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ABSTRACT

Data augmentation techniques are essential for computer vision, yielding signif-
icant accuracy improvements with little engineering costs. However, data aug-
mentation for text has always been tricky. Synonym replacement techniques re-
quire a good thesaurus and domain-specific rules for synonym selection from the
synset, while backtranslation techniques are computationally expensive and re-
quire a good translation model for the language in interest.
In this paper, we present simple text augmentation techniques on the embed-
dings level, inspired by mixing-based image augmentations. These techniques
are language-agnostic and require little to no hyperparameter tuning. We evaluate
the augmentation techniques on IMDB and GLUE tasks, and the results show that
the augmentations significantly improve the score of the RoBERTa model.

1 INTRODUCTION

Data augmentation has been widely and successfully applied in computer vision (CV). Starting with
simple augmentations such as crop, reflection and translation (Krizhevsky et al., 2012), it rapidly
became a standard way to improve generalization of the computer vision models (Simonyan &
Zisserman, 2015; He et al., 2016) .

On the other hand, augmentations in natural language processing (NLP) have always been tricky. A
simple idea of synonym replacement (Zhang et al., 2015) requires an external data source (e.g., the-
saurus) and has additional engineering costs for synset selection algorithm. Other methods require a
pretrained language model (Kobayashi, 2018) or a translation system (Wieting et al., 2017; Edunov
et al., 2018) to rephrase the training texts. These approaches not only limit the set of languages
that can benefit from the data augmentation and make the low-resource language setups even more
challenging compared to English, but they also require significant additional computation.

Several NLP researchers have proposed to reapply computer vision methods such as Mixup (Guo
et al., 2019; Jindal et al., 2020; Guo, 2020) in a NLP setting. In this study, we show that a wider
range of computer vision augmentations are applicable to NLP and demonstrate their efficacy on the
IMDB dataset (Maas et al., 2011) as well as a popular set of NLU tasks – GLUE benchmark (Wang
et al., 2018).

We summarize our contributions as follows:

• We apply multiple computer vision inspired augmentations to NLP tasks;

• We show that a combined Mixup+Cutout augmentation can significantly improve
RoBERTa results on the GLUE benchmark;

• We propose a version of Nonlinear Mixup augmentation that substantially improves
RoBERTa scores on the IMDB dataset, but is ineffective on harder tasks;
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2 RELATED WORK

Augmentations in CV Krizhevsky et al. (2012) and He et al. (2016) have used simple image aug-
mentations such as image translations, horizontal reflections, and minor color modifications in their
fundamental works. These works demonstrated the importance of augmentations for image recog-
nition using deep neural networks. Konno & Iwazume (2018) use feature-map level augmentations
to improve generalization in a heavy class imbalance setting. Rusak et al. (2020) in their work show
that Gaussian or Speckle noise serves as a strong baseline against adversarial attacks.

A very interesting approach was proposed by Zhang et al. (2017). Their idea was that instead of
modifying a single image, it is possible to combine several images to produce a “soft” label that
describes this combination. Thulasidasan et al. (2019) demonstrated that such approach improves
neural network calibration. Yun et al. (2019) developed a more complex approach that combines
two images in a mosaic-way and Kim et al. (2020) moved that idea even further. Additionally,
many researchers such as Zhan et al. (2017) and Frid-Adar et al. (2018) have shown that Generative
Adversarial Networks (Goodfellow et al., 2014) can be used for augmentation in a wide variety of
applications ranging from remote sensing to medical imaging.

Augmentations in NLP The NLP community has not used augmentations as frequently as the CV
community. The fundamental papers such as Vaswani et al. (2017); Peters et al. (2018) do not use
any kind of augmentation.

An exception for this is the machine translation community which is extensively using methods
such as backtranslation to significantly improve the model quality (Sennrich et al., 2016; Edunov
et al., 2018), although this method is not directly an augmentation method as it requires additional,
although, unlabeled texts. Yu et al. (2018) used a method of data augmentation via backtranslation
for a question answering (QA) task, which uses an existing translation model instead of training one.

Zhang et al. (2015) use synonyms to improve classification quality and Wieting et al. (2017) replace
parts of the text using a language model.

Recently, Wei & Zou (2019) proposed a method of combining synonym replacement with random
insertion/deletion/swap for CNN and RNN networks which achieves the same accuracy as a normal
model while only using half of the training data.

