Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

December 7, 2021

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Imagine a game of Tic-Tac-Toe: instead of alternating turns, players get make a move if they out-bid the other player.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Imagine a game of Tic-Tac-Toe: instead of alternating turns, players get make a move if they out-bid the other player.

イロト 不得 トイヨト イヨト

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Imagine a game of Tic-Tac-Toe: instead of alternating turns, players get make a move if they out-bid the other player.

イロト 不得 トイヨト イヨト

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Imagine a game of Tic-Tac-Toe: instead of alternating turns, players get make a move if they out-bid the other player.

イロト 不得 トイヨト イヨト

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Imagine a game of Tic-Tac-Toe: instead of alternating turns, players get make a move if they out-bid the other player.

イロト 不得 トイヨト イヨト

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Imagine a game of Tic-Tac-Toe: instead of alternating turns, players get make a move if they out-bid the other player.

・ロト ・ 同ト ・ ヨト ・ ヨト

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

Definition (Bidding Games).

• two player zero sum games on a graph where each player has an objective node

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- each turn, highest bidding player moves
- players bid simultaneously
- players know each other's bidding history and budgets

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Both players pay their bid (as opposed to only the highest bidding paying)

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Both players pay their bid (as opposed to only the highest bidding paying)

・ロト ・ 同ト ・ ヨト ・ ヨト

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Both players pay their bid (as opposed to only the highest bidding paying)

・ロト ・ 同ト ・ ヨト ・ ヨト

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Both players pay their bid (as opposed to only the highest bidding paying)

イロト 不得 とうき とうとう

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Both players pay their bid (as opposed to only the highest bidding paying)

イロト 不得 とうき とうとう

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Both players pay their bid (as opposed to only the highest bidding paying)

イロト イポト イヨト イヨト

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Definition (Win n Times in a Row Game).

- all-pay bidding game with $\leq n$ turns
- player 1 wins if they out-bids player 2 n times in a row
- player 2 wins if they out-bids player 1 any turn
- assumes money is infinitely divisible
- tie breaking: if both players bid the same value, we consider player 1's bid higher

Figure: Visualizing WnR(n) on a graph

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

■ Alice bids 2 and Bob bids 0.2

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

■ Alice bids 2 and Bob bids 0.2

Alice bids 1.1 and Bob bids 0.6

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Alice bids 2 and Bob bids 0.2
- Alice bids 1.1 and Bob bids 0.6
- Alice bids 0.9 and Bob bids 1.2

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Alice bids 2 and Bob bids 0.2
- Alice bids 1.1 and Bob bids 0.6
- Alice bids 0.9 and Bob bids 1.2

Bob wins!

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2.

- Alice bids 2 and Bob bids 0.2
- Alice bids 1.1 and Bob bids 0.6
- Alice bids 0.9 and Bob bids 1.2

Bob wins!

Important notes:

• same game if Alice has budget 2 and Bob has budget 1 and each player halves their bids

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2.

- Alice bids 2 and Bob bids 0.2
- Alice bids 1.1 and Bob bids 0.6
- Alice bids 0.9 and Bob bids 1.2

Bob wins!

Important notes:

- same game if Alice has budget 2 and Bob has budget 1 and each player halves their bids
- *budget ratio* ratio of player 1's budget to player 2's budget

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2.

- Alice bids 2 and Bob bids 0.2
- Alice bids 1.1 and Bob bids 0.6
- Alice bids 0.9 and Bob bids 1.2

Bob wins!

Important notes:

- same game if Alice has budget 2 and Bob has budget 1 and each player halves their bids
- *budget ratio* ratio of player 1's budget to player 2's budget
- we will set players 2's budget as 1 in later games

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm To analyze the game, we assume both players use randomized strategies (eg. a strategy for Player 1 on the their first turn is to bid 1 or 0.5, each with probability $\frac{1}{2}$).

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm To analyze the game, we assume both players use randomized strategies (eg. a strategy for Player 1 on the their first turn is to bid 1 or 0.5, each with probability $\frac{1}{2}$).

Lower Value (val^{\downarrow}) : Player 1's probability of winning in the worse case scenario (ie. when Player 2 always plays the best strategy to counteract Player 1's strategy)

A D F A 目 F A E F A E F A Q Q

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm To analyze the game, we assume both players use randomized strategies (eg. a strategy for Player 1 on the their first turn is to bid 1 or 0.5, each with probability $\frac{1}{2}$).

