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Abstract. Let p and q be nonconstant meromorphic functions on Cm.
We show that if p and q have the same preimages as one another, count-
ing multiplicities, at each of four nonempty pairwise disjoint finite sub-
sets S1, . . . , S4 of C, then p and q have the same preimages as one another
at each of infinitely many finite subsets of C, and moreover g(p) = g(q)
for some nonconstant rational function g(x) whose degree is bounded in
terms of the sizes of the Si’s. This result is new already when m = 1,
and it implies many previous results about the extent to which a mero-
morphic function is determined by its preimages of a few points or a few
small sets.

1. Introduction

As a consequence of his theory of value distribution of meromorphic func-
tions, Nevanlinna [27] showed that a nonconstant meromorphic function on
the complex plane is uniquely determined by its inverse images at any five
points of the Riemann sphere C∞. He also showed that if nonconstant mero-
morphic functions p, q on the complex plane have the same preimages as one
another, counting multiplicities, at each of four points in C∞, then there is a
Möbius transformation µ such that p = µ◦q. In this paper we develop a new
theory which addresses preimages of sets rather than merely preimages of
points. In case the sets have size 1, our results generalize Nevanlinna’s four-
values theorem and the “counting multiplicities” version of Nevanlinna’s
five-values theorem. We will use the following standard terminology:

Notation. We write M(M) for the set of meromorphic functions on a
complex manifold M (which in this paper can always be assumed to be
either Cm or a compact Riemann surface such as the Riemann sphere C∞).

Definition 1.1. We say that p, q ∈M(M) share CM a subset S of C∞ if the
p-preimages of S coincide with the q-preimages of S, counting multiplicities.

Definition 1.1 involves the multiplicity of an element of M under an ele-
ment ofM(M). We will recall the definition of this notion in Section 2. We
note that this and other concepts become simpler in case M has dimension
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1, and that all results in this paper are already new in the one-dimensional
case.

Our first result asserts that if nonconstant p, q ∈ M(Cm) share CM four
“essentially different” finite sets, then there is a nonconstant rational func-
tion g(x) ∈ C(x) such that g ◦ p = g ◦ q and deg(g) is bounded in terms of
the sizes of the shared sets; it follows that p and q share CM infinitely many
finite sets.

Theorem 1.2. Pick a positive integer m and nonconstant p, q ∈ M(Cm).
Suppose that p and q share CM each of n finite subsets S1, . . . , Sn of C∞
for some n ≥ 4, where no Si is contained in ∪j 6=iSj. Then g ◦ p = g ◦ q for

some nonconstant g ∈ C(x) such that deg(g) ≤ 1
n−3(−2 +

∑n
i=1|Si|), where

in addition if n ≥ 5 then deg(g) ≤ maxi|Si|.
Note that if g ◦ p = g ◦ q for some g ∈ C(x) \ C then p−1(g−1(α)) =

q−1(g−1(α)) for each α ∈ C∞, so if α is not a critical value of g(x) then
g−1(α) is a set of size deg(g) which is shared CM by p and q. This yields
the following consequence of Theorem 1.2:

Corollary 1.3. If the conditions of Theorem 1.2 hold then p and q share CM
infinitely many pairwise disjoint k-element subsets of C∞ for some integer
k such that k ≤ 1

n−2(−2 +
∑n

i=1|Si|), and if n ≥ 5 then also k ≤ maxi|Si|.
Theorem 1.2 is already new when m = 1, where it may be viewed as a

vast generalization of Nevanlinna’s “four values” result and the CM version
of his “five values” result. For, if p, q share CM five points then Theorem 1.2
implies that g ◦ p = g ◦ q with deg(g) = 1, so that p = q. Likewise if p, q
share CM four points then Theorem 1.2 implies that g ◦ p = g ◦ q with
deg(g) ≤ 2. If deg(g) = 1 then we again obtain p = q. If deg(g) = 2
then g = µ ◦ x2 ◦ ν for some Möbius transformations µ, ν ∈ C(x), so that
x2 ◦ ν ◦ p = x2 ◦ ν ◦ q and thus ν ◦ p = εν ◦ q for some ε ∈ {1,−1}, whence
p = η ◦ q where η := ν−1 ◦ εν is a Möbius transformation. In a followup
paper we will show that our results also imply many other results from the
literature, in addition to yielding many new results when one imposes further
hypotheses on the sizes of the shared sets Si. Thus, our results provide a new
perspective which connects many old and new results as being consequences
of the single general Theorem 1.2.

Theorem 1.2 motivates the following definition:

Definition 1.4. We say that p, q ∈ M(Cm) are quasi-equivalent if there
exists a nonconstant g ∈ C(x) such that g ◦ p = g ◦ q.

We emphasize that quasi-equivalence is much more restrictive than alge-
braic dependence. For instance, any two rational functions p, q ∈ C(x) are
algebraically dependent, but the vast majority of such p, q are not quasi-
equivalent. Further, as explained before Corollary 1.3, quasi-equivalence
is more directly related to value-sharing questions than algebraic depen-
dence. We have seen hundreds of papers about value-sharing which in-
clude examples showing that their results would not be true with weaker
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hypotheses; but we checked that all such examples in these papers consist of
quasi-equivalent functions, so it is conceivable that the results of the papers
would remain true with weaker hypotheses, once one adds to the conclusion
some pairs of quasi-equivalent functions. More generally, it seems natural
to seek results showing that certain value-sharing hypotheses imply quasi-
equivalence, and conversely to produce examples of non-quasi-equivalent
functions with interesting value-sharing properties.

Finally, we note that for applications of Theorem 1.2 it is crucial to have
a good bound on deg(g), in terms of the sizes of the shared sets. It turns
out that different types of arguments are needed to prove the existence of
g(x) than to bound its degree.

Example 1.5. Theorem 1.2 cannot be improved to three shared sets, since
for instance p(x) := (ex+2)/(ex+1) does not take the values 1 or 2, so that
p and 2p share CM {∞}, {0}, and {2}, but there is no nonconstant g ∈ C(x)
for which g ◦p = g ◦2p. In this example the meromorphic functions p and 2p
are algebraically dependent; more generally, we will show in Proposition 3.11
that if nonconstant p, q ∈M(Cm) are algebraically dependent and share CM
three disjoint nonempty finite sets then g(p) = αg(q) for some nonconstant

g ∈ C(x) and some α ∈ C∗. A different type of example is (ex
2 − 1)/(ex− 1)

and (e−x
2−1)/(e−x−1), which are algebraically independent but share CM

{∞}, {0}, and {1}.