On the other hand, simpler techniques similar to Zhang et al. (2017) have been overlooked by the
community. Guo et al. (2019) proposed WordMixup and SenMixup techniques that mix either word
embeddings or sentence embeddings and demonstrated the efficacy of the approach using CNN and
LSTM networks. Guo (2020) went on to propose a new variation of Mixup called Nonlinear Mixup
which performs better than his previous two methods. Jindal et al. (2020) demonstrated that it is
possible to apply Mixup to the hidden representations of a BERT classifier.

In this work, we demonstrate that it is possible to apply a wider range of computer vision techniques
for NLP tasks despite the fact that texts are discrete in nature and that the word sequences are
supposed to follow a specific, grammatical structure.

3 TEXT-MIXING AUGMENTATIONS

We adapt three data augmentation techniques used in computer vision – Mixup, Cutout, and CutMix
– for NLP. To apply mixing augmentations, the word embeddings of the input sentence are stacked
together to form a matrix A ∈ RN×d where N is the sequence length and d is the embedding
dimension. In other words, the i-th row of the matrix corresponds to the word embedding for the
i-th token in the sentence. Then, Mixup, Cutout, CutMix, or a combination of Mixup with Cutout is
applied by treating each matrix as a 1+1D image.

To draw an analogy, an RGB image is a 2+1D tensor (2 spatial dimensions, 1 feature dimension –
color), and text can be represented as a 1+1D embeddings matrix (1 spatial dimension, 1 feature
dimension). The main difference here is the variability of the spatial dimension size. While for the
images it is usually fixed to a certain value (e.g., 128), for the text, it is variable and usually all
sequences are padded to the longest sequence in the batch with zero vectors.
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Mixup Cutout CutMix
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Label Dog 0.5
Cat 0.5 Dog 1.0 Dog 0.6

Cat 0.4
Figure 1: A visual example of different mixing strategies. Source: Yun et al. (2019).

3.1 MIXUP

Zhang et al. (2017) proposed an image augmentation technique that combines two images and their
labels in a weighted way:

Xmixed = αX1 + (1− α)X2

ymixed = αy1 + (1− α)y2
(1)

Where the weight α is chosen from the beta distribution.

Our experiments (Section 5) suggest that a constant mixing value or a gaussian distribution can
perform significantly better on NLP tasks.

3.2 CUTOUT

DeVries & Taylor (2017) augment images by randomly cutting out a fixed shape from each image.
This is similar to dropout (Srivastava et al., 2014), because it forces the model to look at the entire
input to make the prediction, instead of relying on a small section. However, unlike dropout we only
apply cutout to half of the input images, while leaving the other half of images unchanged, following
the recommendations from DeVries & Taylor (2017). We remove a rectangular section with a width
of half the text length and height of half the embedding size. The position to be cut out is selected
uniformly from anywhere in the embedded text matrix.

3.3 CUTMIX

Following the success of Mixup and Cutout, Yun et al. (2019) proposed a similar method that com-
bines both ideas. An intuitive illustration of the method can be found in Figure 1. In order to
combine two input tensors, a random section is selected similar to Cutout. After that, instead of
zeroing out the corresponding features in the first example, they are replaced with the corresponding
features from the second example.

The resulting label is selected according to the CutMixed section size. This section size is not fixed
like it was in Cutout; instead, it is selected uniformly from the range of 0.3 to 0.7 of the total size of
the image, which ensures that over 1/4 of both images are always visible. The shape of the CutMixed
section is always proportional to the shape of the image (i.e. the ratio of the length to the width is
constant).

3.4 NONLINEAR MIXUP

Guo (2020) proposed the method of Nonlinear Mixup, where instead of mixing examples using
a single parameter α, a matrix Λ ∈ RN×d of the same size as the input is used. The values of
the matrix are randomly sampled from a gaussian distribution and then the inputs are mixed in the
following way:

Xmixed = Λ ◦X1 + (1− Λ) ◦X2 (2)

where ◦ denotes the element-wise product.
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Then, Guo (2020) flatten Λ and pass it through a linear layer which outputs a vector of size c, where
c is the number of classes. Finally, the sigmoid function is applied to each value of the output vector,
resulting in c numbers which corresponds to the degree that each class is weighted. Additionally,
Guo (2020) uses label embedding to represent the labels as a matrix M ∈ Rc×k, where each of the
c categories is encoded as a k-dimensional vector.

Building on Guo (2020), we use multiple methods to learn the mixing weights in Λ instead of
randomly sampling them. The most straightforward method is to train a second, smaller Transformer
network (Vaswani et al., 2017) that will use the input embeddings to predict the mixing weights. A
benefit of this method is that it can account for variable-length inputs.

