Statistical Ranking Model for Candidate Genes in Rare Genetic Disorders

Presented by: Vishnu Emani Mentors: Dr. Klaus Schmitz-Abe, Dr. Pankaj Agrawal

Introduction

- The exome (protein coding region) makes up approximately 1% of the human genome
- Studying mutations in this region very important for identifying genetic basis of certain rare disorders
- The advent of whole exome and whole genome sequencing allows us to find the most likely pathogenic mutations much more efficiently and on a greater scale
- Next-gen sequencing has been growing rapidly in the past decade and has led to numerous successful disease-detection pipelines.

Introduction- Genetic Analyses

- In analyzing a candidate variant, a geneticist utilizes a variety of factors
- Categories: genotype and phenotype
- Use these metrics to select a few variants that are most likely to be mutation-causing
- The goal of this project was to use computational approaches to generate a ranked list of most likely mutations

Genotype:

-Allele frequency in control populations -Resistance of gene to LoF mutation

-Evolutionary conservation

Phenotype: -Comparison with associated disease -Specificity of gene phenotype for patient

-Novelty of gene

General Methods

- Create two scores for each mutation (genotype score and phenotype score) using appropriate classification techniques
- Combine these two scores to generate an overall mutation probability score and generate a ranking based upon this score
- Develop a user-friendly website that allows clients to input mutation files and view the returned ranking

Methods- Genotype classification

- To train the model, data was imported from 35 manual classifications of previous patient cases
- Difficulty: data format was one "Correct" variant per family
 - Computer is being trained to think that all of the other variants are unlikely
- Thus, very high number of patient cases are necessary to train our model
- Logistic regression models were trained using a large number of predictors against the pathogenicity.
- Insignificant predictors were removed to ensure the accuracy of the model.
- Testing of the model was performed, as will be outlined in the results section

Methods- Phenotype algorithms

Database:

Pat	tient phenotype: P1,	P2, P3		
	Gene 1			
	Gene 5			
	Gene 102		1	
	Gene 105			
	Gene 107			

Gene 1	P1, P2
Gene 2	P2, P4, P5
Gene 3	P6, P7
Gene 4	P1, P5, P6
Gene 5	P6, P7
•••	•••
Gene 102	P1, P2, P8
Gene 102 Gene 103	P1, P2, P8 P2, P9
Gene 103	P2, P9
Gene 103 Gene 104	P2, P9 P2, P8, P10
Gene 103 Gene 104 Gene 105	P2, P9 P2, P8, P10 P2, P10, P11

Methods- Phenotype algorithms Database:

Patient phenotype: P1, P2, P3 Gene 1 Gene 5 Gene 102 Gene 105 Gene 107

- How much of the patient's phenotype is covered by each gene?
- 2. How common is the patient's phenotype in the gene database?

P1, P2		
P2, P4, P5		
P6, P7		
P1, P5, P6		
P6, P7		
•••		
P1, P2, P8		
P2, P9		
P2, P8, P10		
P2, P10, P11		
P12, P13,P14		
P15, P16, P17		

Phenotype algorithms- Part 2

For each gene, two values:

- 1. Percent of the patient's phenotype that is covered by each gene (P_{gene})
- 2. Percent of genes in the database that catch the patient's phenotype(P_{db})

Phenotype algorithms- Part 2

For each gene, two values:

- 1. Percent of the patient's phenotype that is covered by each gene (P_{gene})
- 2. Percent of genes in the database that catch the patient's phenotype(P_{db})

Algorithm:

$$P = (1 - P_{db}) * P_{genes}$$

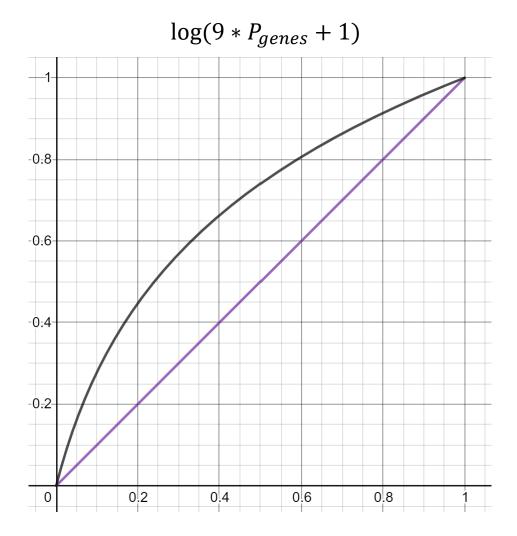
- When $P_{db} = 100\%$, this means no specificity, so P = 0
- When $P_{gene} = 0\%$, meaning that a gene has no phenotype hits, P = 0
- Issue with this algorithm was that it was too restrictive for P_{gene}: if 50% of the patient's phenotype had overlap, the value could only be a max of 50%, even if 0 other genes caught keywords
 - Used a log scale to help with this issue

