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Abstract

Unsupervised generative models have been a popular approach to representing
molecules. These models extract salient molecular features to create compact vec-
tors that can be used for downstream prediction tasks. However, current generative
models for molecules rely mostly on structural features and do not fully capture
global biochemical features. Here, we propose a multi-view generative model that
integrates low-level structural features with global chemical properties to create a
more holistic molecular representation. In proof-of-concept analyses, compared to
purely structural latent representations, multi-view latent representations improve
model accuracy on various tasks when used as input to feed-forward prediction
networks. For some tasks, simple models trained on multi-view representations
perform comparably to more complex supervised methods. Multi-view represen-
tations are an attractive method to improve representations in an unsupervised
manner, and could be useful for prediction tasks, particularly in contexts where
data is limited.

1 Introduction

1.1 Deep learning models for molecular representation

Recent advances in machine learning have revolutionized molecular representations, specifically by
identifying features that are important for function. Supervised deep learning models in particular
have enjoyed large success for molecular property prediction [[1}2]. These models learn molecular
features that are highly attuned to a specific function, but these learned features may not generalize
well to other tasks. Furthermore, they typically require significant quantities of labeled training data
as they are trained on raw, low-level representations. Thus, developing a more abstract, meaningful
molecule-intrinsic representation could facilitate training and lead to more accurate prediction across
a wide array of tasks.

In recent years, variational autoencoders (VAEs) have become popular for creating broadly-tuned
unsupervised molecular representations [3, 4} |5} 6]. Since the features encoded in the learned
representation are not function-specific, the latent spaces created by VAEs could be suitable to use as

*Equal contribution
TCo-corresponding authors
$Current address: Genentech, 1 DNA Way, South San Francisco, CA, USA



Tower 1 Tower 2
SMILES RDKit features

Encoder

Multi-view latent
representation

Decoder

X, | X, |
Reconstructed Reconstructed
SMILES RDKit features

Figure 1: Architecture of multi-view two-tower VAE. For property prediction, molecules are first
encoded into their latent molecular representation and then passed as input to a separate prediction
model.

a general representation for downstream prediction tasks [4,[7]. In addition, VAEs can be used for de
novo molecular design by traversing the latent space to maximize or minimize specific properties and
then decoding the latent representations to obtain candidate molecules [4].

1.2 Multi-view representation fusion

Different views of the same data—e.g. RNA and protein, or audio and video, or image and text—often
contain complementary information. Multi-view representation fusion, a form of multi-view represen-
tation learning, seeks to integrate data across multiple modalities into a single, more comprehensive
representation [8 (9} [10]. This joint representation then facilitates the development of prediction mod-
els by enabling useful information to be readily extracted. One example application of fusion-based
multi-view learning is a bimodal deep autoencoder that combines audio and video data into a shared
representation [[11].

Here, we leverage multi-view representation fusion to improve molecular representations in un-
supervised generative models so that they are more useful for property predictions and de novo
design.

2 Two-tower molecule VAE for multi-view molecular representation

We present a bimodal “two-tower” VAE model that simultaneously encodes low-level structural
information and global-level molecular features that reflect emergent properties of a molecule (Figure
1). By integrating these two distinct but complementary views, we aim to create a richer shared
representation that can better capture the functional properties of a molecule based on its structure.

Our two-tower models build on two published single-tower VAEs, a character VAE (CharVAE) [4]]
and a grammar VAE (GVAE) [6]. Both of these published models use a string-based structural
representation known as the simplified molecular-input line-entry system (SMILES) [12] as training
input. The first tower of our two-tower VAE mimics these single-tower VAEs to capture local
structural features. The second tower encodes global chemical properties that are challenging to
capture at a local level. To ensure that our second tower encoded properties applicable to various
learning tasks, we used a set of 200 RDK:it features [[13]] similar to the approach taken by a supervised
model Chemprop [1]. These features include the number of aliphatic carbocycles or the number of
radical electrons in a molecule.



Table 1: Descriptions and summary statistics of the MoleculeNet datasets used.

