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Abstract

In this paper, we iterate the explicit algorithm computing the Lusztig-Vogan bijection in
Type A (GLn) on dominant weights, which was proposed by Achar and simplified by Rush.
Our main result focuses on describing asymptotic behavior between the number of iterations for
an input and the length of the input; we also present a recursive formula to compute the slope
of the asymptote. This serves as another contribution to understanding the Lusztig-Vogan
bijection from a combinatorial perspective and a first step in understanding the iterative be-
havior of the Lusztig-Vogan bijection in Type A.
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1 Introduction

The Lusztig-Vogan bijection, conjectured independently by Lusztig in [3] and Vogan in [5], is
an important tool in the modular representation theory: in characteristic 0, the Lusztig-Vogan
bijection shows a connection to 2-sided cells in the affine Weyl group [3] and is crucial for proving
the Humphreys conjecture on the support varieties of tilting modules for quantum groups at unity
[1]. Precisely defined, the Lusztig-Vogan bijection is a correspondence between dominant weights
of a reductive algebraic group G and the set of G-equivariant vector bundles on nipotent orbits: let

Ωk := {(x, V )|x ∈ Nk, V ∈ Irr(ZGk
(x))} /(Gk-conjugacy),

where k is an algebraically closed field, Gk is a connected reductive algebraic group over k, X+

is the set of dominant weights for Gk, and Nk is the nilpotent cone of X+. The Lusztig-Vogan
bijection for Gk is a bijection between X+ and Ωk.

In [2], Bezukavinkov established this correspondence in full-generality and proved its bijectivity,
though he used highly non-elementary and non-explicit means. Recent efforts have been focusing on
understanding the Lusztig-Vogan bijection in a more explicit way and in the combinatorial context.
Achar, Hardesty, and Riche proved in [1] that the Lusztig-Vogan bijection is independent of the
characteristic, which generalized the result of characteristic 0 to the general case and proposed an
algorithm for computing the Lusztig-Vogan bijection for GLn (Type A). In [4], Rush greatly sim-
plified Achar’s algorithm and presents a combinatorial description of the Lusztig-Vogan bijection
for GLn. Rush’s simplification of Achar’s algorithm can be viewed as a map that sends an input of
a weakly decreasing sequence of integers to a tuple of weakly decreasing sequences of integers, as
illustrated below in Figure 1.

Little is known, however, about the properties of this combinatorial perspective of the Lusztig-
Vogan bijection in Type A. In this paper, we pursue a new direction: we consider the iteration of
Rush’s algorithm of computing Lusztig-Vogan bijection for GLn. Suppose we start with a sequence
of weakly decreasing integers σ. On the first iteration, we obtain a tuple of sequences of weakly
decreasing integers (µ1, µ2, · · · , µl). On the next iteration, we perform the operation on each of
the sequences with length at least 2. We repeat this algorithm until each sequence has zero or one
number. Consider, for example, we iterate on the sequence in Figure 1b:

(10, 10, 9, 7, 4, 2) −→ ((6, 5, 5), (), (26)) −→ (((), (), (16)), (), (26)).

Note that in the output of the first iteration, the second sequence has length 0 and the third se-
quence has length 1, so we stop iterating on those two sequences. Performing the algorithm on
(6, 5, 5) produces ((), (), (16)). The procedure terminates afterwards because each sequence of the
second output has length 0 or 1.

We iterate this map until it terminates and study the behavior of this algorithm for large in-
puts. We describe the asymptotic behavior between the number of iterations before the procedure
terminates and the length of the input (Theorem 22) and obtain a recursive formula to compute
the slope of the asymptote (Theorem 23). This paper serves as another contribution to the recent
effort of understanding the Lusztig-Vogan bijection from a combinatorial perspective and as a first
step to understand the iterative behavior of the Lusztig-Vogan bijection in Type A.
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(a) Lusztig-Vogan bijection (b) Example

Figure 1

In Section 2, we rigorously define the Lusztig-Vogan Bijection, and in Section 3, we present some
basic properties of the Type A Lusztig-Vogan bijection itself and also in the context of iteration.
In Section 4, we first attempt to provide a general formula of time for all inputs. The complexity
of Theorem 17 motivates us to define the average time (Definition 18) and prove the asymptotic
behavior of the average time respect to the length of the input. Finally, in Section 5, we propose
two possible directions to continue the work in this paper.

