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Introduction

• The exome (protein coding region) makes up 
approximately 1% of the human genome

• Studying mutations in this region very 
important for identifying genetic basis of 
certain rare disorders

• The advent of whole exome and whole 
genome sequencing allows us to find the most 
likely pathogenic mutations much more 
efficiently and on a greater scale

• Next-gen sequencing has been growing rapidly 
in the past decade and has led to numerous 
successful disease-detection pipelines.



Introduction- Genetic Analyses

• In analyzing a candidate variant, a geneticist utilizes a variety 
of factors

• Categories: genotype and phenotype
• Use these metrics to select a few variants that are most likely 

to be mutation-causing 
• The goal of this project was to use computational approaches 

to generate a ranked list of most likely mutations

Phenotype:
-Comparison with associated disease
-Specificity of gene phenotype for patient
-Novelty of gene

Genotype:
-Allele frequency in control populations
-Resistance of gene to LoF mutation
-Evolutionary conservation



General Methods

• Create two scores for each mutation (genotype score and phenotype 
score) using appropriate classification techniques

• Combine these two scores to generate an overall mutation probability 
score and generate a ranking based upon this score

• Develop a user-friendly website that allows clients to input mutation 
files and view the returned ranking  



Methods- Genotype classification

• To train the model, data was imported from 35 manual classifications of previous 
patient cases

• Difficulty: data format was one “Correct” variant per family
• Computer is being trained to think that all of the other variants are unlikely

• Thus, very high number of patient cases are necessary to train our model
• Logistic regression models were trained using a large number of predictors 

against the pathogenicity.
• Insignificant predictors were removed to ensure the accuracy of the model.
• Testing of the model was performed, as will be outlined in the results section



Methods- Phenotype algorithms
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Database:



Methods- Phenotype algorithms
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1. How much of the patient’s phenotype is covered by 

each gene? 

2. How common is the patient’s phenotype in the gene 

database?



Phenotype algorithms- Part 2
For each gene, two values:

1. Percent of the patient’s phenotype that is covered by each gene (𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)

2. Percent of genes in the database that catch the patient’s phenotype(𝑃𝑃𝑑𝑑𝑑𝑑)



Phenotype algorithms- Part 2
For each gene, two values:

1. Percent of the patient’s phenotype that is covered by each gene (𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)

2. Percent of genes in the database that catch the patient’s phenotype(𝑃𝑃𝑑𝑑𝑑𝑑)

Algorithm:

𝑃𝑃 = 1 − 𝑃𝑃𝑑𝑑𝑑𝑑 ∗ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
- When 𝑃𝑃𝑑𝑑𝑑𝑑 = 100%,  this means no specificity, so 𝑃𝑃 = 0

- When 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 0%, meaning that a gene has no phenotype hits, 𝑃𝑃 = 0

- Issue with this algorithm was that it was too restrictive for 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔: if 50% of the patient’s 

phenotype had overlap, the value could only be a max of 50%, even if 0 other genes caught 

keywords

• Used a log scale to help with this issue



Phenotype algorithms-
Part 3

With log scales:

𝑃𝑃 = 1 − 𝑃𝑃𝑑𝑑𝑑𝑑 ∗ log(9 ∗ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 1)
With this function, the endpoints of 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (i.e. 
[0,1]) stay the same, while the rest of the graph 
is distorted up from the initial values

log(9 ∗ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 1)








Results/testing our algorithms

• ROC Curves:
• A graph of the false-positive rate vs. the true-

positive rate
• Change the thresholds and make the graph
• Take the area under the curve
• Helps determine how well the model predicts the 

outcome
• Perfect model would be box: there exists a 

threshold such that the true positive rate is 100% 
and false positive rate is 0%

• After cross-validation was implemented across 
the 35 sets available, the average AUC score 
was around 0.89
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Conclusion

• More work can still be done to improve the models

• In the future, more data will have to be used to train the model, since the current 
model was trained with only limited data.

• Nevertheless, computational approaches for genetic analysis of rare disease 
patients seem to show great promise.

• Furthermore, the phenotype databases available are continuously aggregating 
more and more data, so our phenotype algorithms will become even more 
informative as time goes on.

• As next-gen sequencing continues to grow, these tools can continue to provide 
more effective and efficient ways to perform genetic analyses.
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