Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

December 7, 2021

What are Bidding Games?

Bidding Games

Matvey

 Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong LoWhat are Bidding Games?

Imagine a game of Tic-Tac-Toe: instead of alternating turns, players get make a move if they out-bid the other player.

What are Bidding Games?

Bidding
Games
Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

Imagine a game of Tic-Tac-Toe: instead of alternating turns, players get make a move if they out-bid the other player.

What are Bidding Games?

Bidding
Games
Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

in a Row
Win 2 times
in a row
Approx algorithm

Imagine a game of Tic-Tac-Toe: instead of alternating turns, players get make a move if they out-bid the other player.

What are Bidding Games?

Bidding
Games
Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

Imagine a game of Tic-Tac-Toe: instead of alternating turns, players get make a move if they out-bid the other player.

What are Bidding Games?

Bidding
Games
Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

Imagine a game of Tic-Tac-Toe: instead of alternating turns, players get make a move if they out-bid the other player.

What are Bidding Games?

Bidding
Games
Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

Imagine a game of Tic-Tac-Toe: instead of alternating turns, players get make a move if they out-bid the other player.

What are Bidding Games?

Bidding
Games

Matvey

 Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo
What are

 Bidding Games?Definition (Bidding Games).
■ two player zero sum games on a graph where each player has an objective node
■ each turn, highest bidding player moves

- players bid simultaneously
- players know each other's bidding history and budgets

All Pay Bidding Games

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

```
Win n Times
```

in a Row
Win 2 times
in a row
Approx. algorithm

Both players pay their bid (as opposed to only the highest bidding paying)

All Pay Bidding Games

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

```
Win n Times
```

in a Row
Win 2 times
in a row
Approx. algorithm

Both players pay their bid (as opposed to only the highest bidding paying)

All Pay Bidding Games

Bidding Games

Mat urey Borodin, Gayle Jj, Yifan King Mentor: Chin Hong Lo

What are Bidding Games?

```
Win n Times
```

in a Row
Win 2 times
in a row
Approx.
algorithm

Both players pay their bid (as opposed to only the highest bidding paying)

All Pay Bidding Games

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

```
Win n Times
```

in a Row
Win 2 times
in a row
Approx. algorithm

Both players pay their bid (as opposed to only the highest bidding paying)

All Pay Bidding Games

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

```
Win n Times
```

in a Row
Win 2 times
in a row
Approx.
algorithm

Both players pay their bid (as opposed to only the highest bidding paying)

All Pay Bidding Games

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are Bidding Games?

Both players pay their bid (as opposed to only the highest bidding paying)

Win n Times in a Row

Bidding Games

Definition (Win n Times in a Row Game).

- all-pay bidding game with $\leq n$ turns
- player 1 wins if they out-bids player $2 n$ times in a row
- player 2 wins if they out-bids player 1 any turn
- assumes money is infinitely divisible
- tie breaking: if both players bid the same value, we consider player 1's bid higher

Figure: Visualizing $\mathrm{WnR}(n)$ on a graph

Win n Times in a Row

Bidding Games

Matvey

 Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo
What are

 Bidding Games?Win n Times in a Row

Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2 .

Win n Times in a Row

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?Win n Times in a Row

Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2 .

■ Alice bids 2 and Bob bids 0.2

Win n Times in a Row

Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2 .

■ Alice bids 2 and Bob bids 0.2

- Alice bids 1.1 and Bob bids 0.6

Win n Times in a Row

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2 .

■ Alice bids 2 and Bob bids 0.2

- Alice bids 1.1 and Bob bids 0.6
- Alice bids 0.9 and Bob bids 1.2

Win n Times in a Row

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2 .

■ Alice bids 2 and Bob bids 0.2

- Alice bids 1.1 and Bob bids 0.6
- Alice bids 0.9 and Bob bids 1.2

Bob wins!

Win n Times in a Row

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2 .

■ Alice bids 2 and Bob bids 0.2

- Alice bids 1.1 and Bob bids 0.6
- Alice bids 0.9 and Bob bids 1.2

Bob wins!
Important notes:

- same game if Alice has budget 2 and Bob has budget 1 and each player halves their bids

Win n Times in a Row

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?Win n Times in a Row

Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2 .