Dataset Description No. of Task type No. of com- Metric
tasks pounds

ESOL Water solubility 1 Regression 1,128 RMSE

FreeSolv Hydration free en- 1 Regression 642 RMSE
ergy in water

Lipophilicity ~ Octanol/water distri- 1 Regression 4,200 RMSE
bution coefficients

HIV Inhibition of HIV 1 Classification 41,127 ROC-AUC
replication

BACE Inhibition of human 1 Classification 1,513 ROC-AUC
[-secretase 1

BBBP Toxicity 1 Classification 2,039 ROC-AUC

Tox21 Toxicity 12 Classification 7,831 ROC-AUC

Clintox Toxicity 2 Classification 1,478 ROC-AUC

SIDER Side effects of drugs 27 Classification 1,427 ROC-AUC

To construct a latent representation of the combined modalities, inputs for each tower are first
individually sent through several encoder layers before being passed simultaneously through a single
encoder. This produces the shared latent representation that is used as input for property prediction
(see 3.1 Experiments). Decoding is conducted similar to encoding; vectors in the latent space are
first passed through a single decoder and then through two separate decoders corresponding to the
structural input and RDKit features.

We trained our VAE model on 250,000 drug-like molecules from the ZINC molecule dataset [14],
with 5,000 randomly selected molecules held out for testing (see 3.2. Experiments). Molecular
features for the second tower were generated using DescriptaStorus [[1} 2].

3 Experiments

3.1 Property prediction using multi-view latent representations

We used 9 publicly available datasets from MoleculeNet [[15] to evaluate how well the multi-view
latent space from our VAEs could predict molecular properties (Table 1). For each dataset, we mapped
the input molecules to their latent vectors using the encoder portion of each VAE. We then fed these
embeddings into simple feed-forward networks (FFN5s) to predict the desired output properties. Latent
spaces resulting in higher prediction accuracy were interpreted as better molecular representations
since the same FFN was used for task prediction across all input representations.

Across all 9 data sets, the FFNSs trained on the latent representations of two-tower models outperformed
those trained on the latent representations of single-tower models. For some datasets (BBBP, ESOL),
the basic FFNs trained on the unsupervised two-tower encodings even performed comparably to
Chemprop [} 2], a state-of-the-art supervised model (Figure 2). This indicates that the inclusion of a
second tower improved the latent space’s utility for property prediction.

3.2 Molecule reconstruction and validity

Next, we verified that the addition of the second tower did not negatively affect the ability to
reconstruct molecules from their latent representations. We determined reconstruction accuracy and
validity as previously documented [5]]: each molecule was encoded and decoded 10 times, and the
proportion of the 100 decoded molecules identical to the input molecule was reported. We computed
validity by sampling 1,000 latent vectors from the prior distribution NV (0, I) and decoding each of
these vectors 100 times. Our two-tower model achieved higher reconstruction accuracy than the
single-tower counterparts, and maintained prior validities comparable to single-tower models (Table
2).

!with hyperparameters matching those used in this study, primarily an increase in latent space size
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Figure 2: Prediction accuracies of feed-forward networks (FFNs) trained using various latent repre-

sentations as input: structural representations

(light blue/orange), multi-view representations (dark

blue/orange). Prediction accuracy from Chemprop, a supervised model, is shown for reference
(green bars). Left: classification datasets from MoleculeNet on x-axis, ROC-AUC on y-axis. Right:
regression datasets from MoleculeNet on x-axis, root mean squared error (RMSE) shown on y-axis.

Table 2: Reconstruction accuracy and sample validity results.

Method Reconstruction  Validity
CharVA 45.6% 0.1%
Published CharVAE  44.6% 0.7%
Two-tower CharVAE  69.3% 0.2%
GVA 52.7% 5.1%
Published GVAE 53.7% 7.2%
Two-tower GVAE 61.8% 4.9%
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Figure 3: Left: random molecules sampled from prior distribution N (0, I) using the two-tower
GVAE model. Right: visualizing the local neighborhood of the two-tower GVAE model, starting
from the molecule in the center (outlined in black).



We also qualitatively examined the latent space of the two-tower GVAE for continuity in the neigh-
borhood of a molecule (Figure 3). Following a previously published approach [6], we generated 2
random orthogonal unit vectors in latent space and moved in combinations of these directions to
create a grid of latent vectors that were then decoded into molecules. Despite training the model on
both structural and chemical features, we still observe smooth transitions between molecules in the
grid, often by a single atom at a time.

4 Discussion

We present a multi-view generative model for molecular representation using a two-tower VAE.
We show that the resulting latent representation improves utility in predicting multiple independent
molecular properties compared to single-tower VAEs and may also offer a more interpretable latent
space. In the future, we aim to explore the generative capabilities of our two-tower model using
Bayesian optimization, and implement a two-tower approach built with graphical approaches to
molecular representation.
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