2 Definition of the Lusztig-Vogan Bijection Type A and Its
Iteration

In [4], Rush simplified the Type A Lusztig-Vogan bijection in terms of three maps: φ, E, and κ,
and we define them in this section.

Definition 1. Let σ be a sequence of integers a1, a2, · · · , an. We say σ is weakly decreasing if and
only if ai ≤ aj for all i ≥ j.

Definition 2. Let X = (X1, · · · , Xl) be a tuple of weakly decreasing sequences of positive integers,

and let n =
∑l
i=1 |Xi|. We say X is a weighted diagram of size n. The shape-class of this weighted

diagram is the partition of n determined by the row lengths of the Xi. We call each Xi a row, and
we denote Xi,j as the jth number in row i. The kth column denotes the set of all entries in the
from of Xi,k.

Definition 3. For any positive integer r, consider the r-th column of a weighted diagram X. We
define a total order ≺ on all entries in the r-th column: we say Xj,r ≺ Xi,r if and only if

1. Xj,r < Xi,r, or

2. Xj,r = Xi,r and j > i.

Definition 4. Let Dn,α be the set of all weighted diagrams with size n and shape-class α. Let
E : Dn,α −→ Dn,α be defined as follows: for any X ∈ Dn,α, perform the following operation on
each column r to obtain X ′. For each i, if Xi,r is preceded in the total order ≺ by k elements in
that column (i.e., there are exactly k values for which Xj,k ≺ Xi,k and j 6= i), we replace Xi,r with
Xi,r + 2k− (l−1), where l is the number of elements in the rth column. Then we have E(X) = X ′.

Note that map E does not change the size or the shape-class of the weighted diagram.
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Definition 5. Let map κ be defined as follow. Let X be any weighted diagram. For each positive
integer i, let µi be the non-decreasing sequence of all row-sums of the rows in X with length i.
Then we define κ(X) = (µ1, µ2, · · · , µl), where l is the maximum row lengths in X.

Before explicitly defining map φ we need the definition of a “maximal clump” of a sequence of
weakly decreasing integers.

Definition 6. Let σ = (a1, a2, · · · , an) be a sequence of weakly decreasing integers. Define a clump
of the sequence as a partition of the sequence such that the underlying set of each block is a set
of consecutive integers. Define the maximal clump of the sequence as the clump with the smallest
number of blocks.

To illustrate the above definition, let us consider the following sequence:

σ = (10, 10, 9, 8, 4, 3, 3, 0,−4,−4,−8).

The maximal clump of σ is (10, 10, 9, 8), (4, 3, 3), (0), (−4,−4), (−8). With this, we are ready to
define the map φ.

Definition 7. The map φ sends a sequence of weakly decreasing integers σ to a weighted diagram
X. We construct X column by column. Let us construct a sequence of weakly decreasing integers
σ1, σ2, · · · , with σ1 = σ and for any k ≥ 2, σk is obtained by removing elements used to construct
the k − 1th column of X from σk−1. To build the rth column of X, we assume σr is given. Let
σr = A1 ∪ A2 ∪ · · · ∪ Al be the maximal clump of σ. Let Bi be the underlying set of Ai (with
repetition removed) and number the elements of Bi in decreasing order. Define a set of integers Zr
as follow:

1. For each Bi of odd size, include in Zr the odd-numbered entries of Bi.

2. For each Bi of even size,

(a) If r is odd, include in Zr the odd-numbered entries of Bi;

(b) If r is even, include in Zr the even-numbered entries of Bi.

Each column of X consists of all elements of Zr arranged in decreasing order. If r = 1, the numbers
all occupy the first |Zr| rows. If r ≥ 2, place each number in a way that it is adjacent to the entry
in the (r − 1)th column containing either x or x + (−1)r. Repeating this process we can build X
with all elements of σ.

Note that the last step (placing elements of Zr into the weighted diagram) can be done uniquely
because we are choosing every other entry in each block –– it is impossible for two equal or con-
secutive numbers present in the same column. With those three maps, we are ready to define the
Lusztig-Vogan bijection Type A.

Definition 8. The map LV = φ ◦ E−1 ◦ κ is the Lusztig-Vogan bijection in Type A. It sends a
sequence of weakly decreasing integers to a tuple of sequences of weakly decreasing integers.