Many authors have studied pairs of meromorphic functions which share
some sets of prescribed sizes. In order to apply our theory to this type of
question, and also in order to prove the bounds on deg(g) in Theorem 1.2,
we describe the collection of all sets shared CM by any two quasi-equivalent
meromorphic functions p and q. A routine set theory exercise shows that if
p and q share two sets S and T , then p and q also share S ∪ T , S ∩ T , and
S \ T . Thus every nonempty finite set which is shared CM by p and q can
be written as the union of minimal shared sets, where we define a minimal
shared set to be a nonempty shared set which does not properly contain
any other nonempty shared set. Moreover, distinct minimal shared sets are
disjoint, and any union of minimal shared sets is again a shared set. If p
and q are quasi-equivalent then let g(x) be a nonconstant rational function
of the smallest possible degree such that g(p) = g(q). Let Λg be the set of
points α in C∞ such that g has the same multiplicity at each g-preimage
of α; thus, Λg includes all points which are not critical values of g (and
possibly some critical values as well), so that in particular Λg includes all
but finitely many points of C∞. For each α ∈ C∞, we write g−1(α)set for the
set of distinct g-preimages of α. As explained before Corollary 1.3, the set
g−1(α)set is shared CM by p and q whenever α ∈ Λg. Conversely, in most
situations the collection of such sets g−1(α)set comprises all minimal shared
sets for p and q:
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Theorem 1.6. For quasi-equivalent p, q ∈ M(Cm) \ C, let g(x) ∈ C(x) be
a minimal-degree nonconstant rational function for which g ◦ p = g ◦ q, and
define Λg as above. Then one of the following occurs:

(1.6.1) The collection of all sets g−1(α)set with α ∈ Λg equals the collection
of all minimal shared sets for p and q.

(1.6.2) For some β ∈ Λg, g
−1(β)set is the union of two distinct minimal

shared sets S1, S2, and the collection of all minimal shared sets for
p and q consists of S1, S2, and all sets g−1(α)set with α ∈ Λg \ {β}.

In light of Theorems 1.2 and 1.6, in order to describe the possibilities
for p, q, S1, . . . , S4 where the Si’s are disjoint nonempty finite subsets of
C∞ which are shared CM by p, q ∈ M(Cm) \ C, there are two remaining
problems:

(1.7.1) Determine all solutions to g ◦p = g ◦ q in nonconstant p, q ∈M(Cm)
and g ∈ C(x) \ C.

(1.7.2) For each (g, p, q) as in (1.7.1) in which g has minimal degree among
all solutions to (1.7.1) for the relevant p and q, determine whether
(1.6.2) holds.

There are dozens of papers solving (1.7.1) when g, p, q satisfy additional
restrictive properties, for instance [1, 2, 3, 4, 5, 8, 11, 13, 14, 15, 19, 20,
21, 22, 25, 28, 31, 36, 37, 38]. Recent work of the second author and his
students goes beyond the cases treated previously, by solving (1.7.1) when
any of the following hold:

• the numerator of (g(x)− g(y))/(x− y) is irreducible
• g(x) = f(x)n for some positive integer n, where there is a primitive
n-th root of unity ζ such that f(p(x)) = ζf(q(x)) and the numerator
of f(x)− ζf(y) is irreducible
• some α ∈ C∞ has at most two distinct g-preimages.

In the followup paper [35] we determine all situations when (1.6.2) holds
in each of the above three cases. An informal conclusion is that (1.6.2)
rarely holds, except when β has very few g-preimages. As a consequence,
we classify all p, q ∈ M(Cm) \ C which share CM each of four disjoint
nonempty finite subsets S1, . . . , S4 of C∞, where in addition at least two
Si’s have size 1.

The previous result closest to ours is [17, Thm. 3], which asserts that if
m = 1 and n ≥ 4 and some Si has size 1 then p and q must be algebraically
dependent. We note that, since p := ex and q := −ex share CM each set
S = {α,−α} with α ∈ C \ {0}, it is not true that if n is big enough and
the Si’s have the same size then p = q, contradicting the assertion in [18,
XXIII].

It would be interesting to seek analogues of our results for shared sets
ignoring multiplicities (IM). Some first steps in this direction are taken in
[32, 33], but the following questions remain open:
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Question 1.8. Is there an absolute constant N so that if nonconstant p, q ∈
M(C) share IM N disjoint nonempty finite subsets of C∞ then g ◦ p = g ◦ q
for some g ∈ C(x) \ C?

Question 1.9. If nonconstant p, q ∈ M(C) share IM infinitely many finite
subsets of C∞ then must there be some g ∈ C(x) \C for which g ◦ p = g ◦ q?

Remark 1.10. Question 1.8 is open even in the simplest case when p and q
are polynomials. Of course, Question 1.9 is trivially true in that case, since
p and q only have finitely many critical values, so that by repeatedly taking
intersections and set differences of the given shared sets we obtain infinitely
many IM-shared sets which contain no critical values and hence are shared
CM, whence the conclusion follows from our results (or in this case from the
easier Lemma 3.9). Finally, the multivariable analogues of these questions
are also open, but we stated the one-variable cases to focus attention on the
fundamental difficulties.

This paper is organized as follows. In the next section we list the notation
and terminology we will use. In Section 3 we show that if p, q ∈ M(Cm)
share four disjoint finite sets then g◦p = g◦q for some nonconstant g ∈ C(x).
Our proof combines several new ideas with ingredients from Nevanlinna’s
proof of his “four values” theorem, which in turn was based an earlier argu-
ment due to Pólya [29]. Our proof yields no bound on deg(g) in terms of the
sizes of the shared sets, and the next four sections are required to prove such
a bound. In Section 4 we describe the collection of all rational functions g(x)
which satisfy g ◦ p = g ◦ q for prescribed meromorphic functions p, q on an
arbitrary complex manifold R. In Section 5 we prove some useful properties
about multiplicities of preimages of points under a minimal-degree noncon-
stant g(x) ∈ C(x) satisfying g ◦ p = g ◦ q. The results in Section 4 and
especially Section 5 are of independent interest; certainly the combination
of Galois-theoretic and topological methods used in these sections is quite
different from previous work in the subject. In Section 6 we describe the
collection of all sets shared CM by any prescribed p, q ∈ M(Cm) for which
g ◦ p = g ◦ q for some g ∈ C(x) \C, and prove a refinement of Theorem 1.6.
Finally, in Section 7 we combine the results of the previous sections in order
to prove a generalization of Theorem 1.2.

2. Notation and terminology

In this section we list the notation and terminology used in this paper.
These are also defined when first used, but we list them here for ease of
reference.

We first recall the standard definition of multiplicity of points under a
meromorphic function.

Definition 2.1. Let M be a complex manifold, let p : M → C be a holo-
morphic function which is not identically zero, and let α be a point in
Zp := {β ∈ M : p(β) = 0}. Further, let Oα be the local ring consisting of
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the germs at α of holomorphic functions defined on a neighborhood of α,
and let I be the ideal of Oα consisting of all elements which vanish on Zp.
Letting k be the maximal integer for which p ∈ Ik, we say that p has a zero
of multiplicity k at α, and write mp(α) := k. If α ∈ M \ Zp then we define
mp(α) := 0.

For any meromorphic function p ∈ M(M) and a point α ∈ M for which
p(α) ∈ C, we may write p− p(α) in a neighborhood of α as the quotient of
two holomorphic functions q/r, and the multiplicity of p at α is νp(α) :=
mq(α) − mr(α). Finally, if p(α) = ∞ then the multiplicity of p at α is
νp(α) := ν1/p(α).

