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Introduction

 The exome (protein coding region) makes up
approximately 1% of the human genome

e Studying mutations in this region very
important for identifying genetic basis of
certain rare disorders

* The advent of whole exome and whole
genome sequencing allows us to find the most
likely pathogenic mutations much more
efficiently and on a greater scale

e Next-gen sequencing has been growing rapidly
in the past decade and has led to numerous
successful disease-detection pipelines.




Introduction- Genetic Analyses

* In analyzing a candidate variant, a geneticist utilizes a variety

of factors

e Categories: genotype and phenotype

e Use these metrics to select a few variants that are most likely

to be mutation-causing

* The goal of this project was to use computational approaches
to generate a ranked list of most likely mutations

Genotype:

-Allele frequency in control populations
-Resistance of gene to LoF mutation
-Evolutionary conservation

Phenotype:

-Comparison with associated disease
-Specificity of gene phenotype for patient
-Novelty of gene



General Methods

* Create two scores for each mutation (genotype score and phenotype
score) using appropriate classification techniques

 Combine these two scores to generate an overall mutation probability
score and generate a ranking based upon this score

* Develop a user-friendly website that allows clients to input mutation
files and view the returned ranking



Methods- Genotype classification

To train the model, data was imported from 35 manual classifications of previous
patient cases
Difficulty: data format was one “Correct” variant per family

e Computer is being trained to think that all of the other variants are unlikely
Thus, very high number of patient cases are necessary to train our model
Logistic regression models were trained using a large number of predictors
against the pathogenicity.
Insignificant predictors were removed to ensure the accuracy of the model.
Testing of the model was performed, as will be outlined in the results section
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Methods- Phenotype algorithms
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Methods- Phenotype algorithms
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Phenotype algorithms- Part 2

For each gene, two values:
1. Percent of the patient’s phenotype that is covered by each gene (Pyepe)

2. Percent of genes in the database that catch the patient’s phenotype(P,p)



Phenotype algorithms- Part 2

For each gene, two values:

1.
2.

Percent of the patient’s phenotype that is covered by each gene (Pyene)

Percent of genes in the database that catch the patient’s phenotype(P,;p)

Algorithm:
P=(1-Pyg)* Pgenes

When P;;, = 100%, this means no specificity, so P = 0

When Py = 0%, meaning that a gene has no phenotype hits, P = 0

Issue with this algorithm was that it was too restrictive for Fyep,: if 50% of the patient’s
phenotype had overlap, the value could only be a max of 50%, even if 0 other genes caught

keywords

e Used a log scale to help with this issue



Phenotype algorithms-
Part 3

With log scales:

P = (1 - de) * 10g(9 * Pgenes + 1)

With this function, the endpoints of Py (i.e.

[0,1]) stay the same, while the rest of the graph
is distorted up from the initial values
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Results/testing our algorithms

ROC Curve Simple Logistic Regression
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e After cross-validation was implemented across False positive

the 35 sets available, the average AUC score
was around 0.89



Conclusion

 More work can still be done to improve the models

e In the future, more data will have to be used to train the model, since the current
model was trained with only limited data.

 Nevertheless, computational approaches for genetic analysis of rare disease
patients seem to show great promise.

 Furthermore, the phenotype databases available are continuously aggregating
more and more data, so our phenotype algorithms will become even more
informative as time goes on.

e As next-gen sequencing continues to grow, these tools can continue to provide
more effective and efficient ways to perform genetic analyses.
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