Thus, the mixing of the embeddings and labels are computed in the following way:

Λi = Transformer(Xi), i ∈ 1, 2

Λ = σ([Λ1; Λ2]×Θ)

Λ̂ =
Λ

mean(Λ)

Xmixed = αΛ̂X1 + (1− α)(1− Λ̂)X2

ymixed = αy1 + (1− α)y2

(3)

where Θ ∈ R2d×d and d is the embedding dimension.

Even a small transformer is complex and has many weights, so a simper alternative is to use a linear
layer or a fully connected network. With this simplification, other steps to calculate Λ can also be
changed.

Λi = NN(Xi), i ∈ 1, 2

Λi =
Λi −mean(Λi)

std(Λi)
, i ∈ 1, 2

Λ̂ = σ(Λ1 − Λ2)

Xmixed = αΛ̂X1 + (1− α)(1− Λ̂)X2

ymixed = αy1 + (1− α)y2

(4)

The above version of Nonlinear Mixup is the most straightforward and the smaller network is trained
together with the main model. Both networks share the common goal of minimizing the regression
or classification loss. Another idea is an adversarial approach, where the smaller network acts as an
adversary that tries to maximize the loss of the main classification model, allowing the main model
to become more robust and generalize better to unseen examples.

4 DATASETS

We evaluate our augmentation methods using GLUE, The General Language Understanding Evalu-
ation benchmark (Wang et al., 2018). GLUE is a collection of datasets that measure general natural
language understanding capabilities. It is made up of a diverse set of tasks which uses either a single
or pair of sentences, and includes tasks that evaluate natural language inference, sentiment analysis,
and semantic similarity. It is a common text classification benchmark and was used in previous work
such as Devlin et al. (2018) and Liu et al. (2019).

In addition to GLUE, we also use the IMDB dataset (Maas et al., 2011), which is a sentiment analysis
task with a collection of 50,000 movie reviews. Unlike the GLUE benchmark, IMDB is only a single
task, so it is used to quickly evaluate the performance of our augmentation methods. Because IMDB
is just one task, it is less comprehensive than GLUE and does not reflect the effectiveness of our
augmentation methods on other, harder tasks such as natural language inference.
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5 EXPERIMENTS

Our finetuning procedure follows RoBERTa with minor changes. The only hyperparameters we
modify are the sequence length and number of training epochs, as well as the learning rate for select
tasks.

The original RoBERTa paper (Liu et al., 2019) padded all sequences to 512 tokens, but we find
that this is unnecessary for the vast majority of examples and instead pad all sequences to either 64
tokens (single sentence task) or 128 tokens (sentence-pair task).

In addition, the original RoBERTa paper finetuned for 10 epochs on every dataset. For our baseline
we train for the same amount on smaller datasets (CoLA, MRPC, STS-B, RTE) but decrease the
number of epochs for larger datasets (while making sure the model still converges). When training
with Mixup, we finetune for the same number of epochs as our baseline on larger datasets (SST-2,
QNLI, QQP, MNLI), while we finetune for twice as many epochs on the smaller datasets.

For two sentence classification tasks, we pad the first sequence of each example within a batch to
the same length before adding the SEP token and the second sequence (i.e. the SEP token is at the
same place for each example within a batch). This ensures that the first sequence of one example is
only mixed with the first sequence of a different example, and the second sequence of one example
is only mixed with the second sequence of another example.

Additionally, for Nonlinear Mixup we found that a smaller transformer or fully connected network
was too complex, so we use a simple linear layer in all experiments. Because the linear layer has to
be trained from scratch, the learning rate for the linear layer is increased by a factor of 10 and the
weight decay is set to 0.

Task-specific Modifications In order to achieve similar performance to the reported results, we
had to change some additional hyperparameters for some tasks. For SST-2 and QNLI, we switched
from the triangular scheduler to the Noam scheduler (Vaswani et al., 2017) in order for the baseline
scores to reach a similar score to the reported results. For other tasks, we found that changing the
learning rate improved the baseline score to be comparable with the reported results. We doubled
the learning rate for QQP to 2e-5 and halved the learning rate for RTE to 1e-5.

The modifications above were applied to both the baselines and the augmentation methods, but we
also made changes to two tasks just for Mixup. While most of the GLUE tasks involve two classes,
MNLI has three and STS-B has one (regression task). For MNLI, we mixed the one hot encoded
labels, while for STS-B we mixed the regression target.