■ Alice bids 2 and Bob bids 0.2

- Alice bids 1.1 and Bob bids 0.6
- Alice bids 0.9 and Bob bids 1.2

Bob wins!
Important notes:

- same game if Alice has budget 2 and Bob has budget 1 and each player halves their bids
- budget ratio - ratio of player 1's budget to player 2's budget

Win n Times in a Row

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?Win n Times in a Row

Consider a win 3 times in a row game where Alice, player 1, has a budget of 4 and Bob, player 2, has a budget of 2 .

■ Alice bids 2 and Bob bids 0.2

- Alice bids 1.1 and Bob bids 0.6
- Alice bids 0.9 and Bob bids 1.2

Bob wins!
Important notes:

- same game if Alice has budget 2 and Bob has budget 1 and each player halves their bids
- budget ratio - ratio of player 1's budget to player 2's budget
- we will set players 2's budget as 1 in later games

Value

Bidding
Games
Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?Win n Times in a Row

To analyze the game, we assume both players use randomized strategies (eg. a strategy for Player 1 on the their first turn is to bid 1 or 0.5 , each with probability $\frac{1}{2}$).

Value

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

To analyze the game, we assume both players use randomized strategies (eg. a strategy for Player 1 on the their first turn is to bid 1 or 0.5 , each with probability $\frac{1}{2}$).

Lower Value (val $\left.{ }^{\downarrow}\right)$: Player 1's probability of winning in the worse case scenario (ie. when Player 2 always plays the best strategy to counteract Player 1's strategy)

Value

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

To analyze the game, we assume both players use randomized strategies (eg. a strategy for Player 1 on the their first turn is to bid 1 or 0.5 , each with probability $\frac{1}{2}$).

Lower Value (val ${ }^{\downarrow}$): Player 1's probability of winning in the worse case scenario (ie. when Player 2 always plays the best strategy to counteract Player 1's strategy)

Upper Value (val^{\uparrow}): Player 1's maximum probability of winning when Player 2's plays a strategy that maximizes their worse case scenario

Value

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

To analyze the game, we assume both players use randomized strategies (eg. a strategy for Player 1 on the their first turn is to bid 1 or 0.5 , each with probability $\frac{1}{2}$).

Lower Value (val ${ }^{\downarrow}$): Player 1's probability of winning in the worse case scenario (ie. when Player 2 always plays the best strategy to counteract Player 1's strategy)

Upper Value ($v a l^{\uparrow}$): Player 1's maximum probability of winning when Player 2's plays a strategy that maximizes their worse case scenario

When the Lower Value is equal to the Upper Value, we call this quantity Value.

Simple cases in WnR(2)

```
Bidding
    Games
    Matvey
    Borodin,
Kaylee Ji,
Yifan Kang
    Mentor:
Chun Hong
    Lo
```

What are Bidding Games?

```
Win n Times
```

in a Row
Win 2 times in a row

- $B_{1}=2$: Bid 1 on both turns guarantees winning, so the value of the game is 1 .

Simple cases in WnR(2)

- $B_{1}=2$: Bid 1 on both turns guarantees winning, so the value of the game is 1 .
- $B_{1}=1$: If player 1 wins the first round, player 2 will win the second bidding. Player 1 has no chance of winning two times in a row so the value of the game is 0 .

The value of the game

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?
Theorem

In the "win twice in a row" game, given initial budget ratio B_{1}, the value of the game is 1 for $B_{1} \geq 2$, 0 for $B_{1} \leq 1$ and $\frac{1}{n}$ for $B_{1} \in\left[1+\frac{1}{n}, 1+\frac{1}{n-1}\right)$ with $n \in \mathbb{Z}_{\geq 2}$.

Proof.
■ Let $B_{1}=1+\frac{1}{n}+\epsilon$ with $n \in \mathbb{Z}_{\geq 2}$ and $\epsilon \in\left[0, \frac{1}{n-1}-\frac{1}{n}\right)$.