• C∗ := C \ {0}
• C∞ := C ∪ {∞} is the Riemann sphere
• all complex manifolds in this paper are assumed to be connected.
M denotes a general complex manifold and R denotes a Riemann
surface
• M(M) is the set of all meromorphic functions on the complex man-

ifold M
• for p ∈ M(Cm) \ C we write E(p) := C∞ \ p(Cm) for what is some-

times called the set of Picard exceptional values of p; Picard’s little
theorem says |E(p)| ≤ 2
• a multiset (or “set with multiplicities”) is a collection of elements

which need not be distinct
• p−1(α) is the multiset of all preimages of α ∈ C∞ under some non-

constant p ∈M(M), counted with multiplicities
• Sset is the set of distinct elements in the multiset S
• if S is a nonempty finite multiset then gcdmult(S) denotes the great-

est common divisor of the multiplicities of all elements of S
• if S is a multiset and k is a positive integer then Sk denotes the

union of k copies of S
• {a∗m, b} is the multiset having m copies of a and one copy of b
• G1(p, q) is defined in Definition 4.1
• a coequalizer of p and q is a rational function g ∈ G1(p, q) of minimal

degree (see Remark 4.3)
• minimal shared multisets are defined in Definition 6.1
• the multisets Tα are defined in Definition 6.3
• Tn(x) is the degree-n Chebyshev polynomial, namely the unique

polynomial such that Tn(cos θ) = cosnθ.

3. Four shared sets implies infinitely many

In this section we prove that if nonconstant p, q ∈ M(Cm) share four
disjoint finite sets then they share infinitely many, by showing that there
must be a nonconstant g ∈ C(x) for which g(p) = g(q). In fact we prove a
generalization of this assertion, in which the sets Si are replaced by multisets,
i.e., collections of elements that need not be distinct. The proof in this
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section does not bound the degree of g, but in later sections we will use the
existence of g in order to deduce such a bound. The main result of this
section is as follows.

Theorem 3.1. If nonconstant p, q ∈ M(Cm) share CM each of four finite
multisets S1, . . . , S4 of elements of C∞, where no Si is contained in the
union of the other Sj’s, then g ◦ p = g ◦ q for some nonconstant g ∈ C(x).
Conversely, if p, q ∈M(Cm) \C and g ∈ C(x) \C satisfy g ◦ p = g ◦ q then p
and q share CM each of infinitely many pairwise disjoint k-element subsets
of C∞, where k := deg(g).

The proof of Theorem 3.1 relies on the following several-variable gener-
alization (see [12, Thm. 3.5] or [16, p. 54]) of a classical result of Borel
[7]:

Lemma 3.2. For any n > 0, if r1, . . . , rn are entire functions on Cm which
have no zeroes, and r1 + · · · + rn = 0, then ri = αrj for some i 6= j and
some α ∈ C∗.

We begin by adapting this result to our setting. It is convenient to use
the language of divisors.

Definition 3.3. For any complex manifold M , the divisor of a nonconstant
p ∈ M(M) is the (possibly infinite) formal Z-linear combination of points
of M defined as the sum of the zeroes of p minus the sum of the poles of p,
where the zeroes and poles are counted with multiplicities. If p is introduced
as an element of C(x) then we view p as an element ofM(C∞) when defining
its divisor – thus, in this situation we allow ∞ as a possible zero or pole
of p, although we would not allow this if the same function p were instead
introduced as an element of M(C).

Lemma 3.4. Pick p, q ∈ M(Cm) \ C and fi, gi ∈ C(x) \ C (for i = 1, 2, 3),
and suppose that for each i the divisor of fi(p) equals the divisor of gi(q).
Then there exist integers n1, n2, n3 which are not all zero and for which
F (p)/G(q) is in C∗, where F :=

∏3
i=1 f

ni
i and G :=

∏3
i=1 g

ni
i . If in addition

each fi has at least one zero or pole which is not a zero or pole of any other
fj, then F and G are nonconstant.

Proof. Write hi(x, y) := fi(x)/gi(y) for i = 1, 2, 3. Since the field extension
C(x, y)/C has transcendence degree 2, the three elements hi ∈ C(x, y) must
be algebraically dependent. Thus there is a nonzero polynomial P (u, v, w) ∈
C[u, v, w] such that P (h1, h2, h3) = 0. Writing P (u, v, w) :=

∑
cr,s,tu

rvswt

where the sum is over a nonempty finite set ∆ of triples (r, s, t) of nonneg-
ative integers, and each cr,s,t is in C∗, it follows that

∑
cr,s,th

r
1h
s
2h
t
3 = 0.

Recall that the hi’s are in C(x, y), and substitute p for x and q for y to
obtain

∑
cr,s,tH

r
1H

s
2H

t
3 = 0 where Hi := hi(p, q) = fi(p)/gi(q). Since fi(p)

and gi(q) have the same divisor, their ratio Hi has no zeroes or poles. Thus,
for each triple (r, s, t) ∈ ∆, the function cr,s,tH

r
1H

s
2H

t
3 is entire and has no

zeroes, so by Lemma 3.2 there are two distinct triples (r, s, t) and (r′, s′, t′)
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in ∆ for which Hr
1H

s
2H

t
3 = αHr′

1 H
s′
2 H

t′
3 with α ∈ C∗. Writing n1 := r − r′,

n2 := s− s′, and n3 := t− t′, it follows that
∏3
i=1H

ni
i = α, or equivalently

F (p)/G(q) = α where F :=
∏3
i=1 f

ni
i and G :=

∏3
i=1 g

ni
i . Here n1, n2, n3 are

integers which are not all zero.
Now suppose that each fi has at least one zero or pole δi which is not

a zero or pole of any other fj . Since at least one ni is nonzero, it follows
that the corresponding δi is a zero or pole of F , so that F is nonconstant.
G(q) = F (p)/α is also nonconstant, so that G is nonconstant as well. �

In order to apply Lemma 3.4 to specific p, q ∈M(M), we need to exhibit
fi, gi ∈ C(x) for which fi(p) and gi(q) have the same divisor. In our situation,
fi will be a product of integer powers of the characteristic polynomials of
some shared multisets. By a slight abuse of notation, if S is a finite multiset
of elements of a complex manifold M then we also write S for the divisor
on M defined as the formal sum of the elements of the multiset S.

Lemma 3.5. Let p and q be nonconstant meromorphic functions on a com-
plex manifold M , and let S1 and S2 be disjoint nonempty finite multisets of
elements of C∞ such that p and q share each Si CM. Then there are inte-
gers n1, n2 > 0 and a nonconstant h ∈ C(x) such that the divisor of h(x)
is n1S1 − n2S2 and the divisors of h(p) and h(q) are equal. In particular,
when M is compact, there exists a γ ∈ C∗ for which h(p) = γh(q).

Proof. First assume that neither Si contains ∞. Let fi(x) :=
∏
α∈Si(x− α)

be the characteristic polynomial of Si. By hypothesis, the fi’s are noncon-
stant coprime polynomials such that, for each i, fi ◦ p and fi ◦ q have the
same zeroes CM. Then h(x) := f1(x)deg f2/f2(x)deg f1 is a nonconstant ra-
tional function whose numerator and denominator are monic polynomials
of the same degree, so that h(∞) = 1. Thus the zeroes of h(p) coincide
CM with the zeroes of f1(p)

deg f2 , which coincide CM with the zeroes of
f1(q)

deg f2 , and hence with the zeroes of h(q). Likewise, the poles of h(p)
agree CM with the poles of h(q). Since the zeroes of h consist of |S2| copies
of S1, and the poles of h consist of |S1| copies of S2, this proves the result
in case neither Si contains ∞.