Mixing Weight Selection One of the most important parts of Mixup and CutMix is how the weight
is chosen. In both Mixup (Zhang et al., 2017) and CutMix (Yun et al., 2019), the weight varies for
every sample and is drawn at random from a beta distribution. We experiment with other methods of
determining the weight, namely setting it to a constant and choosing it from a Gaussian distribution.

We find that using a Gaussian distribution centered at 0.1 with a standard deviation of 0.015 works
well for normal Mixup. For Nonlinear Mixup, we keep the mixing weight α constant at 0.1 instead
of sampling it from a distribution.

6 RESULTS

Regularizers Interaction As data augmentation has a regularizing effect, we also experiment with
turning off different forms of regularization (dropout, weight decay) used in the initial RoBERTa
fine-tuning process. We find that Mixup + Cutout works well with either dropout or weight decay,
but not both together (Table 2). Both types of regularization achieve improvements over the baseline,
but finetuning with weight decay obtains a higher score compared to finetuning with dropout. Based
on these results, we turn off dropout but continue to use weight decay for all of our Mixup methods.

GLUE benchmark results GLUE results for models trained with different mixing strategies are
presented in Table 1. The combination of Mixup+Cutout shows the most promising results and
usually improves upon our RoBERTa implementation. These two augmentation techniques have a
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RoBERTalarge CoLA SST-2 MRPC STS-B QNLI RTE QQP MNLI
Reported Results 68.0 96.4 90.9/- 92.4/- 94.7 86.6 92.2/- 90.2
Our implementation 68.7 96.7 90.2/93.1 92.5/92.2 94.6 86.6 91.9/89.2 90.7
Mixup 71.2 96.7 90.0/93.0 92.3/92.2 79.8
CutMix 70.7 89.7/92.7 91.8/91.5
Cutout 67.8 89.0/92.2 81.2
Mixup + Cutout 72.8 96.7 92.4/94.5 92.6/92.5 94.5 86.6 92.1/89.3 90.6

Table 1: Score of different methods on GLUE tasks, with best and second best scores marked.
Mixup+Cutout consistently performs better or on par with the baseline (no augmentation) with the
exception of QNLI (see Table 3) and MNLI, while other augmentation methods tend to perform
worse.

Mixup + Cutout CoLA MRPC RTE
+ Dropout + Weight Decay 61.57 88.97 76.90
+ Dropout - Weight Decay 60.35 88.48 75.81
- Dropout + Weight Decay 64.51 89.46 82.31
- Dropout - Weight Decay 64.71 89.46 81.95

Table 2: The effect of regularization techniques on smaller GLUE tasks. Notice that using dropout
with Mixup+Cutout usually hurts the final performance while the weight decay may be beneficial.

significant improvement on CoLA and MRPC, a smaller improvement on STS-B and QQP, is on par
with the baseline for SST-2 and RTE, and is slightly worse (by 0.1) on QNLI and MNLI.

Mixup alone also does better than the baseline on CoLA and acheives the same score as the baseline
on SST-2, but is generally worse for other tasks. CoLA and SST-2 are the only two single sentence
classification tasks in GLUE, so this suggests that Mixup alone works well with one sentence.

Interestingly, CutMix combines Mixup and Cutout in a more natural way but did not perform as well.
Furthermore, Cutout without Mixup actually performs worse than the no-augmentation baseline on
all tasks.

However, it should be noted that GLUE results are significantly affected by random seeding (Card
et al., 2020). All RoBERTalarge experiments were done with the same random seed, but we also
ran multiple RoBERTabase experiments with different random seeds and the results are noticeably
worse.

SST-2 QNLI
Reported Results 96.4 94.7
Our implementation 96.0 92.9
Mixup + Cutout 96.4 93.2

Table 3: Results for SST-2 and QNLI without the Noam scheduler. Mixup+Cutout performs better
than our baseline.

Using a Noam scheduler for SST-2 and QNLI improved the scores for both the baseline and the
augmentation methods, but it had a more noticeable effect on the baseline. With the triangular
scheduler used for other tasks, Mixup+Cutout did better than the baseline by 0.4 on SST-2 and 0.3
on QNLI.

However, after switching to the Noam scheduler, Mixup+Cutout was only on par with the baseline
for SST-2 and even performed worse by 0.1 for QNLI. This suggests that while the Noam scheduler
improved the score of the augmentation methods, it may need to be adapted (e.g. changing number
of warmup steps) to work better with Mixup+Cutout.