We show in Corollary 11 that this map is well-defined. Figure 1 illustrates the definition with
an example. Note that in Figure 1b, the second sequence of the output is an empty sequence ––
this is because the weighted diagram does not have any sequence of length 2.

Finally, we define the time of this algorithm in the context of iteration.
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Definition 9. Let t be a map from all sequences of weakly decreasing integers to non-negative
integers, such that t(σ) denotes the number of iterations needed to apply the algorithm until each
sequence has length 0 or 1. We call t(σ) the time of σ.

3 Preliminaries

In this section, we present several basic properties of Rush’s map itself and also in the context of
its iteration. Theorem 10 and Corollary 11 show Rush’s combinatorial map is well-defined.

Theorem 10. Let X be any weighted diagram with columns c1, c2, · · · , cm. Then X ∈ im(E) if
and only if for all 1 ≤ i ≤ m, when sorting all elements of ci in weakly decreasing order,

1. all consecutive terms differ by at least 2, and

2. shall two terms differ by 2, the larger one must be on the top of the smaller one in the original
arrangement.

In addition, E is injective.

Proof. Because all columns of X are independent to each other, let us consider an individual col-
umn. Let us first sort all elements of that column by order ≺: a1 ≺ a2 ≺ a3 ≺ · · · . Note that
by Definition 4, the difference between consecutive terms increases by 2. Thus, for all columns of
E(X), when sorted in non-decreasing order, the difference between consecutive terms are at most
2, so the first item is a necessary condition. To show the second item is necessary, notice that if two
terms differ by only two on the image, their corresponding entries must be equal on the original
weighted diagram. By Definition 3, the entry on the bottom always precedes the entry on the top.
Thus, on the image, the entry on the top must be larger than the entry on the bottom.

To show that those two requirements are sufficient, let us consider any column satisfying those
two requirements. If we sort all entries by order ≺: b1 ≺ b2 ≺ · · · ≺ bn. We can get the original
weighted diagram by replacing bk with bk + 2k − n− 1.

To show the injectivity of E, we note that map E does not change the order of the elements in the
column, and increase each element by an amount related to the number of elements preceding that
element, so each weighted diagram in im(E) can only admit one weighted diagram that produces
it.

Corollary 11. The map LV is well-defined. In other words, im(φ) ⊂ im(E).

Proof. For all weighted diagrams that is in the image of φ, by Definition 7, all of their columns are
arranged in decreasing order. Further, because we are selecting every other term in each block of
the maximal clump, the consecutive terms must differ by at least 2. By Theorem 10, the claim is
proved.

Corollary 12 is a basic but important property of the bijection. It governs the behavior of the
bijection when the entries are far apart and greatly simplifies our calculation.

Corollary 12. Let σ = (a1, a2, · · · , an) be a sequence of weakly decreasing integers, and assume
that ai − ai+1 ≥ 2 for all 1 ≤ i ≤ n − 1. Then LV (σ) = (a1 + k1, a2 + k2, · · · , an + kn), where
ki = 2(i− n+1

2 ).
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Proof. Because all consecutive terms of σ differ by at least 2, by Definition 7 φ(σ) has only one
column, with the r-th row has only one element ar. By Definition 3, ar is preceded by exactly n−r
elements. Thus, map E−1 sends each ar to ar − 2(n− r) + n = ar − n+ 2r. Because all sequences
are of length 1, LV (σ) has only one sequence, (a1 − n+ 1, a2 − n+ 3, a3 − n+ 5, · · · , an + n− 1),
as desired.

Theorem 13. The time for any sequence of weakly decreasing integers is finite.

Proof. We use induction on the length of the sequence. The base case is trivial. For inductive
step we assume t(σ) is finite for all |σ| ≤ n. Now we consider any sequence of weakly decreasing
integers σ1 of length n + 1: (a1, a2, · · · , an+1). If there exists two consecutive terms that differ
by 0 or 1, during the first iteration, the maximal clump of the sequence must have at least one
block with length at least 2. Thus, the output must be consisted of multiple sequences, and the
length of each sequence is at most n. If the difference between all consecutive terms are at least 2,
then by Corollary 12 every iteration reduces each difference by 2, until there are two consecutive
terms whose difference is 0 or 1, and we go back to the first case. By our inductive hypothesis, this
procedure always terminates in a finite number of turns.