If some Si contains∞ then let µ(x) be a Möbius transformation such that
µ(S1 ∪ S2) does not contain ∞. Then p̂ := µ ◦ p and q̂ := µ ◦ q share CM

each multiset Ŝi := µ(Si), where the Ŝi’s are nonempty and disjoint but do

not contain ∞. Thus there is a nonconstant ĥ ∈ C(x) such that ĥ(p̂) and

ĥ(q̂) have the same divisor, where in addition the divisor of ĥ is n1Ŝ1−n2Ŝ2
for some positive integers n1, n2. Then h := ĥ ◦ µ has divisor n1S1 − n2S2,
and the divisors of h(p) and h(q) are identical.

Finally, when M is compact, γ := h(p)/h(q) is a holomorphic map M →
C∞ which has no zeroes or poles, so the compactness of M implies γ ∈
C∗. �
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In fact, as can be seen from the proof, n1 and n2 can be chosen as |S2|
and |S1|, respectively. With these ingredients in hand, we now prove that if
p and q share four multisets then we obtain a weaker version of our desired
functional equation.

Proposition 3.6. For nonconstant p, q ∈ M(Cm), and any pairwise dis-
joint nonempty finite multisets S1, . . . , S4 of elements of C∞ such that p, q
share CM each Si, there exist h ∈ C(x)\C and γ ∈ C∗ such that h◦p = γh◦q.
Moreover, h can be chosen so that its divisor is a Z-linear combination of
S1, S2, S3, S4.

Proof. By Lemma 3.5, for each i = 1, 2, 3 there exist a nonconstant hi ∈ C(x)
and positive integers ui, vi such that hi(x) has divisor uiSi − viS4 and the
divisors of hi(p) and hi(q) equal one another. By Lemma 3.4, there are

integers n1, n2, n3 which are not all zero and for which h :=
∏3
i=1 h

ni
i is

nonconstant and h(p) = γ · h(q) for some γ ∈ C∗. Since the divisor of h is∑3
i=1(niuiSi − niviS4), this yields the result. �

Our proof of Theorem 3.1 also uses the following result of Coman and
Poletsky [9, Thm. 5.2]:

Lemma 3.7. If nonconstant p, q ∈M(Cm) are algebraically dependent then
there exist a compact Riemann surface R of genus 0 or 1, a holomorphic
map r : Cm → R, and p0, q0 ∈M(R) such that p = p0 ◦ r and q = q0 ◦ r.

Remark 3.8. The special case m = 1 of Lemma 3.7 was proved in [6,
Thm. 1] independently and simultaneously to [9].

In order to apply Lemma 3.7 to questions about shared multisets, we first
address shared multisets on a compact complex manifold.

Lemma 3.9. Let M be a compact complex manifold, and pick p0, q0 ∈
M(M) \ C. If S1, S2, S3 are disjoint nonempty finite multisets of elements
of C∞ such that p0, q0 share CM S1 and S2, and p−10 (S3)set ⊆ q−10 (S3)set,
then g ◦ p0 = g ◦ q0 for some nonconstant g ∈ C(x).

Proof. By Lemma 3.5 there exists a nonconstant rational function h and a
γ ∈ C∗ such that h ◦ p0 = γh ◦ q0. Since M is compact, each element of S3
has the form s = p0(θ) with θ ∈M , so that h(p0(θ)) = γh(q0(θ)) ∈ γh(S3).
Thus h(S3)set ⊆ γh(S3)set. Since by Lemma 3.5 all zeroes and poles of h are
in S1 ∪ S2, the set h(S3)set is contained in C∗. Since this set is finite and
nonempty, and is preserved by multiplication by γ, it follows that γn = 1
for some positive integer n, so that hn ◦ p0 = hn ◦ q0. �

We also use the following generalization of Picard’s little theorem:

Lemma 3.10. If R is a compact Riemann surface and h : Cm → R is a
nonconstant holomorphic map which is not surjective, then there exists a
biholomorphic map R → C∞, and R \ h(Cm) has size at most 2.
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Proof. For any nonempty finite subset S of R \ h(Cm), write R0 := R \ S.
Then h induces a nonconstant holomorphic map Cm → R0, so R0 cannot be
hyperbolic (e.g. by [26, Lemma 2.3]). Thus R has genus zero (so R ∼= C∞)
and S has size at most 2. �

Proof of Theorem 3.1. If g ◦ p = g ◦ q then p and q share CM the multiset
Sα := g−1(α) for any α ∈ C∞. Plainly |Sα| = deg(g) and Sα ∩ Sβ = ∅ when
α 6= β, and moreover Sα is a set whenever α is not one of the finitely many
critical values of g. Thus p and q share CM infinitely many pairwise disjoint
sets, each of which has size deg(g).

Conversely, we now assume that p and q share CM each of four pairwise
disjoint finite multisets S1, . . . , S4 of elements of C∞, where in addition no Si
is contained in the union of the other Sj ’s. Proposition 3.6 yields h ∈ C(x)\C
and γ ∈ C∗ such that h ◦ p = γh ◦ q, and thus p and q are algebraically
dependent. By Lemma 3.7, there exist a compact Riemann surface R, a
holomorphic map r : Cm → R, and p0, q0 ∈ M(R) such that p = p0 ◦ r and
q = q0 ◦ r. Since p and q are nonconstant, also p0, q0, r are nonconstant.
The identity h ◦ p = γh ◦ q now becomes h ◦ p0 ◦ r = γh ◦ q0 ◦ r, so that
h ◦ p0 = γh ◦ q0. Since R is compact, we can speak of the degrees of p0 and
q0 (i.e., the numbers of preimages of any point, counted with multiplicities),
and the above identity implies deg(h) · deg(p0) = deg(h) · deg(q0), whence
deg(p0) = deg(q0).

For any finite multiset S of elements of C∞, the multiset p−1(S) is the
union of all r−1(α) with α ∈ p−10 (S). Thus S is shared CM by p and q

if and only if the multiset differences p−10 (S) \ q−10 (S) and q−10 (S) \ p−10 (S)

each consist of elements of E := R \ r(Cm). Since p−10 (S) and q−10 (S) have
the same size, and they also have the same size after removing all copies of
elements of E from both of them, it follows that p−10 (S) and q−10 (S) contain
the same number of elements of E (when counted with multiplicities).

We may assume that at most two of the Si’s are shared CM by p0 and
q0, since otherwise Lemma 3.9 produces g ∈ C(x) \ C with g ◦ p0 = g ◦ q0,
whence also g ◦ p = g ◦ q. By relabeling the Si’s if needed, we may assume
that for i ∈ {1, 2} we have p−10 (Si) 6= q−10 (Si), so that p−10 (Si) \ q−10 (Si) and

q−10 (Si)\p−10 (Si) are disjoint nonempty multisets of the same size which each
consist of elements of E . We have |E| ≤ 2 by Lemma 3.10, and also the four
multisets p−10 (Si) are pairwise disjoint, as are the four multisets q−10 (Si).
Thus there are distinct α1, α2 ∈ E , and positive integers e1, e2, such that for
each i ∈ {1, 2}

• p−10 (Si) \ q−10 (Si) consists of ei copies of αi, and

• q−10 (Si) \ p−10 (Si) consists of ei copies of α3−i.