Nonlinear Mixup results Results of Nonlinear Mixup methods on IMDB and QNLI are presented
in Table 4. In Nonlinear Mixup (Random), the mixing weights Λ are randomly sampled with a mean
of 0.5, while Λ is the output of a linear layer in both Nonlinear Mixup (Normal) and (Adversarial).
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RoBERTabase IMDB QNLI
Our Baseline 91.29 92.46
Nonlinear Mixup (Random) 91.43 92.68
Nonlinear Mixup (Normal) 91.50 92.04
Nonlinear Mixup (Adversarial) 91.63 92.35

Table 4: Score of different Nonlinear Mixup methods on IMDB and QNLI.

Figure 2: Learning curves of Nonlinear Mixup (Normal) on IMDB (three random seeds) and QNLI
(one random seed).

All methods of Nonlinear Mixup perform better than the baseline for IMDB, but for QNLI the
baseline outperforms both normal and adversarial Nonlinear Mixup. This suggests that Nonlinear
Mixup helps on simple tasks like sentiment analysis but does not work on harder tasks such as
natural language inference.

Examining the mixing weights (Λ) of Nonlinear Mixup offers an explanation of the difference be-
tween tasks. For IMDB, the linear layer is very effective; for example, in one review, the words with
the highest corresponding Λ values (ordered from largest to smallest) are ”greatest”, ”loved”, ”unbe-
lievable”, ”hope”, ”sister”, and ”addict[ing]”. All of the words other than ”sister” are very important
for a sentiment analysis task and can concisely capture the opinion of the reviewer. The same trend
is true in other examples where most words with large Λ values are impactful, but a select few, such
as ”sister”, are irrelevant. Even though the linear layer that predicts Λ is unable to understand the
context of a word, is effective for this task because only a small set of words are important.

On the other hand, Λ for QNLI is hard to interpret, and the weights corresponding to words appear
random. For a natural language inference task, every word is important, because even grammar
words like ”although” can drastically alter the meaning of a sentence. Therefore, it is much harder
for a linear layer to assign useful weights without understanding the context that a word is in. From
the results in Table 4, it appears that random weights continue to outperform the baseline, but both
normal and adversarial versions of Nonlinear Mixup do worse. One explanation for the poor per-
formance is that the linear layer has overfit to the training examples and does not actually learn any
meaningful information. The random mixing appears to always do better than the baseline, but it
was done on only two tasks and needs more experimentation.

The learning curves of Nonlinear Mixup (Normal) on IMDB and QNLI show the differences be-
tween the tasks. After a certain amount of training data, Nonlinear Mixup consistently performs
better than the baseline on IMDB across three random seeds. It is intriguing that Nonlinear Mixup
augmentations are not effective with a small subset of data (less than 10% the total training data).
This suggests that Nonlinear Mixup still requires a certain threshold of data to train the linear layer
before yielding performance improvements.

The learning curve for QNLI shows that Nonlinear Mixup consistently performs worse than the
baseline, regardless of the amount of training data. This reinforces the explanation that the linear
layer simply cannot learn useful information for a NLI task without understanding the context of a
word.

7



7 PRACTICAL RECOMMENDATIONS

Here we provide a short list of recommendations that can be used for real-world applications:

• Use Mixup+Cutout combination to improve test performance of the model;

• A gaussian distribution N (µ = 0.1, σ2 = 0.015) usually works better than a beta distribu-
tion for the weight selection;

• Nonlinear Mixup may yield substantial improvements depending on the task

• Dropout negatively interacts with the mixing augmentations;

8 CONCLUSION

In this work, we showed that the computer vision augmentations such as Mixup, Cutout and CutMix
are applicable to NLP tasks when used on a word embedding level. We demonstrated that a combi-
nation of Mixup and Cutout can considerably improve the results of RoBERTa Large on the GLUE
benchmark with a minimal modifications, such as adding the mixing weight distribution and turning
off dropout. We proposed a new method of Nonlinear Mixup which achieved promising results on
IMDB but requires further experimentation.

This illustrates that a wider range of augmentations is applicable to natural language processing and
potentially opens a way to a broader adoption of computer vision techniques in NLP. Furthermore,
potentially the more simple (compared to Zhang et al. (2015) and Sennrich et al. (2016)) augmen-
tation techniques studied in this work can simplify the research and ease of application of modern
data-hungry algorithms for low-resource languages.
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