4 Average Time and Asymptotic Behavior

As pointed out in Definition 9, we are interested in describing the time function, especially for
large inputs. We start by considering the following instances of inputs of length 2, 3, and 4, as an
attempt to compose a general formula for the time function.

4.1 Inputs of Length 2, 3, and 4

Let us start with inputs of length 2, (x, y) (x ≥ y). According to Corollary 12, the larger entry
decreases by one and the smaller one increases by one after each iteration, until their difference is at
most 1. At that point, the weighted diagram produced from the φ map has only one row with those
two elements. The final output, therefore, is ((), (x+ y)). For example, if we start with (10, 3):

(10, 3) −→ (9, 4) −→ (8, 5) −→ (7, 6) −→ ((), (13)),

This observation leads to Theorem 14.

Theorem 14. For all weakly decreasing sequence of integers of length 2 (x, y), we have t(x, y) =⌊
d
2

⌋
+ 1, where d = x− y. In addition, the final output is always ((), (x+ y)).

Proof. Each iteration decreases the difference by 2, until the difference is at most 1, at which point
the procedure terminates after one more iteration with output ((), (x+ y)).

Theorem 14 allows us to describe im(t).

Corollary 15. The image of t is the set of all non-negative integers.

Proof. By definition 9, time cannot be negative. Any input of length 1 has a time of 0. For any
n ∈ Z+, we have by Theorem 14 that t((2n−1, 0)) = n. Therefore that im(t) = Z≥0, as desired.

We find that the time of length 3 inputs has a formula in the same form as the input of length
2 (Theorem 14), shown below in Theorem 16.
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Theorem 16. For all weakly decreasing sequence of integers of length 3 (x, y, z), we have t(x, y, z) =⌊
min(d1,d2)

2

⌋
+ 1, where d1 = x− y and d2 = y − z.

Proof. Let us consider the first iteration. If d1, d2 ≥ 2, we have LV ((x, y, z)) = ((x − 2, y, z + 2));
if 0 ≤ d1 ≤ 1, d2 ≥ 2, we have LV ((x, y, z)) = ((z + 1), (x + y − 1)); if 0 ≤ d2 ≤ 1, d1 ≥ 2,
we have LV ((x, y, z)) = ((x − 1), (y + z + 1)); if (d1, d2) = (0, 0) or (1, 0) or (0, 1), we have
LV ((x, y, z)) = ((), (), (x + y + z)); if d1 = d2 = 1, we have LV ((x, y, z)) = ((y), (x + z)). All of
these cases can be checked easily by considering the weighted diagram generated by map φ and E−1.

We find the pattern is similar to that of length 2: Corollary 12 governs that after each iteration,
the difference between the consecutive terms decrease by 2 if each difference between consecutive
terms is at least 2; otherwise, the procedure terminates with the next iteration. We have, therefore,

that t(x, y, z) =
⌊
min(d1,d2)

2

⌋
+ 1.

Unfortunately, we find the time for length 4 inputs is much more complicated than the one for
length 2 and 3.

Theorem 17. Let σ = (x, y, z, w) be a weakly decreasing sequence. Assume that d1 = x− y, d2 =
y − z, d3 = z − w, f1 =

⌊
d1
2

⌋
, f2 =

⌊
d2
2

⌋
, f3 =

⌊
d3
2

⌋
. Then we have

t(σ) =



⌊
d1
2

⌋
+ 1 if f3 < f1, f2;

−
⌊
d2
2

⌋
+
⌊
d1+d3+mod(d2,2)

2

⌋
if f2 < f1, f3;⌊

d3
2

⌋
+ 1 if f1 < f2, f3;⌊

d2
2

⌋
+ 1 if f1 > f2 = f3 and 2 | d2d3;⌊

d1
2

⌋
+ 1 if f1 > f2 = f3 and 2 - d2d3;

d2 −
⌊
d1
2

⌋
if f2 > f1 = f3;⌊

d1
2

⌋
+ 1 if f3 > f2 = f1 and 2 | d1d2;⌊

d3
2

⌋
+ 1 if f3 > f2 = f1 and 2 - d1d2;⌊

min(d1,d2,d3)+1
2

⌋
+ 1 if f1 = f2 = f3.

Proof. If d1, d2, d3 ≥ 2, by Corollary 12, each iteration decreases each difference by 2. Thus for now
we assume that at least one of the three differences is 1 or 0.