Since E = {α1, α2} is contained in p−10 (S1 ∪ S2) and q−10 (S1 ∪ S2), it follows

that p−10 (Sj) = q−10 (Sj) for j ∈ {3, 4}. Next, for T := S1 ∪ S2, the multiset

p−10 (T ) is the union of ∪2i=1(p
−1
0 (Si)∩q−10 (Si)) with e1 +e2 copies of each αi,

and this union also equals q−10 (T ). Hence p0 and q0 share CM the disjoint
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multisets T , S3, and S4, so by Lemma 3.9 there exists g ∈ C(x) \ C such
that g ◦ p0 = g ◦ q0, whence also g ◦ p = g ◦ q. �

We conclude this section with a variant of Theorem 3.1 addressing al-
gebraically dependent meromorphic functions which share three multisets.
This result will not be used elsewhere in this paper.

Proposition 3.11. Suppose algebraically dependent p, q ∈M(Cm)\C share
CM three disjoint nonempty finite multisets S1, S2, S3 of elements of C∞.
Then g(p) = αg(q) for some nonconstant g(x) ∈ C(x) and some α ∈ C∗.

Proof. By Lemma 3.7, we can write p = p0 ◦ r and q = q0 ◦ r for some
compact Riemann surface R, some holomorphic map r : Cm → R, and some
p0, q0 ∈ M(R). Writing E := R \ r(Cm), put Ai := E ∩ p−10 (Si) and Bi :=

E ∩ q−10 (Si). For each i ∈ {1, 2, 3}, one of the following holds:

(1) Ai = Bi = ∅
(2) Ai 6= ∅ = Bi
(3) Ai = ∅ 6= Bi
(4) Ai 6= ∅ and Bi 6= ∅.

Since the multisets p−10 (Si) and q−10 (Si) agree except for copies of elements

of Ai in p−10 (Si) and elements of Bi in q−10 (Si), we see that

• if (1) holds then p−10 (Si) = q−10 (Si)

• if (2) holds then |p−10 (Si)| > |q−10 (Si)|
• if (3) holds then |p−10 (Si)| < |q−10 (Si)|.

Since |p−10 (Si)| = deg(p0) · |Si|, it follows that

• if (1) holds then deg(p0) = deg(q0)
• if (2) holds then deg(p0) > deg(q0)
• if (3) holds then deg(p0) < deg(q0).

Thus there cannot be i, j for which two different cases among (1),(2),(3)
hold. Since |E| ≤ 2 by Lemma 3.10, there is at least one i for which Ai
is empty, so that (1) or (3) holds for that i; and likewise there is at least
one j for which Bj is empty, so that (1) or (2) holds for that j. Thus
(1) holds for at least one i, and every j satisfies either (1) or (4). Write
fi(x) :=

∏
α∈Si(x − α), and put ni := |Si|. If p−10 (Si) = q−10 (Si) for at

least two i’s, say i = 1 and i = 2, then for g := (f2)
n1/(f1)

n2 we see
that g ◦ p0 and g ◦ q0 have the same divisor, so their ratio is constant by
compactness of R, yielding the desired conclusion. Henceforth assume that
there is exactly one i for which p−10 (Si) = q−10 (Si). We may assume that (1)
holds for i = 3 but (4) holds for i = 1 and i = 2. Then A1, B1, A2, B2 each
have size 1, and A1 ∪ A2 and B1 ∪ B2 are the same two-element set. Here
deg(p0) = deg(q0), so that |p−10 (Si)| = |q−10 (Si)| for each i, whence since the

multisets of elements of C∞ \ E in p−10 (Si) and q−10 (Si) coincide, it follows

that the multisets of elements of E in p−10 (Si) and q−10 (Si) have the same size.
Since A1∩B1 = ∅, we have A1 = B2 = {α1} and A2 = B1 = {α2}, where, for
i ∈ {1, 2} and some positive integer ei, the multisets p−10 (Si) \ q−10 (Si) and
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q−10 (Si)\p−10 (Si) consist of ei copies of αi and ei copies of α3−i, respectively.
Putting h := (f1)

e2(f2)
e1 , it follows that h(p0) and h(q0) have the same

zeroes CM, so for g := hn3/(f3)
deg(h) the functions g(p0) and g(q0) have the

same divisor and hence have constant ratio. Finally, g(x) is nonconstant
since each element of S3 is a pole of g(x). �

4. Minimal relations between meromorphic functions

Theorem 3.1 yields nonconstant rational functions g(x) such that g(p) =
g(q), for prescribed p, q ∈ M(Cm) \ C satisfying certain shared-multiset
hypotheses. In this section we describe the collection of all rational functions
g(x) satisfying g(p) = g(q).

Definition 4.1. For any complex manifold M and any nonconstant p, q ∈
M(M), let G1(p, q) be the set of all g ∈ C(x) \ C such that g ◦ p = g ◦ q.
When the choices of p and q are clear, we write G1 for G1(p, q).

Proposition 4.2. Let M be a complex manifold, and pick p, q ∈M(M)\C.
If G1 is nonempty and g1(x) is a minimal-degree element of G1 then G1 =
{d ◦ g1 : d ∈ C(x) \ C}.

Proof. Let L = G1 ∪ C be the set of all g(x) ∈ C(x) for which g ◦ p = g ◦ q.
Then L contains C and is preserved by addition, multiplication, and division
by nonzero elements, so L is a field between C and C(x). Since L 6= C by
hypothesis, Lüroth’s theorem [30, Thm. 2] implies L = C(h(x)) for some
nonconstant h(x) ∈ L. For any minimal-degree g1 ∈ G1, since g1 ∈ L we
have g1 = µ ◦ h for some nonconstant µ ∈ C(x). The minimality of deg(g1)
implies µ(x) is a Möbius transformation, so that L = C(g1(x)), which implies
the conclusion. �

Remark 4.3. This proposition shows, when M is a Riemann surface, that
g1 is a coequalizer of p, q : C → C∞ in the category Riem of Riemann
surfaces and holomorphisms between them, since maps from C∞ to a Rie-
mann surface R is trivial unless R ∼= C∞. Although when dimM > 1, the
g1 will no longer be a category-theoretical coequalizer, by a slight abuse of
terminology we will still refer to it as a coequalizer.

5. Complete multiple values of the minimal-degree rational
function relating p and q

In this section we prove a result about the multiplicities of points under a
minimal-degree g ∈ G1; this will be used in our proof of Theorem 1.2. Recall
that if S is a multiset then Sset denotes the underlying set, and gcdmult(S)
denotes the greatest common divisor of the multiplicities of all the elements
of S.

Proposition 5.1. For a complex manifold M , quasi-equivalent nonconstant
p, q ∈ M(M), and their coequalizer g ∈ C(x), there are at most two points
α ∈ C∞ for which gcdmult(g−1(α)) > 1.
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We will deduce Proposition 5.1 from the following result, which is of
independent interest.

Proposition 5.2. Pick a nonconstant g ∈ C(x) and distinct α1, α2, α3 ∈
C∞. Suppose that ei := gcdmult(g−1(αi)) is at least 2 for each i = 1, 2, 3.
Then the triple (e1, e2, e3) is a permutation of an element of

N := {(2, 2, r) : r > 1} ∪ {(2, 3, s) : 3 ≤ s ≤ 5}.