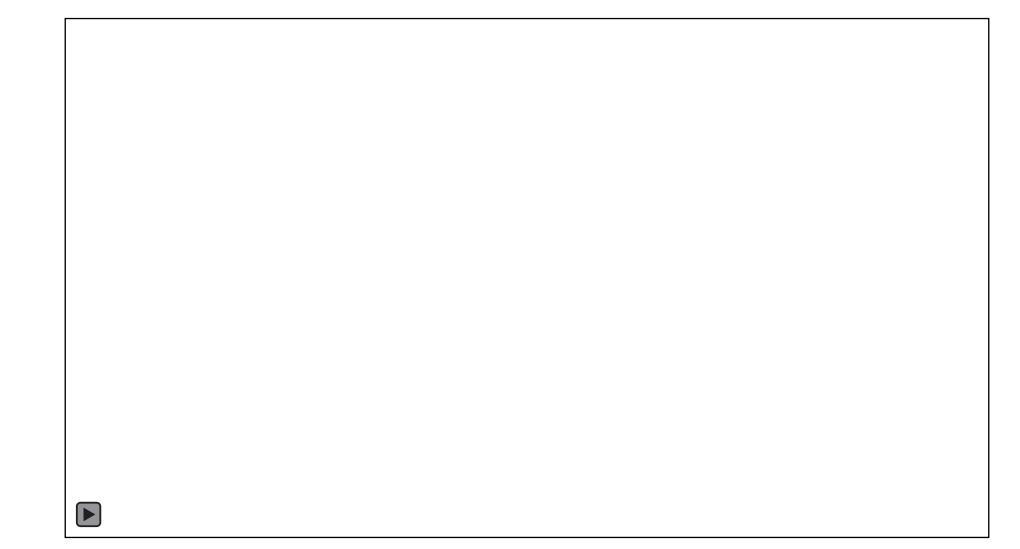
Phenotype algorithms-Part 3

With log scales:

$$P = (1 - P_{db}) * \log(9 * P_{genes} + 1)$$

With this function, the endpoints of P_{genes} (i.e. [0,1]) stay the same, while the rest of the graph is distorted up from the initial values

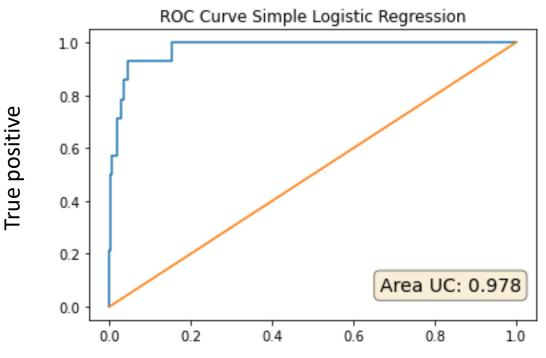




Results/testing our algorithms

• ROC Curves:

- A graph of the false-positive rate vs. the truepositive rate
- Change the thresholds and make the graph
- Take the area under the curve
- Helps determine how well the model predicts the outcome
- Perfect model would be box: there exists a threshold such that the true positive rate is 100% and false positive rate is 0%
- After cross-validation was implemented across the 35 sets available, the average AUC score was around 0.89



False positive

Conclusion

- More work can still be done to improve the models
- In the future, more data will have to be used to train the model, since the current model was trained with only limited data.
- Nevertheless, computational approaches for genetic analysis of rare disease patients seem to show great promise.
- Furthermore, the phenotype databases available are continuously aggregating more and more data, so our phenotype algorithms will become even more informative as time goes on.
- As next-gen sequencing continues to grow, these tools can continue to provide more effective and efficient ways to perform genetic analyses.

References

 Schmitz-Abe K et al. Unique bioinformatic approach and comprehensive reanalysis improve diagnostic yield of clinical exomes. Eur J Hum Genet. 2019 Sep;27(9):1398-1405. doi: 10.1038/s41431-019-0401-x. Epub 2019 Apr 12. PMID: 30979967; PMCID: PMC6777619.