Case 1: if (d1, d2, d3) = (≥ 2,≥ 2, 0/1) (note that this notation means “for any (d1, d2, d3) with
d1 ≥ 2, d2 ≥ 2, and d3 = 0 or 1”), LV (σ) = ((x − 2, y), (z + w + 2)), and further

⌊
x−y−2

2

⌋
+ 1

iterations are needed. Thus, in total, we have t(σ) =
⌊
d1
2

⌋
+ 1.

Case 2: if (d1, d2, d3) = (0/1,≥ 2,≥ 2), LV (σ) = ((z, w+2), (x+y−2)), and further
⌊
z−w−2

2

⌋
+ 1

iterations are needed. Thus, in total, we have t(σ) =
⌊
d3
2

⌋
+ 1.

Case 3: if (d1, d2, d3) = (≥ 2, 0/1,≥ 2), LV (σ) = ((x − 2, w + 2), (y + z)), and further⌊
x−w−4

2

⌋
+ 1 iterations are needed. Thus, in total, we have t(σ) = −

⌊
d2
2

⌋
+
⌊
d1+d3+mod(d2,2)

2

⌋
.

Note that mod(a, b) gives the remainder when a is divided by b.
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Case 4: if (d1, d2, d3) = (≥ 2, 0, 0) or (≥ 2, 1, 0) or (≥ 2, 0, 1), LV (σ) = ((x−1), (), (y+z+w+1)),
and the procedure immediately terminates. Thus, in total, we have t(σ) =

⌊
d2
2

⌋
+ 1.

Case 5: if (d1, d2, d3) = (≥ 2, 1, 1), LV (σ) = ((x− 2, w + 2), (y + z)), and further
⌊
x−w−4

2

⌋
+ 1

iterations are needed. Thus, in total, we have t(σ) =
⌊
d1
2

⌋
+ 1.

Case 6: if (d1, d2, d3) = (0/1,≥ 2, 0/1), LV (σ) = ((), (x + y − 2, z + w + 2)), and further⌊
x+y−z−w−4

2

⌋
+ 1 iterations are needed. Thus, in total, we have t(σ) = d2 −

⌊
d1
2

⌋
.

Case 7: if (d1, d2, d3) = (0, 0,≥ 2) or (0, 1,≥ 2) or (1, 0,≥ 2), LV (σ) = ((w+1), (), (x+y+z−1)),
and the procedure immediately terminates. Thus, in total, we have t(σ) =

⌊
d1
2

⌋
+ 1.

Case 8: if (d1, d2, d3) = (1, 1,≥ 2), LV (σ) = ((z, w + 2), (x+ y − 2)), and further
⌊
z−w−2

2

⌋
+ 1

iterations are needed. Thus, in total, we have t(σ) =
⌊
d3
2

⌋
+ 1.

Case 9: if (d1, d2, d3) = (0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 0), LV (σ) = ((), (), (), (x + y + z + w)),
and the procedure immediately terminates; if (d1, d2, d3) = (1, 1, 0), (1, 0, 1), (0, 1, 1), LV (σ) =
((w + 1), (), (x + y + z − 1)), and the procedure immediately terminates; if (d1, d2, d3) = (1, 1, 1),
LV (σ) = ((), (x+ y − 2, z +w+ 2)), and the procedure terminates in one iteration. Thus, in total,

we have t(σ) =
⌊
min(d1,d2,d3)+1

2

⌋
+ 1

Considering those nine cases proves the original claim.

Because we are interested in the behavior of the algorithm for larger inputs, and given the
complicated form of the time of inputs of length 4, we introduce the average time and instead
investigate its asymptotic behavior.

4.2 Definition of Average Time

Definition 18. Let n ≥ 0, k > 0 be integers. Let Sn,k be the set of all length k weakly decreasing
sequences whose first (largest) term is n and whose last (smallest) term is 0. Define avgk : Z≥0 −→ Z
by

avgk(x) =

∑
y∈Sx,k

t(y)

|Sx,k|
, for all nonnegative integer x.

In other words, avgk(x) gives the average value of t(y) across all y ∈ Sx,k. For example, S4,3

has five elements: (4, 4, 0), (4, 3, 0), (4, 2, 0), (4, 1, 0), (4, 0, 0), with time of 1, 1, 2, 1, 1, respectively.
Thus, avg3(4) = 6

5 .