The value of the game

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

Theorem

In the "win twice in a row" game, given initial budget ratio B_{1}, the value of the game is 1 for $B_{1} \geq 2$, 0 for $B_{1} \leq 1$ and $\frac{1}{n}$ for $B_{1} \in\left[1+\frac{1}{n}, 1+\frac{1}{n-1}\right)$ with $n \in \mathbb{Z}_{\geq 2}$.

Proof.

- Let $B_{1}=1+\frac{1}{n}+\epsilon$ with $n \in \mathbb{Z}_{\geq 2}$ and $\epsilon \in\left[0, \frac{1}{n-1}-\frac{1}{n}\right)$.
- Next, we want to show a strategy for player 1 that has at least $\frac{1}{n}$ chance of winning.

Player 1's strategy in WnR(2)

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?- In the first bidding, choose $\frac{m}{n}$ which $1 \leq m \leq n$ uniformly at random.

Player 1's strategy in WnR(2)

Bidding

 GamesMatvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games? in a Row Win 2 times in a row- In the first bidding, choose $\frac{m}{n}$ which $1 \leq m \leq n$ uniformly at random.
- By this we divided $[0,1]$ into n intervals, $\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right], \ldots,\left[\frac{n-1}{n}, 1\right]$.

Player 1's strategy in WnR(2)

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

- In the first bidding, choose $\frac{m}{n}$ which $1 \leq m \leq n$ uniformly at random.
- By this we divided $[0,1]$ into n intervals, $\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right], \ldots,\left[\frac{n-1}{n}, 1\right]$.
- Any bid value that player 2 play must fall into some intervals $\left[\frac{k}{n}, \frac{k+1}{n}\right]$ above. Now, denote $B_{1}^{\prime}, B_{2}^{\prime}$ as player 1 and 2's budget after the first bidding.

Player 1's strategy in WnR(2)

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?- In the first bidding, choose $\frac{m}{n}$ which $1 \leq m \leq n$ uniformly at random.
- By this we divided $[0,1]$ into n intervals, $\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right], \ldots,\left[\frac{n-1}{n}, 1\right]$.
- Any bid value that player 2 play must fall into some intervals $\left[\frac{k}{n}, \frac{k+1}{n}\right]$ above. Now, denote $B_{1}^{\prime}, B_{2}^{\prime}$ as player 1 and 2's budget after the first bidding.
- If player 1 plays $\frac{k+1}{n}$:
$B_{1}^{\prime}=B_{1}-b_{1}=\frac{n-k}{n}+\epsilon>\frac{n-k}{n} \geq 1-b_{2}=B_{2}^{\prime}$ player 1 has more budget so player 1 always wins.

Player 1's strategy in WnR(2)

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

- In the first bidding, choose $\frac{m}{n}$ which $1 \leq m \leq n$ uniformly at random.
- By this we divided $[0,1]$ into n intervals, $\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right], \ldots,\left[\frac{n-1}{n}, 1\right]$.
- Any bid value that player 2 play must fall into some intervals $\left[\frac{k}{n}, \frac{k+1}{n}\right]$ above. Now, denote $B_{1}^{\prime}, B_{2}^{\prime}$ as player 1 and 2's budget after the first bidding.
- If player 1 plays $\frac{k+1}{n}$:
$B_{1}^{\prime}=B_{1}-b_{1}=\frac{n-k}{n}+\epsilon>\frac{n-k}{n} \geq 1-b_{2}=B_{2}^{\prime}$ player 1 has more budget so player 1 always wins.
- Since player 1 would pick $\frac{k+1}{n}$ with probability $\frac{1}{n}$, the lower value is $\frac{1}{n}$.

Player 2's strategy in WnR(2)

Bidding

Games
Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

- We also find a player 2 strategy that guarantees player 1 cannot win with probability over $\frac{1}{n}$.

Player 2's strategy in WnR(2)

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

- We also find a player 2 strategy that guarantees player 1 cannot win with probability over $\frac{1}{n}$.
- Notice that $\epsilon<\frac{1}{n-1}-\frac{1}{n}$. Then there exists an ϵ^{\prime} such that $\epsilon^{\prime} \in\left(\epsilon, \frac{1}{n-1}-\frac{1}{n}\right)$.