Lower Value (val^{\downarrow}) : Player 1's probability of winning in the worse case scenario (ie. when Player 2 always plays the best strategy to counteract Player 1's strategy)

Upper Value (val^): Player 1's maximum probability of winning when Player 2's plays a strategy that maximizes their worse case scenario

うして ふゆ く は く は く む く し く

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm To analyze the game, we assume both players use randomized strategies (eg. a strategy for Player 1 on the their first turn is to bid 1 or 0.5, each with probability $\frac{1}{2}$).

Lower Value (val^{\downarrow}) : Player 1's probability of winning in the worse case scenario (ie. when Player 2 always plays the best strategy to counteract Player 1's strategy)

Upper Value (val^{\uparrow}) : Player 1's maximum probability of winning when Player 2's plays a strategy that maximizes their worse case scenario

When the Lower Value is equal to the Upper Value, we call this quantity Value.

A D F A 目 F A E F A E F A Q Q

Simple cases in WnR(2)

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm • $B_1 = 2$: Bid 1 on both turns guarantees winning, so the value of the game is 1.

Simple cases in WnR(2)

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

- $B_1 = 2$: Bid 1 on both turns guarantees winning, so the value of the game is 1.
- $B_1 = 1$: If player 1 wins the first round, player 2 will win the second bidding. Player 1 has no chance of winning two times in a row so the value of the game is 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The value of the game

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

Theorem

In the "win twice in a row" game, given initial budget ratio B_1 , the value of the game is 1 for $B_1 \ge 2$, 0 for $B_1 \le 1$ and $\frac{1}{n}$ for $B_1 \in [1 + \frac{1}{n}, 1 + \frac{1}{n-1})$ with $n \in \mathbb{Z}_{\ge 2}$.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

• Denote
$$B_1 = 1 + \frac{1}{n} + \epsilon$$
 with $n \in \mathbb{Z}_{\geq 2}$ and $\epsilon \in [0, \frac{1}{n-1} - \frac{1}{n}]$.

The value of the game

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

Theorem

In the "win twice in a row" game, given initial budget ratio B_1 , the value of the game is 1 for $B_1 \ge 2$, 0 for $B_1 \le 1$ and $\frac{1}{n}$ for $B_1 \in [1 + \frac{1}{n}, 1 + \frac{1}{n-1})$ with $n \in \mathbb{Z}_{\ge 2}$.

Proof.

• Let $B_1 = 1 + \frac{1}{n} + \epsilon$ with $n \in \mathbb{Z}_{\geq 2}$ and $\epsilon \in [0, \frac{1}{n-1} - \frac{1}{n})$.

• Next, we want to show a strategy for player 1 that has at least $\frac{1}{n}$ chance of winning.

うして ふゆ く は く み く む く し く し く

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm ■ In the first bidding, choose $\frac{m}{n}$ which $1 \le m \le n$ uniformly at random.

Bidding Games

- Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo
- What are Bidding Games?
- Win n Times in a Row
- Win 2 times in a row
- Approx. algorithm

■ In the first bidding, choose $\frac{m}{n}$ which $1 \le m \le n$ uniformly at random.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

By this we divided [0, 1] into n intervals, $[0, \frac{1}{n}], [\frac{1}{n}, \frac{2}{n}], \dots, [\frac{n-1}{n}, 1].$

Bidding Games

- Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo
- What are Bidding Games?
- Win n Times in a Row
- Win 2 times in a row
- Approx. algorithm

- In the first bidding, choose $\frac{m}{n}$ which $1 \le m \le n$ uniformly at random.
- By this we divided [0, 1] into n intervals, $[0, \frac{1}{n}], [\frac{1}{n}, \frac{2}{n}], \dots, [\frac{n-1}{n}, 1].$
- Any bid value that player 2 play must fall into some intervals

 [\frac{k}{n}, \frac{k+1}{n}]
 above. Now, denote B'_1, B'_2 as player 1 and 2's
 budget after the first bidding.

Bidding Games

- Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo
- What are Bidding Games?
- Win n Times in a Row
- Win 2 times in a row

Approx. algorithm

- In the first bidding, choose $\frac{m}{n}$ which $1 \le m \le n$ uniformly at random.
- By this we divided [0, 1] into n intervals, $[0, \frac{1}{n}], [\frac{1}{n}, \frac{2}{n}], \dots, [\frac{n-1}{n}, 1].$
- Any bid value that player 2 play must fall into some intervals

 [\frac{k}{n}, \frac{k+1}{n}]
 above. Now, denote B'_1, B'_2 as player 1 and 2's
 budget after the first bidding.