4.3 Average Time for Length 2, 3, and 4

Here, we briefly revisit the conclusions in Section 4.1, and describe the asymptotic behavior of avgk
for k = 2, 3, and 4. The cases for k = 2 and 3 immediately follow from Theorem 14 and Theorem
16.

Corollary 19. The average time for inpute of length 2 is given by avg2(x) =
⌊
x
2

⌋
+ 1 .
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Figure 2: Average Time for Length 4
avg4(x), 1 ≤ x ≤ 60

Proof. By Definition 18, we have S2,x = {(x, 0)}; by Theorem 14, we have t(x, 0) =
⌊
x
2

⌋
+ 1. The

corollary then immediately follows.

Corollary 20. The asymptotic behavior of the average time for inputs of length 3 is given by
limx−→∞ avg3(x) = x+6

8 .

Proof. Given a large integer n and consider all weakly decreasing sequence of integers in the form
of (n,m, 0), we let d1 = n−m and d2 = m. We find that E(min(d1, d2)) = 1

4n. Thus, we have by
Theorem 16 that

lim
x−→∞ avg3(x) = E

(⌊
min(d1, d2)

2

⌋
+ 1

)
=

1

2
E(min(d1, d2))− 1

4
+ 1 =

n+ 6

8
,

as desired.

From the above two corollaries, we observe that avg2(x) is linear for both odd and even x, and
the slope is always 1

2 ; avg3(x) shows a linear asymptote for all x. In fact, avg4(x) also has a linear
asymptote for even and odd x, respectively, as shown below in Figure 2 and 3. Observe that the
constant term (1.468 and 1.626) differs in the lines of best fit of different parity, the slopes are the
same up to three significant figures (0.277). With this observation, we prove the following theorem.

Theorem 21. The graphs of avg4(x), 2 | x and avg4, 2 - x approach two lines, both of which have
slope 5

18 .
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(a) avg4(x), 2 | x and Line of Best Fit
y = 0.277x + 1.626, R2 = 0.9999

(b) avg4(x), 2 - x and Line of Best Fit
y = 0.277x + 1.468, R2 = 0.9980

Figure 3: Average Time for Length 4 by Parity

Proof. We recall the nine cases of Theorem 17. For both odd and even n, the expected value of
each case is linear with respect to n. Thus, avg4(x) approaches two lines based on the parity of n.
We claim that none of the last six cases contribute to the slope of the asymptote.

Let us take, for example, the sixth case. The number of weakly decreasing sequences satisfying
f2 > f1 = f3 (or

⌊
d2
2

⌋
>
⌊
d1
2

⌋
=
⌊
d3
2

⌋
) is O(n). The total number of elements of Sn,4 is

(
n+1
2

)
,

which is O(n2). Furthermore, the expected value of time for sequences in this case is O(n) (because

it approaches a line). Therefore, this case contributes O(n)O(n)
O(n2) = O(1) to the overall asymptote,

which is only the constant term.
The same logic applies to all of the last six cases. Thus, we only need to consider the first three

cases: namely, f3 < f1, f2; f2 < f1, f3; and f1 < f2, f3, all of which are equally likely with a proba-
bility of 1

3 . Note that the first and third cases are symmetric. We assume that n is sufficiently large.

Case 1: Given that f3 < f1, f2, we have

E(d3) =

∫ n
3

0
x(n− x)dx∫ n

3

0
(n− x)dx

+ k1 =
1

9
n+ k1,

where k1 is a constant. Thus, E(
⌊
d1
2

⌋
) = 2

9n−
k1+1

4 , and the slope is 2
9 .

Case 2: Given that f2 < f1, f3, we have E(d2) = 1
9n+ k1. Thus,

E

(
−
⌊
d2
2

⌋
+

⌊
d1 + d3 + mod(d2, 2)

2

⌋)
=

7

18
n+ k2,

in which k2 is a constant that takes two different values based on the parity of n, and the slope is 7
18 .

In conclusion, the slope of the asymptote is 1
3 ( 2

9 + 7
18 + 2

9 ) = 5
18 , as desired.

Note that the constant of the two asymptotes differ because of the second case (f2 < f1, f3). In
particular, they differ by 1

6 .
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4.4 Asymptotic Behavior of Average Time of Length n

Note that in the proof for Theorem 21, we determined that all cases besides the first three major
ones only contribute to the constant term. Further, while computing the first three cases, we
eventually used our conclusions for inputs of length 2. Using this idea, we may prove that the
asymptotic behavior of avgn is linear for any positive integer n. Further, we may prove a recursive
formula to compute the slope of the asymptote of the avgn.

