mentored by Jessica Shi and Julian Shun



Outline

- Overview of the problem

- 3-vertex subgraph counting

- Parallel algorithm

- Implementation

- Evaluation

- Conclusion



Graph processing

https://upload.wikimedia.org/wikipedia/commons/thumb/7/72/Network_of_how_100_of_the_528_genes_identified_with_signifi
cant_differential_expression_relate_to_DISC1_and_its_core_interactors.png/400px-Network_of_how_100_of_the_528_genes_ide
ntified_with_significant_differential_expression_relate_to_DISC1_and_its_core_interactors.png

- Graphs represent a wide variety of complex networks, finding patterns 
within is very important

https://blog.soton.ac.uk/skillted/files/2015/04/social-network-grid.jpg

https://images.airlineroutemaps.com/maps/United_Airlines_asia_pacif
ic.gif



- Widely used: in phones, in large data centers, GPUs are parallelized
- All publicly available graphs fit in shared memory
- Process large datasets efficiently

Parallelism

https://4.bp.blogspot.com/-DNSsmoZxJqI/VR0UXMOxy-I/AAAAAAAAAHs/20gKNUXfdgU/s1600/single%2Bvs%2Bmultiprocessor%2Bsys
tems.gif

https://media.wired.com/photos/5b19a3fd985bbd041c32d0c3/125:94/w_2130,h_1602,c_limit/Summit-supercomputer---side-view-(w
ide-shot)-TAFA.jpg

1 Processor
2 Processors



Dynamic Model

- Model which considers added and removed edges, real world graphs are 
often changing

- Perform real time updates, and update computation under model 
efficiently

https://media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10732-017-9327-z/MediaObjects/10732_2017_9327_Fig1_HTML.gif



Dynamic Subgraph Counting

- Problem: Maintain subgraph counting in a batch parallel and dynamic 
setting

- Given a graph G and a batch of updates, find the new number of 
specific 3-vertex subgraphs in parallel (e.g. triangles)

https://www.andrew.cmu.edu/user/dwise/15418/icon.png

https://lh3.googleusercontent.com/proxy/07GSoPdC6VF8YSqe8WxgM_5zDcTEqkN08c_C
kCl9Yi__VonUIPvyYFyDSg9NHU4zQeFmE9plw-WMsy4TITpT6bucE1H5grb-0buoryjnW7s81
Xz-v4UoHWSt7V6yNLdl



Other Works

Lots of works on counting but none are dynamic and parallel

- Serial, static 5-vertex counting: A. Pinar, C. Seshadhri, V. Vishal
- Parallel, static 4-vertex counting: N. Ahmed, J. Neville, R. Rossi
- Serial, dynamic 3-vertex counting: D. Eppstein, E. Spiro



Applications

- Given an interactome, find patterns of interactions between different 
molecules in a cell

- Identify groups in social and communication networks to help people 
connect more easily (e.g. Facebook friend suggestions)

- Find subgraphs in air traffic to coordinate flights

https://interactome3d.irbbarcelona.org/images/graphic_network.png



Goal

- New parallel algorithm for dynamic 
subgraph counting

- Strong theoretical bounds for runtime 
and memory

- Complete evaluation for counting 
triangles

- Foundation to extend to four-vertex 
subgraphs as well.



● Work and Span Model
○ Work = Total operations = number of nodes in 

DAG
○ Span = The maximum number of nodes on a 

dependency chain = Longest path
○ Work-Efficient = The total work is the same as 

the best sequential version for the specific 
problem

○ Running time ≤ work/P + O(span) where P is the 
number of processors

Important paradigms

Parallel Computing DAG



Parallel primitives

● Parallel Filter: Given an array of elements, filter out certain elements and 
concatenate the gaps afterward.
○ Bounds: O(N) work and O(logN) span

● Parallel Reduce: Given an array of elements, reduce them to a single 
“sum” under a commutative and associative operator.
○ Bounds: O(N) work and O(logN) span

● Parallel Prefix Sum: Given a list of numbers, generate a list of prefix sums. 
Formally, prefix[i] = Σ(j = 1 to i) arr[i]
○ Bounds: O(N) work and O(logN) span



Parallel primitives

● Parallel Integer Sort: Sort a given list of integers.
○ Bounds: O(N) work and O(logN) span

● Parallel Hashing: Hashes a list of elements to achieve fast random access.
○ Bounds: O(N) work and O(logN) span

https://en.wikipedia.org/wiki/Hash_function 

https://en.wikipedia.org/wiki/Hash_function


Dynamic subgraph counting 
algorithm

Serial version from D. Eppstein and E. Spiro. The h-Index of a Graph and its 
Application to Dynamic Subgraph Statistics. J. Graph Algorithms & 
Applications, 16(2): 543-567, 2012



HSet: Dynamic h-index



HSet Overview

- HSet keeps track of all vertices
- Maintains set H

- h-index = h = |H|
- Largest h such that there are at least h vertices with degree greater 

than or equal to h
- Serial1 maintains H in O(1) time for a single modified edge
- HSet will help reduce computation in triangle counting

1Serial version from D. Eppstein and E. Spiro. The h-Index of a Graph and its Application to Dynamic Subgraph 
Statistics. J. Graph Algorithms & Applications, 16(2): 543-567, 2012



HSet - Outline

1. Remove endpoints of modified edge from HSet

2. Modify the edge

3. Re-add the endpoints back into HSet



HSet - Parallelizing

- Algorithm by Eppstein and Spiro inherently sequential
- Multiple operations cause contention in HSet

- Our Parallelized version

- Given a batch, h can change by at most |batch| = b

- Prefix sum gets the number of vertices gained/lost, predicts new h

- Expected work of O(b) and span O(log b) w.h.p.
- Limited by taking the prefix sum and sorting the batch



Parallel HSet - Initial Graph

Degree 0 1 2 3

Vertices Ø {3} {0, 1} {2}

0 1

2 3

b = |batch|

h = 2 

All vertices by degree

x

x

x

= vertex ∉H

= vertex ∈H

= untracked vertices 
(not in HSet)

= Existing edge

= Edge not yet added



Parallel HSet - Removing Vertices

Degree 0 1 2 3

Vertices Ø {3} → Ø {0, 1} → Ø {2}

0 1

2 3

h = 2

Batch = all endpoints of all edges = {0, 1, 3}
- Remove in parallel



Parallel HSet - Removing Vertices

Degree 0 1 2 3

Vertices Ø Ø Ø {2}

0 1

2 3

h = 2

# of Vertices w/ deg ≥ h

aboveH = 1 vertex



Parallel HSet - Removing Vertices

Degree 0 1 2 3

Vertices Ø Ø Ø {2}

Prefix Sum Table: from h down to max(0, h - b)

Degree h = 2 1 max(0, h - b) = 0

Size --- 0 0

Prefix Sum 0 0 0

Ignore size of table[h]
- Already included in 

aboveH



Parallel HSet - Removing Vertices

Prefix Sum Table

Degree 2 1 0

Prefix Sum (vertices gained) 0 0 0

# of vertices above that degree 1 + 0 < 2 1 + 0 ≥ 1 1 + 0 ≥ 0

aboveH = 1

Largest degree such that
aboveH + prefixSum[deg] ≥ deg



Parallel HSet - Removing Vertices

Degree 0 1 2 3

Vertices Ø Ø Ø {2}

0 1

2 3

Set new h to be the largest degree where 
aboveH + prefixSum[deg] ≥ deg 

h = 1



Parallel HSet - Add (or Delete) Edges

Degree 0 1 2 3

Vertices Ø Ø Ø {2}

0 1

2 3

h = 1

Add or delete edges (which modifies the degrees)



Parallel HSet - Re-adding Vertices

0 1

2 3

Degree 0 1 2 3

Vertices Ø Ø Ø {2} → {0, 1, 2, 3}

h = 1

Batch = all endpoints of all edges = {0, 1, 3}
- Add in parallel



Parallel HSet - Re-adding Vertices

0 1

2 3

aboveH = 4 vertices

Degree 0 1 2 3

Vertices Ø Ø Ø {2} → {0, 1, 2, 3}

h = 1

# of Vertices w/ deg ≥ h



Parallel HSet - Re-adding Vertices

Degree 0 1 2 3

Vertices Ø Ø Ø {0, 1, 2, 3}

Prefix Sum Table: from h up to h + b

Degree h = 1 2 3 h + b = 4

Size 0 0 4 0

Prefix Sum 0 0 4 4



Parallel HSet - Re-adding Vertices

Prefix Sum Table

Degree 1 2 3 4

Prefix Sum (vertices lost) 0 0 4 4

# of vertices above that degree 4 - 0 ≥ 1 4 - 0 ≥ 2 4 - 4 < 3 4 - 4 < 4

aboveH = 4

Smallest degree such that
aboveH - prefixSum[deg] < deg



Parallel HSet - Re-adding Vertices

Degree 0 1 2 3

Vertices Ø Ø Ø {0, 1, 2, 3}

Set new h to be the smallest degree where 
aboveH - prefixSum[deg] < deg 

h = 3

0 1

2 3

0 1

2 3



Parallel HSet - Result

Degree 0 1 2 3

Vertices Ø Ø Ø {0, 1, 2, 3}

h = 3

Can determine if a vertex is in H by comparing it’s 
degree to the h-index

- Also accounts for vertices with degree equal 
to h-index but are not in H

0 1

2 3

0 1

2 3



Triangle
Counting

Serial version from D. Eppstein and E. Spiro. The h-Index of a Graph and its Application to Dynamic 
Subgraph Statistics. J. Graph Algorithms & Applications, 16(2): 543-567, 2012



How do we find triangles?