• If player 1 plays $\frac{k+1}{n}$: $B'_1 = B_1 - b_1 = \frac{n-k}{n} + \epsilon > \frac{n-k}{n} \ge 1 - b_2 = B'_2$ player 1 has more budget so player 1 always wins.

Bidding Games

- Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo
- What are Bidding Games?
- Win n Times in a Row
- Win 2 times in a row

Approx. algorithm

- In the first bidding, choose $\frac{m}{n}$ which $1 \le m \le n$ uniformly at random.
- By this we divided [0, 1] into n intervals, $[0, \frac{1}{n}], [\frac{1}{n}, \frac{2}{n}], \dots, [\frac{n-1}{n}, 1].$
- Any bid value that player 2 play must fall into some intervals

 [\frac{k}{n}, \frac{k+1}{n}]
 above. Now, denote B'_1, B'_2 as player 1 and 2's
 budget after the first bidding.
- If player 1 plays $\frac{k+1}{n}$: $B'_1 = B_1 - b_1 = \frac{n-k}{n} + \epsilon > \frac{n-k}{n} \ge 1 - b_2 = B'_2$ player 1 has more budget so player 1 always wins.
- Since player 1 would pick $\frac{k+1}{n}$ with probability $\frac{1}{n}$, the lower value is $\frac{1}{n}$.

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm • We also find a player 2 strategy that guarantees player 1 cannot win with probability over $\frac{1}{n}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

- We also find a player 2 strategy that guarantees player 1 cannot win with probability over $\frac{1}{n}$.
- Notice that $\epsilon < \frac{1}{n-1} \frac{1}{n}$. Then there exists an ϵ' such that $\epsilon' \in (\epsilon, \frac{1}{n-1} \frac{1}{n})$.

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

- We also find a player 2 strategy that guarantees player 1 cannot win with probability over $\frac{1}{n}$.
- Notice that $\epsilon < \frac{1}{n-1} \frac{1}{n}$. Then there exists an ϵ' such that $\epsilon' \in (\epsilon, \frac{1}{n-1} \frac{1}{n})$.

• Consider the strategy of choosing b_2 from the set $\{k(\frac{1}{n} + \epsilon') | 0 \le k \le n - 1\}$ uniformly at random.

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

- We also find a player 2 strategy that guarantees player 1 cannot win with probability over $\frac{1}{n}$.
- Notice that $\epsilon < \frac{1}{n-1} \frac{1}{n}$. Then there exists an ϵ' such that $\epsilon' \in (\epsilon, \frac{1}{n-1} \frac{1}{n})$.

- Consider the strategy of choosing b_2 from the set $\{k(\frac{1}{n} + \epsilon') | 0 \le k \le n 1\}$ uniformly at random.
- If $b_1 < b_2$, player 1 loses immediately.

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm Else if $b_1 > b_2 + \frac{1}{n} + \epsilon$. The budget ratio would be $\frac{B_1 - b_1}{1 - b_2} < \frac{(1 + \frac{1}{n} + \epsilon) - (b_2 + \frac{1}{n} + \epsilon)}{1 - b_2} < 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

so player 1 will lose the second bidding.

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm • Else if $b_1 > b_2 + \frac{1}{n} + \epsilon$. The budget ratio would be

$$\frac{B_1 - b_1}{1 - b_2} < \frac{\left(1 + \frac{1}{n} + \epsilon\right) - \left(b_2 + \frac{1}{n} + \epsilon\right)}{1 - b_2} < 1$$

so player 1 will lose the second bidding.
■ Hence, the only way for player 1 to win is play b₁ ∈ [b₂, b₂ + ¹/_n + ε].

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm • Else if $b_1 > b_2 + \frac{1}{n} + \epsilon$. The budget ratio would be

$$\frac{B_1 - b_1}{1 - b_2} < \frac{\left(1 + \frac{1}{n} + \epsilon\right) - \left(b_2 + \frac{1}{n} + \epsilon\right)}{1 - b_2} < 1$$

so player 1 will lose the second bidding.

- Hence, the only way for player 1 to win is play $b_1 \in [b_2, b_2 + \frac{1}{n} + \epsilon].$
- However, ¹/_n + ε < ¹/_n + ε', which means that for every b₁ there's at most 1 value of b₂ that player 1 could win.

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm • Else if $b_1 > b_2 + \frac{1}{n} + \epsilon$. The budget ratio would be

$$\frac{B_1 - b_1}{1 - b_2} < \frac{\left(1 + \frac{1}{n} + \epsilon\right) - \left(b_2 + \frac{1}{n} + \epsilon\right)}{1 - b_2} < 1$$

so player 1 will lose the second bidding.