Theorem 22. For any positive integer k ≥ 4, the graphs of avgk(n), 2 | n and 2 - n approach two
lines, both of which have the same slope.

Proof. We use induction on the length. The base cases are proven in Corollary 19, Corollary 20, and
Theorem 21. By Corollary 12, each iteration reduces each difference by 2 until at least one difference
is 0 or 1. Consider inputs of length n : {a1, a2, · · · , an}. For 1 ≤ k ≤ n− 1, assume dk = ak+1− ak.
Further assume fk =

⌊
dk
2

⌋
. Let S = {di | 1 ≤ i ≤ n − 1, for any 1 ≤ j ≤ n − 1, fi ≤ fj}; in other

words, S is the set of differences that are first reduced to one or zero in the same iteration. Let
us consider S1, a possible value for S. Let e be the number of turns before any differences reduce
to zero or one, and g be the remaining number of turns before the procedure terminates. Because
the expected value of any element of S is O(n), the expected value of e is also O(n). Further, after
a difference is reduced to zero, the sequence is reduced to a tuple of sequences, all of which have
length at most n− 2. The expected maximum time of all sequences in the tuple, by the inductive
hypothesis, is also O(n). Thus, we have

E(S1) = E(e) + E(g) = O(n) +O(n) = O(n).

Because the average time of all cases are O(n), avgn =
∑
piE(Si) is also O(n), where pi is the

probability that S = Si (we know
∑
pi = 1), as desired.

Theorem 23. For positive integer n, let cn be the slope of the asymptote of avgn(x), 2 | x. We
claim that c2 = 1

2 , c3 = 1
8 . Let c2,1 = c2 and c3,1 = c3,2 = c3. For n ≥ 4, we define a sequence

{cn,1, cn,2, · · · , cn,n−2, cn,n−1} recursively:

cn,1 = cn,n−1 =
n− 3

n− 1
cn−2 +

1

2(n− 1)2
;

cn,k =
n− 2

n− 1

(
n− 2

n− 3
cn−2 −

1

n− 3
cn−2,k−1

)
+

1

2(n− 1)2
for any 2 ≤ k ≤ n− 2.

We claim that cn = 1
n−1

∑n−1
i=1 cn,i.

Proof. Consider inputs of length n. Let {an}, {dn}, {gn}, and S carry the same notation as in
Theorem 22. We claim, similar to our claim in Theorem 21, that all sets S except those with
exactly one element contribute only to the constant term of the asymptote. Let us consider the
situation when |S| ≥ 2. The probability that S takes this particular value is O( 1

n|S|
), and we have

E(t) ∗ p(S) = O

(
n · 1

n|S|−1

)
≤ O(1),

so it only contributes the constant term. Thus, to compute the slope, it suffices to only consider S
with only one element. We claim that for all n and 1 ≤ k ≤ n−1, cn,k is the slope of the asymptote
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of the expected value of the time when S = {dk}, and we prove this claim by induction. The base
cases when n = 2 and n = 3 are trivial. For now we assume n ≥ 4. Assume

∑
di = m. We do

casework regarding the value of k.

Case 1: k = 1 or n− 1. By symmetry we only consider k = 1. This implies that d1 first reduces
to zero. Let us consider the weighted diagram in the next iteration: a1 and a2 are both in the first
row, and the remaining entries each occupies one row. Thus, the output only removes the first two
entries, not influencing the remaining entries. We find that the expected value of d1 given that it
first diminishes is

E(d1) =

∫ m
n−1

0 x 1
n−3 (m− x)n−3dx∫ m

n−1

0 (m− x)n−3dx
+ k1 =

1

(n− 1)2
m+ k1,

where k1 is a constant. Thus, it is expected to take

E

(⌊
d1
2

⌋)
=

1

2(n− 1)2
m+

k1
2
− 1

4

number of turns for d1 to diminish. Further, the remaining sequence is one with n− 2 entries, and
the expected value of the largest entry to that of the smallest one is

E = m− (n− 1)E(d1) =
n

n− 1
.