Wedges! aka 2-Paths 

Center

Endpoints

● Triangles and 4-vertex subgraphs 
are made of wedges

● W(u,v) = # of wedges endpoints u 
and v

v

u



Finding triangles from wedges

● For each added edge W(u,v), 
triangles become complete

v
u



Maintaining wedges

● Brute force for all the neighbors
● For edge (u,v), endpoint v, and 

each of its neighbors w, we add 
1  to W(w,u)

Question: Wouldn’t this be too slow?

v u

w



Summary of Current Algorithm

Add # of Wedges to Count

Adjust Wedges Map

Note that edge deletion is symmetric

TOO SLOW!
O(N) per edge



Optimization using HSet

We will use the previously introduced HSet

● For W(u,v), keep track of wedges with centers outside of the HSet

x

x

x

= vertex ∉H

= vertex ∈H

= untracked vertices 
(not in HSet)



Optimization using HSet

Problem: Missing triangles with centers in HSet.

Solution: Iterate through HSet and check if it can 
form another triangle

O(h) work per edge since we only iterated through 
the HSet

v
u



Optimization using HSet

1. Iterate through each of the 
endpoints that are not in the HSet 

2. For edge (u,v), and each of its 
neighbors w, we can add 1  to 
W(w,u)

v

u
w

O(h) work per edge since there are at most h 
neighbors



Optimization using HSet

Problem: Nodes can cease to be in HSet.

Solution: For each pair of neighbors u 
and v, we add 1 to W(u,v)

HSet changes O(1/h) per edge 
amortized, so the actual complexity is 
still O(h)

Note that the converse when a node gets into HSet works the exact same way

v u v u



Summary of Optimized Algorithm

Add # of Wedges to Count

Iterate through HSet
Time Complexity: O(h)

Deletion works symmetrically 
as well.

Adjust Wedges Map

Update HSet and Wedges



Problem arises when parallelized 

Problem: Won’t be able to update the wedges in 
time, therefore triangles on the left will not be 
counted

Solution: For each endpoint outside of HSet, 
iterate through all of its neighbors, and check if 
they form a triangle

Since there are at most 2h neighbors, the work is at 
most O(h)



Another problem: Duplicate Triangles

Problem: Triangles like the on the left would be 
counted twice

Solution: We categorized all triangles into 11 
types, each with their frequency. Instead of adding 
1, we add 1/frequency



Evaluation



Implementation Detail: Storing HSet

● Threshold: Stores nodes with degree greater than a 
threshold in a hash table and the rest in a dynamic array
○ Advantage: Saves memory for sparse high-degree 

vertices
○ Disadvantage: Lots of overhead, difficult to adjust 

threshold
● Dynamic Array: Store nodes bucketed by their degree in a 

dynamic array
○ Advantage: Very little overhead, easy to manipulate.
○ Disadvantage: Takes memory proportional to the 

largest degree



Implementation Detail: Space Optimization

Storing Wedges Map W(u,v)

● Hash Table: We hash W(u,v) by the pair (u,v).
○ Advantage: Strong theoretical bounds O(min(N2,Nh2)) 

space
○ Disadvantage: Overhead in access/insertion due to 

cache misses
● 2D Ragged Array: A 2D ragged array with the two side points 

as the indices
○ Advantage: Very little overhead
○ Disadvantage: It takes up O(N2) space



Environment

- Google Cloud Computing VM (60 hyper threads, 240 GB memory)
- Single Machine
- Intel Xeon Scalable Processor (Cascade Lake)

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.intel.com%2Fcontent%2
Fwww%2Fus%2Fen%2Fproducts%2Fprocessors%2Fxeon%2Fw-processors%2Fw-3175x.
html&psig=AOvVaw0-nJF6lvyw8oq-5TNfTcFf&ust=1603075410545000&source=images&c
d=vfe&ved=0CAIQjRxqFwoTCKiGjbWPvewCFQAAAAAdAAAAABAF

https://www.freecodecamp.org/news/content/images/2020/10/gcp.png



Experimental Data
- DBLP: Co-authorship network 

- 317080 Vertices
- 1049866 Edges
- 2224385 Triangles
- 53.7s for static insertion
- 2.65s per batch of 100000 edges

- Youtube: Video sharing social network where users can make friends
- 1134890 Vertices
- 2987624 Edges
- 3056386 Triangles
- 368.2s for static insertion
- 7.31s for batch of 100000 edges



Conclusion

- Current Work
- Strong theoretical bound: O(bh) work and O(log b + log h) span
- Complete analysis for Triangle Counting
- No significant difference between dynamic array and threshold 

implementation

- Future Work
- 4-vertex subgraph counting
- Extended experiments on code



Acknowledgements

- MIT PRIMES
- Jessica and Julian
- Family and friends who have supported us



Questions?