- Hence, the only way for player 1 to win is play $b_1 \in [b_2, b_2 + \frac{1}{n} + \epsilon].$
- However, $\frac{1}{n} + \epsilon < \frac{1}{n} + \epsilon'$, which means that for every b_1 there's at most 1 value of b_2 that player 1 could win.
- This shows us that the upper value of the game is $\frac{1}{n}$. Thus, the value is $\frac{1}{n}$.

うして ふゆ く は く み く む く し く し く

1.0

1.5

0.5

0.0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2.0

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm • The game is much more complicated for higher n

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm The game is much more complicated for higher n
Computer algorithm to approximate lower value

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

- The game is much more complicated for higher n
- Computer algorithm to approximate lower value
- Simplify by assuming strategies consider finitely many bid values

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

- \blacksquare The game is much more complicated for higher n
- Computer algorithm to approximate lower value
- Simplify by assuming strategies consider finitely many bid values

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Uses linear programming to solve for optimal strategy

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

First, an example of how the algorithm runs in WnR(3) Budgets $B_1 = 1.75$ and $B_2 = 1$

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

First, an example of how the algorithm runs in WnR(3)

- Budgets $B_1 = 1.75$ and $B_2 = 1$
- **b**₁, $b_2 \in \{0, 1\}$

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm First, an example of how the algorithm runs in WnR(3)

- Budgets $B_1 = 1.75$ and $B_2 = 1$
- **b**₁, $b_2 \in \{0, 1\}$

Assume access to f(x, y)

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm First, an example of how the algorithm runs in WnR(3)

- Budgets $B_1 = 1.75$ and $B_2 = 1$
- **b**₁, $b_2 \in \{0, 1\}$
- Assume access to f(x, y)
- f(x, y) is value in WnR(2) with starting budgets x and y

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm First, an example of how the algorithm runs in WnR(3)

- Budgets $B_1 = 1.75$ and $B_2 = 1$
- **b**₁, $b_2 \in \{0, 1\}$
- Assume access to f(x, y)
- f(x, y) is value in WnR(2) with starting budgets x and y

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm First, an example of how the algorithm runs in WnR(3)

- Budgets $B_1 = 1.75$ and $B_2 = 1$
- **b**₁, $b_2 \in \{0, 1\}$
- Assume access to f(x, y)
- f(x, y) is value in WnR(2) with starting budgets x and y

	0	1
0	f(1.75,1) = 0.5	f(0.75,1) = 0
1	0	f(0.75,0) = 1

Table: Payoff matrix A

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

■ Goal is to optimize lower value

	0	1
0	f(1.75,1) = 0.5	f(0.75,1) = 0
1	0	f(0.75,0) = 1

Table: Payoff matrix A

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

■ Goal is to optimize lower value

■ Player 1 strategy assuming player 2 plays optimally

	0	1
0	f(1.75,1) = 0.5	f(0.75,1) = 0
1	0	f(0.75,0) = 1

Table: Payoff matrix A

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

■ Goal is to optimize lower value

Player 1 strategy assuming player 2 plays optimally

Find best 1 by 2 vector \mathbf{p} such that $\min(A \cdot \mathbf{p})$ is maximized

	0	1
0	f(1.75,1) = 0.5	f(0.75,1) = 0
1	0	f(0.75,0) = 1

Table: Payoff matrix A

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm ■ Goal is to optimize lower value

■ Player 1 strategy assuming player 2 plays optimally

Find best 1 by 2 vector \mathbf{p} such that $\min(A \cdot \mathbf{p})$ is maximized

 $\max_{p_1,p_2} \min(0.5p_1 + 0p_2, 0p_1 + 1p_2)$

	0	1
0	f(1.75,1) = 0.5	f(0.75,1) = 0
1	0	f(0.75,0) = 1

Table: Payoff matrix A

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

■ Goal is to optimize lower value

■ Player 1 strategy assuming player 2 plays optimally

Find best 1 by 2 vector \mathbf{p} such that $\min(A \cdot \mathbf{p})$ is maximized

•
$$\max_{p_1, p_2} \min(0.5p_1 + 0p_2, 0p_1 + 1p_2)$$

• $p_1 = \frac{2}{3}, p_2 = \frac{1}{3}$

	0	1
0	f(1.75,1) = 0.5	f(0.75,1) = 0
1	0	f(0.75,0) = 1

Table: Payoff matrix A

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm ■ Goal is to optimize lower value