By inductive hypothesis, the expected number of turns after d1 diminishes for the procedure to ter-
minate is n

n−1cn−2. In total, the slope of the expected time when S = {d1} is n−3
n−1cn−2 + 1

2(n−1)2 =
cn,1 = cn,n−1.

Case 2: 2 ≤ k ≤ n− 2. Similarly, we find that

E(dk) =
1

(n− 1)2
m+ k1.

And it is expected to take 1
2(n−1)2m + k1

2 −
1
4 for dk to diminish. Now, at the iteration in which

dk diminishes, the first k − 1 lines of φ(σ) consist of the first k − 1 entries, the next line consist of
the next two entries, and the remaining entries each occupy a line. Thus, in the output, dk−1 and
dk+1 sum into one difference, with all other differences not influenced by the removal of dk. The
probability that this combined difference is the smallest difference is∫ m0

n−3

0
1

n−5x(m0 − (n− 3)x)n−5dx∫m0

0
1

n−3x(m0 − x)n−5dx
=

1

(n− 3)2
,

where m0 is the difference between the largest and smallest entry after dk diminishes. Therefore,
the expected number of iterations after dk diminished before the procedure terminates is given by

n− 2

n− 1
m

(
n− 2

(n− 3)2

n−3∑
i=1

cn−2,i −
1

(n− 3)
cn−2,k−1

)
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n cn
2 1/2=0.500
3 1/8=0.125
4 5/18=0.278
5 7/64=0.109
6 11/50=0.220
7 19/192=0.099
8 93/490=0.190
9 187/2048=0.091
10 193/1134=0.170

Table 1: First 9 Slopes of Asmptotes of avgn

=
n− 2

n− 1

(
n− 2

n− 3
cn−2 −

1

n− 3
cn−2,k−1

)
m.

In total, the slope is given by

n− 2

n− 1

(
n− 2

n− 3
cn−2 −

1

n− 3
cn−2,k−1

)
m+

1

2(n− 1)2
= cn,k.

We have shown that the slope of the expected time when S = {dk} is equal to cn,k. Because

each case is equally likely to happen with a probability of 1
n−1 , we have that cn = 1

n−1
∑n−1
i=1 cn,i,

as desired.

Table 1 summarizes the value of cn when n ranges from 2 to 10. Figure 4 plots the first 200
values of cn. We observe that the slopes form two curves, one for even n and one for odd n. This
is intuitive since in the induction of the proof to Theorem 23, we use cn−2 to prove the conclusion
for cn. Note that the curve for even n is above that for odd n. In addition, we observe that both
curves are strictly decreasing, which gives the following corollary:

Corollary 24. For any n ≥ 4, cn < cn−2.

Proof. By Theorem 23, we have

cn =
1

n− 1

n−1∑
i=1

cn,i

=
1

n− 1

(
2(n− 3)

n− 1
cn−2 + (n− 3)

(n− 2)(n− 2)

(n− 1)(n− 3)
cn−2 −

n− 2

(n− 1)(n− 3)
cn−2(n− 3)

)
+

1

2(n− 1)2

=
n2 − 3n

(n− 1)2
cn−2 +

1

2(n− 1)2
< cn−2,

as desired.
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Figure 4: First 200 Slopes of Asymptotes of avgn;
cn, 2 ≤ n ≤ 200

5 Future Work

We have shown a recursive formula for computing cn and proved that cn is strictly decreasing for
both 2 | n and 2 - n, respectively. We have not, however, obtained an explicit formula for cn, neither
have we shown any asymptotic behavior of cn. From Figure 4, we observe that the derivative of
the curve cn, 2 | n and cn, 2 - n are both increasing. Since we have shown the derivative is always
negative, we conjecture that both curves have a horizontal asymptote:

Conjecture 25. There exists positive constant d1, d2 such that limn−→∞ cn = d1 for 2 | n and
limn−→∞ cn = d2 for 2 - n. Further, d1 > d2.

In addition, we mention in Definition 2 that the weighted diagram of size n may be considered
as a partition of n (its shape-class). While iterating the Type A Lusztig-Vogan bijection, one can
track all weighted diagrams obtained and have a sequence of partitions of n for each input (weakly
decreasing sequence of integers) of length n. A possible direction is to explore this correspondence
–– for example, to reverse this correspondence –– given a sequence of partitions, is it possible to
find the set of weakly decreasing sequence of integers whose elements would produce this sequence
of partition?
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