Let π be a permutation of {1, 2, 3} such that the triple N := (eπ(1), eπ(2), eπ(3))
is in N , and let µ(x) be the unique Möbius transformation which maps the
points απ(1), απ(2), απ(3) to 1, 0, ∞, respectively. Then µ ◦ g = fN ◦ h for
some h ∈ C(x), where

f(2,2,r) =
(xr + 1)2

4xr

f(2,3,3) =
(x4 + 8x)3

64(x3 − 1)3

f(2,3,4) =
(x8 + 14x4 + 1)3

108(x5 − x)4

f(2,3,5) =
(x20 − 228x15 + 494x10 + 228x5 + 1)3

−1728(x11 + 11x6 − x)5
.

Conversely, for each N ∈ N we have

gcdmult(f−1N (1)) = N(1)

gcdmult(f−1N (0)) = N(2)

gcdmult(f−1N (∞)) = N(3),

and there is a finite set TN of Möbius transformations such that

fN (x)− fN (y) =

∏
ν∈TN (x− ν(y))

DN (x)
,

where DN (x) is the denominator exhibited in the definition of fN (x). Fi-
nally, for each ν ∈ TN there is a positive integer k with k < deg(fN ) such
that the composition ν ◦ ν ◦ · · · ◦ ν of k copies of ν equals x.

Remark 5.3. The rational functions fN (x) in Proposition 5.2 date back
at least to the 19-th century book of Klein [23]. These rational functions
generate the fields of rational functions invariant under the non-cyclic finite
rotation groups of the sphere, namely the groups of rotational symmetries
of the regular dihedron, tetrahedron, octahedron, or icosahedron. Thus the
field extension C(x)/C(fN (x)) is Galois with Galois group Dr, A4, S4 or
A5 according as N is (2, 2, r), (2, 3, 3), (2, 3, 4), or (2, 3, 5); moreover, the
elements of the Galois group are the maps x 7→ ν(x) with ν ∈ TN . For a
beautiful exposition of this material, see [34].
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Proof that Proposition 5.2 implies Proposition 5.1. Let α1, α2, α3 be distinct
points in C∞, and suppose that each value ei := gcdmult(g−1(αi)) is greater
than 1. Proposition 5.2 implies that µ ◦ g = fN ◦ h for some Möbius trans-
formation µ(x), some N ∈ N , and some h ∈ C(x). Since g(p) = g(q), we
have fN (h(p)) = fN (h(q)), so that

∏
ν∈TN (h(p) − ν(h(q))) = 0, and thus

h(p) = ν(h(q)) for some ν ∈ TN . By Proposition 5.2, the order of ν(x)
under composition is an integer k which is less than deg(fN ). We will give
two different proofs that this information yields a contradiction, one using
Galois theory and one from first principles.

We first give the algebraic proof. The function σ : C(x) → C(x) defined
by σ(u(x)) := u(ν(x)) is an order-k automorphism of the field C(x). Writing
L for the set of elements of C(x) fixed by σ, Artin’s theorem from Galois
theory [24, Thm. VI.1.8] implies that L is a subfield of C(x) such that
[C(x) : L] = k. Since L properly contains C, by Lüroth’s theorem we have
L = C(u(x)) for some nonconstant u(x) ∈ C(x), and it is known that [C(x) :
C(u(x))] = deg(u). But then u(h(p)) = u(ν(h(q)) = σ(u)(h(q)) = u(h(q)),
which contradicts minimality of deg(g) since deg(u ◦ h) = k · deg(h) <
deg(fN ) · deg(h) = deg(g).

We now give the self-contained proof. If ν(∞) 6= ∞ then the numerator
of the rational function ν(x) − x has degree 2 and hence has a zero in C.
Thus in any case the set S of fixed points of ν(x) is nonempty. Let ρ(x)
be a Möbius transformation such that ρ(∞) ∈ S and if |S| > 1 then also
ρ(0) ∈ S. Then θ := ρ−1 ◦ ν ◦ ρ is a Möbius transformation having |S| fixed
points and having the same order under composition as does ν(x), which
by Proposition 5.2 is an integer k less than deg(fN ). If |S| = 1 then ∞
is the unique fixed point of θ(x), so that θ(x) is a degree-one polynomial
and θ(x) − x is a nonzero constant β, whence θ(x) = x + β has infinite
order under composition, contradiction. Thus |S| > 1, so θ(x) fixes 0 and
∞, and hence θ(x) = ζx for some ζ ∈ C∗. Plainly the order of θ(x) under
composition is the order of ζ under multiplication, so that ζ is a primitive
k-th root of unity. Since ρ−1(h(p)) = ζρ−1(h(q)), it follows that G1 contains
xk ◦ ρ−1 ◦ h, contradicting minimality of deg(g). �

We have now reduced the proof of Proposition 5.1 to the proof of Propo-
sition 5.2. Our proof of the latter result uses the following version of the
Hurwitz genus formula for holomorphic maps C∞ → C∞:

Lemma 5.4. Any g ∈ C(x) of degree k > 0 satisfies

2k − 2 =
∑
α∈C∞

(
k − |g−1(α)set|

)
.

The Hurwitz formula immediately implies that for any nonconstant ra-
tional function g(x), there cannot be four distinct points α ∈ C∞ for which
|g−1(α)set| ≤ deg(g)/2, and hence there cannot be four distinct α ∈ C∞ for
which gcdmult(g−1(α)) > 1. However, there do exist nonconstant g ∈ C(x)
for which gcdmult(g−1(α)) > 1 for three distinct α ∈ C∞, and the goal of
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Proposition 5.2 is to describe them all. Although the existence of such func-
tions was known long ago, the classification of them is new, and our proof
of this classification is rather indirect and unexpected.

Proof of Proposition 5.2. Writing k := deg(g), we have |g−1(αi)set| ≤ k/ei,
so Lemma 5.4 implies that

2k − 2 ≥
3∑
i=1

(
k − |g−1(α)set|

)
≥

3∑
i=1

(
k − k

ei

)
,

whence
∑3

i=1 1/ei > 1. Since the ei’s are integers greater than 1, and since
1 = 1/3 + 1/3 + 1/3 = 1/2 + 1/4 + 1/4 = 1/2 + 1/3 + 1/6, it follows
that (e1, e2, e3) is a permutation of an element of N . Now let π, N , µ
be as in the statement of the result. It is easy to check directly that for
γ ∈ C∞ the multiplicity of fN at γ is N(1), N(2), N(3), or 1, according as
fN (γ) is 1, 0, ∞, or another value. Now view fN and ĝ := µ ◦ g as branched
coverings S2 → S2, and let B be the set of branch points of ĝ, which includes
the branch points of fN . Then the branched coverings fN and ĝ become
topological covering maps when we restrict the domain to avoid preimages
of B, yielding finite topological covering maps ψ : S2 \f−1N (B)→ S2 \B and
φ : S2 \ ĝ−1(B)→ S2 \B. Form the pullback of φ along ψ as usual, yielding
the diagram

X S2 \ f−1N (B)

S2 \BS2 \ ĝ−1(B)

π2

ψπ1
φ

where X := {(a, b) ∈ (S2 \ ĝ−1(B)) × (S2 \ f−1N (B)) : φ(a) = ψ(b)} and π1
and π2 are projections on the first and second coordinates, respectively. We
may compactify the topological covering map φ ◦ π1 : X → S2 \ B (see

e.g. [10, §2]) in order to obtain a branched covering η : X̂ → S2 which
factors as η = g ◦ π̂1 = fN ◦ π̂2 where π̂i is the induced extension of πi. For
each β ∈ S2, the multiplicity under ĝ of every point in ĝ−1(β) is divisible
by the multiplicity under fN of every point in f−1N (β), so by elementary
covering space theory it follows that π̂1 is an unbranched covering. Since S2

is simply connected, this implies that the restriction of π̂1 to any connected

component Y of X̂ will be a homeomorphism θ1 : Y → S2, so if θ2 is the
restriction of π̂2 to Y then ĝ = fN ◦ θ2 ◦ θ−11 . Here θ2 ◦ θ−11 is a finite-degree
branched covering S2 → S2. Of course, any such branched covering induces
a holomorphic function C∞ → C∞, which in turn is a rational function
h(x) such that µ ◦ g = fN ◦ h. Finally, the remaining assertions about the
factorization of fN (x)− fN (y) and the orders of elements of TN are easy to
verify directly, given that TN is the group (under the operation of functional
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composition) generated by the set UN defined as follows:

U(2,2,r) := {ζxe : ζr = 1, e ∈ {1,−1}}

U(2,3,3) :=
{
e2πi/3x,

x+ 2

x− 1

}
U(2,3,4) :=

{
ix,

x+ 1

x− 1

}
U(2,3,5) :=

{
ζx,

(ζ3 + 1)x+ 1

x− ζ2 − 1

}
where ζ := e2πi/5. �

Remark 5.5. The topological argument in the above proof can be written
in the language of algebraic geometry, by considering the normalizations of
components of the fibered product of the morphisms P1 → P1 induced by
fN and µ ◦ g. We chose topological language since we thought this would
be more familiar to some complex analysts in our audience.

6. Minimal shared multisets

In this section we prove a generalization of Theorem 1.6, by describing
the collection of all shared multisets for quasi-equivalent nonconstant p, q ∈
M(Cm). We begin by addressing the analogous question for meromorphic
functions on an arbitrary complex manifold.

6.1. Arbitrary complex manifolds.

Definition 6.1. For any complex manifold M and any nonconstant p, q ∈
M(M), a minimal shared multiset for p and q is a nonempty finite multiset
S of elements of C∞ such that S is shared CM by p and q, but no nonempty
proper sub-multiset of S is shared CM by p and q.

Lemma 6.2. If S is a finite multiset of elements of C∞, then S is shared
CM by p and q if and only if S is the union of finitely many minimal shared
multisets for p and q.

Proof. If S is shared, we may assume S is not. and T is a minimal shared
multiset contained in S, then S \ T is a shared multiset which is smaller
than S, so by induction on |S| we see that S is a union of minimal shared
multisets. Conversely, any union of shared multisets is itself shared. �

In light of the above result, in order to describe all shared multisets for
p and q, it suffices to describe the minimal shared multisets. We now intro-
duce a large collection of shared multisets Tα in case g(p) = g(q) for some
nonconstant g ∈ C(x). It will turn out that, in many situations, these Tα
comprise the collection of all minimal shared multisets.

Definition 6.3. Let p and q be quasi-equivalent nonconstant meromorphic
functions on a complex manifold M and let g ∈ C(x) be their coequalizer.
For any α ∈ C∞, let Rα be the multiset g−1(α), let gcdmult(Rα) denote the
greatest common divisor of the multiplicities of the elements of Rα, and let
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Tα be the multiset having the same underlying set as Rα, but in which the
multiplicity of each element is 1/ gcdmult(Rα) times the multiplicity of the
element in Rα.

Example 6.4. If p = −q ∈ M(M) \ C then x2 is a coequalizer, so that
R0 = {0, 0} has gcdmult(R0) = 2 and thus T0 = {0}; likewise T∞ = {∞},
but for any α /∈ {0,∞} we have Rα = {β,−β} with β2 = α, so that
gcdmult(Rα) = 1 and Tα = Rα.

Lemma 6.5. Let p, q be nonconstant meromorphic functions on a complex
manifold M such that G1 is nonempty. Then each Tα with α ∈ C∞ is a
nonempty finite multiset which is shared CM by p and q, and every minimal
shared multiset is contained in one of the multisets Tα. The collection of all
Tα’s depends only on p and q, and not on the choice of a minimal-degree
function in G1.

Proof. By taking preimages of α on both sides of the equation g ◦ p = g ◦ q,
we see that p, q share CM Rα, and hence also Tα. Plainly Tα is nonempty
and finite. By Proposition 4.2, any other choice of g has the form ĝ := µ ◦ g
for some Möbius transformation µ; denoting the corresponding multisets by

T̂α, it follows that Tα = T̂µ(α), so that the collection of all Tα’s equals the

collection of all T̂α’s. Finally, the union of the Tα’s is C∞, so for any minimal
shared multiset S there is some α for which S ∩ Tα is nonempty; but then
S ∩ Tα is a shared multiset, so minimality of S implies S ∩ Tα = S, whence
S ⊆ Tα. �

We now show that ifM is a compact complex manifold and G1 is nonempty
then the Tα comprise all minimal shared multisets for p and q.

Proposition 6.6. If p and q are nonconstant meromorphic functions on a
compact Riemann surface R, and G1 is nonempty, then the minimal shared
multisets for p and q are precisely the multisets Tα with α ∈ C∞.

Proof. Pick a minimal-degree g ∈ G1, and suppose that some Tα is not
a minimal shared multiset. Since Tα is shared CM by p and q, it is the
union of two or more (not necessarily distinct) minimal shared multisets.
Since gcdmult(Tα) = 1, these minimal shared multisets in Tα cannot all be
equal, so Tα contains two disjoint minimal shared multisets S1 and S2. By
Lemma 3.5, there are integers n1, n2 > 0, a nonconstant h ∈ C(x), and a
γ ∈ C∗ such that h◦p = γh◦q. For any β ∈ C∞ with β 6= α, the set h(Tβ)set
is a nonempty finite subset of C∗, and for any δ ∈ Tβ there is some ε ∈ M
such that δ = q(ε), whence δ′ := p(ε) is an element of Tβ satisfying

h(δ′) = h(p(ε)) = γ · h(q(ε)) = γ · h(δ).

Thus h(Tβ)set is preserved by multiplication by γ, so γ is a root of unity
and hence hn(p) = hn(q) for some positive integer n. By Proposition 4.2
we have hn = d ◦ g for some d ∈ C(x), so the divisor of hn is a Z-linear
combination of g−1(α)’s. But this is impossible because the divisor of hn
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has positive coefficients at the elements of S1 and negative coefficients at
the elements of S2. This contradiction shows that in fact every Tα must be
a minimal shared multiset. �

Corollary 6.7. For any multiset S shared by nonconstant quasi-equivalent
meromorphic functions p and q on a compact Riemann surface R with co-
equalizer g ∈ C(x) \C, there exists an integer m and a multiset A for which
Sm = g−1(A).

Proof. By Lemma 6.2 and Proposition 6.6, the multiset S is of the form⋃
α∈I Tα for a multiset I consisting of elements of C∞. Letting nα :=

gcdmult(g−1(α)) and m =
∏
α∈I nα we see that Sm = g−1

(⋃
α∈I{α}m/nα

)
.
�

6.2. Complex m-space. We now prove the following generalization of The-
orem 1.6, which involves both the shared multisets Tα from Definition 6.3
and the set G1 from Definition 4.1.

Theorem 6.8. Pick nonconstant quasi-equivalent p, q ∈ M(Cm) and let
g(x) be their coequalizer. Then one of the following occurs:

(6.8.1) The collection of all multisets Tα with α ∈ C∞ equals the collection
of all minimal shared multisets for p and q.

(6.8.2) For some β ∈ C∞, the multiset Tβ is the union of positive numbers
of copies of each of two distinct minimal shared multisets S1, S2,
and the collection of all minimal shared multisets consists of S1, S2,
and all Tα with α 6= β. In this case we can write p = p0 ◦ r and
q = q0 ◦ r for some r ∈ M(Cm) and some p0, q0 ∈ C(x) such that
g(p0) = g(q0), and for any such p0, q0, r there will be two Picard
exceptional values γ, δ of r, with γ ∈ p−10 (S1) ∩ q−10 (S2) and δ ∈
p−10 (S2) ∩ q−10 (S1), where in addition for each i = 1, 2 the multisets

p−10 (Si) and q−10 (Si) coincide except for copies of γ and δ.

Proof. Since g(p) = g(q), the functions p and q are algebraically indepen-
dent. By Lemma 3.7, there is a compact Riemann surface R for which
p = p0(r) and q = q0(r) for some p0, q0 ∈ M(R) and some holomorphic
map r : Cm → R. Thus for any multiset S of elements of C∞, the multiset
p−1(S) is the union of r−1(α) for α ∈ p−10 (S). It follows that p and q share

S CM if and only if the multiset differences A(S) := p−10 (S) \ q−10 (S) and

B(S) := q−10 (S) \ p−10 (S) both consist of elements of the set E := R\ r(Cm),
which has size at most 2 by Lemma 3.10.

Suppose (6.8.1) does not hold, so, by Lemma 6.5, some Tα is not a min-
imal shared multiset. Since gcdmult(Tα) = 1, it follows that Tα contains
two disjoint minimal shared multisets S1 and S2. The identity g(p0(r)) =
g(p) = g(q) = g(q0(r)) implies that g(p0) = g(q0), so in particular deg(p0) =
deg(q0). Thus p−10 (Si) and q−10 (Si) have the same size, so also Ai := A(Si)
and Bi := B(Si) have the same size ni. Proposition 6.6 implies that Si is
not shared by p0 and q0, so ni > 0. Thus Ai contains an element γi. Since
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Ai consists of elements of E , and |E| ≤ 2, disjointness of the Si’s implies
that Ai consists of ni copies of γi. Likewise, since Ai and Bi are disjoint, Bi
must consist of ni copies of γ3−i, so (6.8.2) holds. �

Example 6.9. The second possibility in Theorem 6.8 can actually occur.
For instance, let k, n be integers with 0 < k < n, put ζ := e2πi/n, and let
p := (ex + ζk)/(ex + 1) and q := ζp. Then we may choose g := xn, so
that g−1(1) = {1, ζ, ζ2, . . . , ζn−1} is the union of S1 := {ζ, ζ2, . . . , ζk} and
S2 := {ζk+1, ζk+2, . . . , ζn}. Here p has no preimages of 1 or ζk, so q has no
preimages of ζ or ζk+1, whence

p−1(S1) = p−1({ζ, ζ2, . . . , ζk−1}) = q−1({ζ2, ζ3, . . . , ζk}) = q−1(S1),

and likewise p−1(S2) = q−1(S2).

7. Bounding the degree of a rational function relating p and q

In this section we use the results of the previous two sections in order to
bound the degree of a minimal-degree element of G1 in terms of the sizes of
shared multisets. The combination of these bounds with Theorem 3.1 yields
Theorem 1.2.

Theorem 7.1. Pick nonconstant p, q ∈M(Cm), and let S1, . . . , Sn be finite
multisets of elements of C∞ such that p, q share CM each Si, where n ≥ 4
and no Si is contained in the union of the other Sj’s. Then g(p) = g(q) for
some nonconstant g ∈ C(x) such that deg(g) ≤ 1

n−3(−2 +
∑n

i=1|(Si)set|). If

n ≥ 5 then we can choose g(x) to have degree at most maxi|Si|. Moreover, if
n ≥ 5 and the Si’s are minimal shared multisets then maxi|Si| is the smallest
degree of any nonconstant g ∈ C(x) for which g(p) = g(q).

Remark 7.2. In order to obtain the best bound on deg(g) from Theo-
rem 7.1, it is sometimes advantageous to ignore some of the Si’s when ap-
plying the bounds in this result. For instance, if n > 5 then we can choose
g(x) to have degree at most the size of the fifth-smallest Si. Likewise, if
n = 5 and one Si is much larger than the others then the best bound will
come from applying the first bound in Theorem 7.1 to the other four Sj ’s.
This shows that the first bound is sometimes better than the second bound
when they both apply; conversely, if n ≥ 5 and the Si’s are sets of the same
size then the second bound is better than the first.

Proof. By Theorem 3.1 there is a nonconstant g ∈ C(x) such that g(p) =
g(q). Choose one such g(x) for which k := deg(g) is as small as possible.
For each i, let Ri be a minimal shared multiset contained in Si \ ∪j 6=iSj , so
that the Ri’s are pairwise disjoint. Let I be the set of values i for which Ri
has the form Tαi with αi ∈ C∞. Theorem 6.8 implies that |I| ≥ n− 2, and
in addition if |I| = n − 2 then there is some α ∈ C∞ for which Tα is the
union of copies of the two multisets Ri with i /∈ I. Thus if |I| = n− 2 then
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V := g(∪ni=1Ri) has size n−1, and g−1(V ) is the union of copies of the Ri’s,
so Lemma 5.4 yields

2k − 2 ≥
∑
α∈V

(
k − |g−1(α)set|

)
= (n− 1)k −

n∑
i=1

|(Ri)set|

≥ (n− 1)k −
n∑
i=1

|(Si)set|,

whence k ≤ 1
n−3
(
−2 +

∑n
i=1|(Si)set|

)
. If |I| ≥ n − 1 then V := g(∪i∈IRi)

has the same size as I, so Lemma 5.4 yields

2k − 2 ≥
∑
α∈V

(
k − |g−1(α)set|

)
= k|I| −

∑
i∈I
|(Ri)set|

≥ (n− 1)k −
n∑
i=1

|(Si)set|,

so that again k ≤ 1
n−3
(
−2 +

∑n
i=1|(Si)set|

)
.

By Proposition 5.1 there are at most two elements i ∈ I for which g−1(αi)
consists of more than one copy of Ri. Thus if n ≥ 5 then, since |I| ≥ n−2 ≥
3, there is some i ∈ I for which g−1(αi) = Ri, so that

k = deg(g) = |g−1(αi)| = |Ri| ≤ max({|Sj | : 1 ≤ j ≤ n}).

Finally, if n ≥ 5 then k = |Ri| for some i, and every Rj is contained in some
g−1(αj) and hence has size at most k, so k = maxnj=1|Rj |. �
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