■ Player 1 strategy assuming player 2 plays optimally

Find best 1 by 2 vector \mathbf{p} such that $\min(A \cdot \mathbf{p})$ is maximized

- $\max_{p_1, p_2} \min(0.5p_1 + 0p_2, 0p_1 + 1p_2)$ • $p_1 = \frac{2}{3}, p_2 = \frac{1}{3}$
- Note we consider min, not weighted average for player 2 strategy

	0	1
0	f(1.75,1) = 0.5	f(0.75,1) = 0
1	0	f(0.75,0) = 1

Table: Payoff matrix A

Another example

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

$$n = 3, B_1 = 2, \epsilon = 0.25$$

$$\max_{\mathbf{p}} \min(A \cdot \mathbf{p})$$

$$p = \begin{pmatrix} 0.368\\ 0.158\\ 0.158\\ 0.0\\ 0.316 \end{pmatrix}$$

	0	0.25	0.5	0.75	1
0	0.5	0.5	0.33	0.2	0
0.25	0	1	0.5	0.5	0.25
0.5	0	0	1	1	0.5
0.75	0	0	0	1	1
1	0	0	0	0	1

Table: Payoff matrix A

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm **Algorithm** Approximate value of WnR(n)

function VALUE (n, ϵ, B) $b \leftarrow \{n \cdot \epsilon : 0 \le n \le \frac{1}{\epsilon}\}$

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

Algorithm Approximate value of WnR(n)

$$\begin{array}{l} \textbf{function VALUE}(n, \, \epsilon, \, B) \\ b \leftarrow \{n \cdot \epsilon : 0 \leq n \leq \frac{1}{\epsilon}\} \\ \textbf{for } b_1 \in b, \, b_2 \in b \ \textbf{do} \\ B' \leftarrow \frac{B-b_1}{1-b_2} \\ \textbf{if } b_1 \geq b_2 \ \textbf{then} \\ \textbf{payoff}(b_1, b_2) \leftarrow \text{VALUE}(n-1, \epsilon, B') \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

Algorithm Approximate value of WnR(n)

$$\begin{array}{l} \mbox{function VALUE}(n,\,\epsilon,\,B) \\ b \leftarrow \{n \cdot \epsilon : 0 \leq n \leq \frac{1}{\epsilon}\} \\ \mbox{for } b_1 \in b,\, b_2 \in b \mbox{ do} \\ B' \leftarrow \frac{B-b_1}{1-b_2} \\ \mbox{if } b_1 \geq b_2 \mbox{ then} \\ \\ \mbox{payoff}(b_1,b_2) \leftarrow \mbox{VALUE}(n-1,\epsilon,B') \\ \mbox{else} \\ \\ \mbox{payoff}(b_1,b_2) \leftarrow 0 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

Algorithm Approximate value of WnR(n)

```
\begin{array}{l} \textbf{function VALUE}(n, \epsilon, B) \\ b \leftarrow \{n \cdot \epsilon : 0 \leq n \leq \frac{1}{\epsilon}\} \\ \textbf{for } b_1 \in b, b_2 \in b \ \textbf{do} \\ B' \leftarrow \frac{B-b_1}{1-b_2} \\ \textbf{if } b_1 \geq b_2 \ \textbf{then} \\ \quad \texttt{payoff}(b_1, b_2) \leftarrow \texttt{VALUE}(n-1, \epsilon, B') \\ \textbf{else} \\ \quad \texttt{payoff}(b_1, b_2) \leftarrow 0 \\ \textbf{end if} \\ \textbf{end for} \\ p \leftarrow \max_p \min_i \sum_j \texttt{payoff}(j, i) \cdot p(j) \end{array}
```

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Win n Times in a Row

Win 2 times in a row

Approx. algorithm

Algorithm Approximate value of WnR(n)

```
function VALUE(n, \epsilon, B)
     b \leftarrow \{n \cdot \epsilon : 0 < n < \frac{1}{\epsilon}\}
     for b_1 \in b, b_2 \in b do
          B' \leftarrow \frac{B-b_1}{1-b_2}
          if b_1 > b_2 then
                payoff(b_1, b_2) \leftarrow VALUE(n - 1, \epsilon, B')
          else
                payoff(b_1, b_2) \leftarrow 0
          end if
     end for
     p \leftarrow \max_p \min_i \sum_j payoff(j, i) \cdot p(j)
     return min<sub>i</sub> \sum_{j} payoff(j, i) \cdot p(j)
end function
```


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = ����

Graph

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへで