Parallel Batch-Dynamic Subgraph Maintenance

By Alex Fan and Alvin Lu
Mentored by Jessica Shi and Julian Shun

Outline

- Overview of the problem
- 3-vertex subgraph counting
- Parallel algorithm
- Implementation
- Evaluation
- Conclusion

Graph processing

- Graphs represent a wide variety of complex networks, finding patterns within is very important

Parallelism

- Widely used: in phones, in large data centers, GPUs are parallelized
- All publicly available graphs fit in shared memory
- Process large datasets efficiently

2 Processors
1 Processor

https://4.bp.blogspot.com/-DNSsmoZxJqI/VROUXMOxy-I/AAAAAAAAAHs/20gKNUXfdgU/s1600/single\%2Bvs\%2Bmultiprocessor\%2Bsys tems.gif

Dynamic Model

- Model which considers added and removed edges, real world graphs are often changing
- Perform real time updates, and update computation under model efficiently

Dynamic Subgraph Counting

- Problem: Maintain subgraph counting in a batch parallel and dynamic setting
- Given a graph G and a batch of updates, find the new number of specific 3-vertex subgraphs in parallel (e.g. triangles)

Other Works

Lots of works on counting but none are dynamic and parallel

- Serial, static 5-vertex counting: A. Pinar, C. Seshadhri, V. Vishal
- Parallel, static 4-vertex counting: N. Ahmed, J. Neville, R. Rossi
- Serial, dynamic 3-vertex counting: D. Eppstein, E. Spiro

Applications

- Given an interactome, find patterns of interactions between different molecules in a cell
- Identify groups in social and communication networks to help people connect more easily (e.g. Facebook friend suggestions)
- Find subgraphs in air traffic to coordinate flights

Goal

- New parallel algorithm for dynamic subgraph counting
- Strong theoretical bounds for runtime and memory
- Complete evaluation for counting triangles
- Foundation to extend to four-vertex subgraphs as well.

Important paradigms

- Work and Span Model
- Work = Total operations = number of nodes in DAG
- Span = The maximum number of nodes on a dependency chain = Longest path
- Work-Efficient = The total work is the same as the best sequential version for the specific problem
- Running time \leq work/ $\mathrm{P}+\mathrm{O}$ (span) where P is the number of processors

Parallel primitives

- Parallel Filter: Given an array of elements, filter out certain elements and concatenate the gaps afterward.
- Bounds: O(N) work and O(logN) span
- Parallel Reduce: Given an array of elements, reduce them to a single "sum" under a commutative and associative operator.
- Bounds: O(N) work and O(logN) span
- Parallel Prefix Sum: Given a list of numbers, generate a list of prefix sums.

Formally, prefix[i] = $\Sigma(\mathrm{j}=1$ to i$) \operatorname{arr}[\mathrm{i}]$

- Bounds: $\mathrm{O}(\mathrm{N})$ work and $\mathrm{O}(\log \mathrm{N})$ span

Parallel primitives

- Parallel Integer Sort: Sort a given list of integers.
- Bounds: $\mathrm{O}(\mathrm{N})$ work and $\mathrm{O}(\log \mathrm{N})$ span
- Parallel Hashing: Hashes a list of elements to achieve fast random access.
- Bounds: O(N) work and O(logN) span
keys

Dynamic subgraph counting algorithm

Serial version from D. Eppstein and E. Spiro. The h-Index of a Graph and its Application to Dynamic Subgraph Statistics. J. Graph Algorithms \& Applications, 16(2): 543-567, 2012

HSet: Dynamic h-index

HSet Overview

- HSet keeps track of all vertices
- Maintains set H
- h -index = $\mathrm{h}=|\mathrm{H}|$
- Largest h such that there are at least h vertices with degree greater than or equal to h
- Serial ${ }^{1}$ maintains H in $\mathrm{O}(1)$ time for a single modified edge
- HSet will help reduce computation in triangle counting

[^0]
HSet - Outline

1. Remove endpoints of modified edge from HSet
2. Modify the edge
3. Re-add the endpoints back into HSet

HSet - Parallelizing

- Algorithm by Eppstein and Spiro inherently sequential
- Multiple operations cause contention in HSet
- Our Parallelized version
- Given a batch, h can change by at most |batch|=b
- Prefix sum gets the number of vertices gained/lost, predicts new h
- Expected work of O(b) and span O(log b) w.h.p.
- Limited by taking the prefix sum and sorting the batch

Parallel HSet - Initial Graph

All vertices by degree
b = |batch \mid
$h=2$

, , = Edge not yet added

Degree	0	1	2	3
Vertices	\varnothing	$\{3\}$	$\{0,1\}$	$\{2\}$

Parallel HSet - Removing Vertices

$$
h=2
$$

Batch $=$ all endpoints of all edges $=\{0,1,3\}$

- Remove in parallel

Degree	0	1	2	3
Vertices	\varnothing	$\{3\} \rightarrow \varnothing$	$\{0,1\} \rightarrow \varnothing$	$\{2\}$

Parallel HSet - Removing Vertices

Parallel HSet - Removing Vertices

Degree	0	1	2	3
Vertices	\varnothing	\varnothing	\varnothing	$\{2\}$

Prefix Sum Table: from h down to $\max (0, \mathrm{~h}-\mathrm{b})$

Degree	$\mathrm{h}=2$	1	$\max (0, \mathrm{~h}-\mathrm{b})=0$
Size	---	0	0
Prefix Sum	0	0	0

Ignore size of table[h]

- Already included in aboveH

Parallel HSet - Removing Vertices

$$
\text { aboveH = } 1
$$

Prefix Sum Table
Largest degree such that aboveH + prefixSum[deg] \geq deg

Degree	2	1	0
Prefix Sum (vertices gained)	0	0	0
$\#$ of vertices above that degree	$1+0<2$	$1+0 \geq 1$	$1+0 \geq 0$

Parallel HSet - Removing Vertices

Set new h to be the largest degree where aboveH + prefixSum[deg] \geq deg
$h=1$

Degree	0	1	2	3
Vertices	\varnothing	\varnothing	\varnothing	$\{2\}$

Parallel HSet - Add (or Delete) Edges

$h=1$
Add or delete edges (which modifies the degrees)

Degree	0	1	2	3
Vertices	\varnothing	\varnothing	\varnothing	$\{2\}$

Parallel HSet - Re-adding Vertices

$$
h=1
$$

Batch $=$ all endpoints of all edges $=\{0,1,3\}$

- Add in parallel

Degree	0	1	2	3
Vertices	\varnothing	\varnothing	\varnothing	$\{2\} \rightarrow\{0,1,2,3\}$

Parallel HSet - Re-adding Vertices

Parallel HSet - Re-adding Vertices

Degree	0	1	2	3
Vertices	\varnothing	\varnothing	\varnothing	$\{0,1,2,3\}$

Prefix Sum Table: from h up to h + b

Degree	$\mathrm{h}=1$	2	3	$\mathrm{~h}+\mathrm{b}=4$
Size	0	0	4	0
Prefix Sum	0	0	4	4

Parallel HSet - Re-adding Vertices

$$
\text { aboveH = } 4
$$

Prefix Sum Table
Smallest degree such that aboveH - prefixSum[deg] < deg

Degree	1	2	3	4
Prefix Sum (vertices lost)	0	0	4	4
$\#$ of vertices above that degree	$4-0 \geq 1$	$4-0 \geq 2$	$4-4<3$	$4-4<4$

Parallel HSet - Re-adding Vertices

Set new h to be the smallest degree where aboveH - prefixSum[deg] < deg
$h=3$

Degree	0	1	2	3
Vertices	\varnothing	\varnothing	\varnothing	$\{0,1,2,3\}$

Parallel HSet - Result

$h=3$

Can determine if a vertex is in H by comparing it's degree to the h-index

- Also accounts for vertices with degree equal to h-index but are not in H

Degree	0	1	2	3
Vertices	\varnothing	\varnothing	\varnothing	$\{0,1,2,3\}$

Triangle Counting

Serial version from D. Eppstein and E. Spiro. The h-Index of a Graph and its Application to Dynamic Subgraph Statistics. J. Graph Algorithms \& Applications, 16(2): 543-567, 2012

How do we find triangles?

Wedges! aka 2-Paths

Finding triangles from wedges

- For each added edge $\mathbf{W}(\mathbf{u}, \mathbf{v})$, triangles become complete

Maintaining wedges

- Brute force for all the neighbors
- For edge (\mathbf{u}, \mathbf{v}), endpoint \mathbf{v}, and each of its neighbors \mathbf{w}, we add 1 to W(w,u)

Question: Wouldn't this be too slow?

Summary of Current Algorithm

TOO SLOW!
O(N) per edge

Note that edge deletion is symmetric

Optimization using HSet

We will use the previously introduced HSet

- For W(u,v), keep track of wedges with centers outside of the HSet

$$
\begin{aligned}
x= & \text { vertex } \notin H \\
x= & \text { vertex } \in H \\
x= & \text { untracked vertices } \\
& \text { (not in HSet) }
\end{aligned}
$$

Optimization using HSet

Problem: Missing triangles with centers in HSet.
Solution: Iterate through HSet and check if it can form another triangle
$\mathbf{O}(\mathbf{h})$ work per edge since we only iterated through the HSet

Optimization using HSet

1. Iterate through each of the endpoints that are not in the HSet
2. For edge (\mathbf{u}, \mathbf{v}), and each of its neighbors \mathbf{w}, we can add $\mathbf{1}$ to w(w,u)
$\mathbf{O}(\mathbf{h})$ work per edge since there are at most \mathbf{h} neighbors

Optimization using HSet

Problem: Nodes can cease to be in HSet.

Solution: For each pair of neighbors u and \mathbf{v}, we add $\mathbf{1}$ to $\mathrm{W}(\mathbf{u}, \mathbf{v})$

HSet changes $O(1 / h)$ per edge amortized, so the actual complexity is still $\mathbf{O}(\mathrm{h})$

Note that the converse when a node gets into HSet works the exact same way

Summary of Optimized Algorithm

Add \# of Wedges to Count

Iterate through HSet

Adjust Wedges Map

Update HSet and Wedges
Time Complexity: $\mathbf{O}(\mathbf{h})$
Deletion works symmetrically as well.

Problem arises when parallelized

Problem: Won't be able to update the wedges in time, therefore triangles on the left will not be counted

Solution: For each endpoint outside of HSet, iterate through all of its neighbors, and check if they form a triangle

Since there are at most $\mathbf{2 h}$ neighbors, the work is at most $\mathbf{O}(\mathrm{h})$

Another problem: Duplicate Triangles

Problem: Triangles like the on the left would be counted twice

Solution: We categorized all triangles into $\mathbf{1 1}$ types, each with their frequency. Instead of adding $\mathbf{1}$, we add $\mathbf{1}$ /frequency

Evaluation

Implementation Detail: Storing HSet

- Threshold: Stores nodes with degree greater than a threshold in a hash table and the rest in a dynamic array
- Advantage: Saves memory for sparse high-degree vertices
- Disadvantage: Lots of overhead, difficult to adjust threshold
- Dynamic Array: Store nodes bucketed by their degree in a dynamic array
- Advantage: Very little overhead, easy to manipulate.
- Disadvantage: Takes memory proportional to the largest degree

Implementation Detail: Space Optimization

Storing Wedges Map W(u,v)

- Hash Table: We hash $\mathbf{W}(\mathbf{u}, \mathbf{v})$ by the pair (u,v).
- Advantage: Strong theoretical bounds $\mathrm{O}\left(\min \left(\mathrm{N}^{2}, \mathbf{N h}^{\mathbf{2}}\right)\right)$ space
- Disadvantage: Overhead in access/insertion due to cache misses
- 2D Ragged Array: A 2D ragged array with the two side points as the indices
- Advantage: Very little overhead
- Disadvantage: It takes up $\mathbf{O}\left(\mathbf{N}^{2}\right)$ space

Environment

- Google Cloud Computing VM (60 hyper threads, 240 GB memory)
- Single Machine
- Intel Xeon Scalable Processor (Cascade Lake)

Google Cloud

Experimental Data

- DBLP: Co-authorship network
- 317080 Vertices
- 1049866 Edges
- 2224385 Triangles
- 53.7 s for static insertion
- 2.65 s per batch of 100000 edges
- Youtube: Video sharing social network where users can make friends
- 1134890 Vertices
- 2987624 Edges
- 3056386 Triangles
- 368.2 s for static insertion
- 7.31 s for batch of 100000 edges

Conclusion

- Current Work
- Strong theoretical bound: $\mathbf{O}(\mathbf{b h})$ work and $\mathbf{O}(\log \mathbf{b}+\log h)$ span
- Complete analysis for Triangle Counting
- No significant difference between dynamic array and threshold implementation
- Future Work
- 4-vertex subgraph counting
- Extended experiments on code

Acknowledgements

- MIT PRIMES
- Jessica and Julian
- Family and friends who have supported us

Questions?

[^0]: ${ }^{1}$ Serial version from D. Eppstein and E. Spiro. The h-Index of a Graph and its Application to Dynamic Subgraph Statistics. J. Graph Algorithms \& Applications, 16(2): 543-567, 2012