Player 2's strategy in WnR(2)

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

- We also find a player 2 strategy that guarantees player 1 cannot win with probability over $\frac{1}{n}$.
- Notice that $\epsilon<\frac{1}{n-1}-\frac{1}{n}$. Then there exists an ϵ^{\prime} such that $\epsilon^{\prime} \in\left(\epsilon, \frac{1}{n-1}-\frac{1}{n}\right)$.
- Consider the strategy of choosing b_{2} from the set $\left\{\left.k\left(\frac{1}{n}+\epsilon^{\prime}\right) \right\rvert\, 0 \leq k \leq n-1\right\}$ uniformly at random.

Player 2's strategy in WnR(2)

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

- We also find a player 2 strategy that guarantees player 1 cannot win with probability over $\frac{1}{n}$.
- Notice that $\epsilon<\frac{1}{n-1}-\frac{1}{n}$. Then there exists an ϵ^{\prime} such that $\epsilon^{\prime} \in\left(\epsilon, \frac{1}{n-1}-\frac{1}{n}\right)$.
- Consider the strategy of choosing b_{2} from the set $\left\{\left.k\left(\frac{1}{n}+\epsilon^{\prime}\right) \right\rvert\, 0 \leq k \leq n-1\right\}$ uniformly at random.
- If $b_{1}<b_{2}$, player 1 loses immediately.

Player 2's strategy in WnR(2)

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?■ Else if $b_{1}>b_{2}+\frac{1}{n}+\epsilon$. The budget ratio would be

$$
\frac{B_{1}-b_{1}}{1-b_{2}}<\frac{\left(1+\frac{1}{n}+\epsilon\right)-\left(b_{2}+\frac{1}{n}+\epsilon\right)}{1-b_{2}}<1
$$

so player 1 will lose the second bidding.

Player 2's strategy in WnR(2)

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

- Else if $b_{1}>b_{2}+\frac{1}{n}+\epsilon$. The budget ratio would be

$$
\frac{B_{1}-b_{1}}{1-b_{2}}<\frac{\left(1+\frac{1}{n}+\epsilon\right)-\left(b_{2}+\frac{1}{n}+\epsilon\right)}{1-b_{2}}<1
$$

so player 1 will lose the second bidding.

- Hence, the only way for player 1 to win is play $b_{1} \in\left[b_{2}, b_{2}+\frac{1}{n}+\epsilon\right]$.

Player 2's strategy in WnR(2)

 Lo- Else if $b_{1}>b_{2}+\frac{1}{n}+\epsilon$. The budget ratio would be

$$
\frac{B_{1}-b_{1}}{1-b_{2}}<\frac{\left(1+\frac{1}{n}+\epsilon\right)-\left(b_{2}+\frac{1}{n}+\epsilon\right)}{1-b_{2}}<1
$$

so player 1 will lose the second bidding.

- Hence, the only way for player 1 to win is play $b_{1} \in\left[b_{2}, b_{2}+\frac{1}{n}+\epsilon\right]$.
- However, $\frac{1}{n}+\epsilon<\frac{1}{n}+\epsilon^{\prime}$, which means that for every b_{1} there's at most 1 value of b_{2} that player 1 could win.

Player 2's strategy in WnR(2)

Bidding

 Games
Matvey

 Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo- Else if $b_{1}>b_{2}+\frac{1}{n}+\epsilon$. The budget ratio would be

$$
\frac{B_{1}-b_{1}}{1-b_{2}}<\frac{\left(1+\frac{1}{n}+\epsilon\right)-\left(b_{2}+\frac{1}{n}+\epsilon\right)}{1-b_{2}}<1
$$

so player 1 will lose the second bidding.

- Hence, the only way for player 1 to win is play $b_{1} \in\left[b_{2}, b_{2}+\frac{1}{n}+\epsilon\right]$.
- However, $\frac{1}{n}+\epsilon<\frac{1}{n}+\epsilon^{\prime}$, which means that for every b_{1} there's at most 1 value of b_{2} that player 1 could win.
- This shows us that the upper value of the game is $\frac{1}{n}$. Thus, the value is $\frac{1}{n}$.

Graph

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

Bidding
Games?
Win n Times in a Row

Win 2 times in a row

Motivation

```
Bidding
    Games
    Matvey
    Borodin,
Kaylee Ji,
Yifan Kang
    Mentor:
Chun Hong
        Lo
```

- The game is much more complicated for higher n

What are Bidding Games?

Win n Times in a Row Win 2 times in a row

Approx. algorithm

Motivation

```
Bidding
    Games
    Matvey
    Borodin,
Kaylee Ji,
Yifan Kang
    Mentor:
Chun Hong
    Lo
```

- The game is much more complicated for higher n
- Computer algorithm to approximate lower value

Motivation

- The game is much more complicated for higher n
- Computer algorithm to approximate lower value
- Simplify by assuming strategies consider finitely many bid values

Motivation

- The game is much more complicated for higher n
- Computer algorithm to approximate lower value
- Simplify by assuming strategies consider finitely many bid values
- Uses linear programming to solve for optimal strategy

Example with $\epsilon=1$

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?Win n Times in a Row Win 2 times in a row
Approx. algorithm

First, an example of how the algorithm runs in $\mathrm{WnR}(3)$

- Budgets $B_{1}=1.75$ and $B_{2}=1$

Example with $\epsilon=1$

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

First, an example of how the algorithm runs in $\mathrm{WnR}(3)$

- Budgets $B_{1}=1.75$ and $B_{2}=1$
- $b_{1}, b_{2} \in\{0,1\}$

What are Bidding Games? in a Row Win 2 times in a row
Approx. algorithm

Example with $\epsilon=1$

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games? in a Row Win 2 times in a row algorithmFirst, an example of how the algorithm runs in $\mathrm{WnR}(3)$

- Budgets $B_{1}=1.75$ and $B_{2}=1$
- $b_{1}, b_{2} \in\{0,1\}$
- Assume access to $f(x, y)$

Example with $\epsilon=1$

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?First, an example of how the algorithm runs in $\mathrm{WnR}(3)$

- Budgets $B_{1}=1.75$ and $B_{2}=1$
- $b_{1}, b_{2} \in\{0,1\}$
- Assume access to $f(x, y)$
- $f(x, y)$ is value in $\mathrm{WnR}(2)$ with starting budgets x and y

Example with $\epsilon=1$

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?First, an example of how the algorithm runs in $\mathrm{WnR}(3)$

- Budgets $B_{1}=1.75$ and $B_{2}=1$
- $b_{1}, b_{2} \in\{0,1\}$
- Assume access to $f(x, y)$
- $f(x, y)$ is value in $\mathrm{WnR}(2)$ with starting budgets x and y

Example with $\epsilon=1$

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?First, an example of how the algorithm runs in $\mathrm{WnR}(3)$

- Budgets $B_{1}=1.75$ and $B_{2}=1$
- $b_{1}, b_{2} \in\{0,1\}$
- Assume access to $f(x, y)$
- $f(x, y)$ is value in $\mathrm{WnR}(2)$ with starting budgets x and y

	0	1
0	$f(1.75,1)=0.5$	$f(0.75,1)=0$
1	0	$f(0.75,0)=1$

Table: Payoff matrix A

Optimization

Bidding

 GamesMatvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

Bidding Games?

- Goal is to optimize lower value

	0	1
0	$f(1.75,1)=0.5$	$f(0.75,1)=0$
1	0	$f(0.75,0)=1$

Table: Payoff matrix A

Optimization

Bidding

 GamesMatvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?- Goal is to optimize lower value
- Player 1 strategy assuming player 2 plays optimally

	0	1
0	$f(1.75,1)=0.5$	$f(0.75,1)=0$
1	0	$f(0.75,0)=1$

Table: Payoff matrix A

Optimization

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?- Goal is to optimize lower value
- Player 1 strategy assuming player 2 plays optimally
- Find best 1 by 2 vector \mathbf{p} such that $\min (A \cdot \mathbf{p})$ is maximized

	0	1
0	$f(1.75,1)=0.5$	$f(0.75,1)=0$
1	0	$f(0.75,0)=1$

Table: Payoff matrix A

Optimization

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

■ Goal is to optimize lower value

- Player 1 strategy assuming player 2 plays optimally

■ Find best 1 by 2 vector \mathbf{p} such that $\min (A \cdot \mathbf{p})$ is maximized
$■ \max _{p_{1}, p_{2}} \min \left(0.5 p_{1}+0 p_{2}, 0 p_{1}+1 p_{2}\right)$

	0	1
0	$f(1.75,1)=0.5$	$f(0.75,1)=0$
1	0	$f(0.75,0)=1$

Table: Payoff matrix A

Optimization

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?■ Goal is to optimize lower value

- Player 1 strategy assuming player 2 plays optimally

■ Find best 1 by 2 vector \mathbf{p} such that $\min (A \cdot \mathbf{p})$ is maximized
■ $\max _{p_{1}, p_{2}} \min \left(0.5 p_{1}+0 p_{2}, 0 p_{1}+1 p_{2}\right)$

- $p_{1}=\frac{2}{3}, p_{2}=\frac{1}{3}$

	0	1
0	$f(1.75,1)=0.5$	$f(0.75,1)=0$
1	0	$f(0.75,0)=1$

Table: Payoff matrix A

Optimization

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?■ Goal is to optimize lower value

- Player 1 strategy assuming player 2 plays optimally

■ Find best 1 by 2 vector \mathbf{p} such that $\min (A \cdot \mathbf{p})$ is maximized
■ $\max _{p_{1}, p_{2}} \min \left(0.5 p_{1}+0 p_{2}, 0 p_{1}+1 p_{2}\right)$

- $p_{1}=\frac{2}{3}, p_{2}=\frac{1}{3}$

■ Note we consider min, not weighted average for player 2 strategy

	0	1
0	$f(1.75,1)=0.5$	$f(0.75,1)=0$
1	0	$f(0.75,0)=1$

Table: Payoff matrix A

Another example

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?Win n Times in a Row algorithm

- $n=3, B_{1}=2, \epsilon=0.25$
- $\max _{\mathbf{p}} \min (A \cdot \mathbf{p})$
- $\mathbf{p}=\left(\begin{array}{c}0.368 \\ 0.158 \\ 0.158 \\ 0.0 \\ 0.316\end{array}\right)$

	0	0.25	0.5	0.75	1
0	0.5	0.5	0.33	0.2	0
0.25	0	1	0.5	0.5	0.25
0.5	0	0	1	1	0.5
0.75	0	0	0	1	1
1	0	0	0	0	1

Table: Payoff matrix A

Pseudocode

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games? in a Row Win 2 times in a rowApprox. algorithm

Algorithm Approximate value of $\mathrm{WnR}(n)$
function $\operatorname{Value}(n, \epsilon, B)$
$b \leftarrow\left\{n \cdot \epsilon: 0 \leq n \leq \frac{1}{\epsilon}\right\}$

Pseudocode

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?Algorithm Approximate value of $\mathrm{WnR}(n)$
function $\operatorname{Value}(n, \epsilon, B)$
$b \leftarrow\left\{n \cdot \epsilon: 0 \leq n \leq \frac{1}{\epsilon}\right\}$
for $b_{1} \in b, b_{2} \in b$ do
$B^{\prime} \leftarrow \frac{B-b_{1}}{1-b_{2}}$
if $b_{1} \geq b_{2}$ then
$\operatorname{payoff}\left(b_{1}, b_{2}\right) \leftarrow \operatorname{VALUE}\left(n-1, \epsilon, B^{\prime}\right)$

Pseudocode

Bidding
Games
Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

 Bidding Games?Algorithm Approximate value of $\mathrm{WnR}(n)$
function $\operatorname{Value}(n, \epsilon, B)$
$b \leftarrow\left\{n \cdot \epsilon: 0 \leq n \leq \frac{1}{\epsilon}\right\}$
for $b_{1} \in b, b_{2} \in b$ do
$B^{\prime} \leftarrow \frac{B-b_{1}}{1-b_{2}}$
if $b_{1} \geq b_{2}$ then
$\operatorname{payoff}\left(b_{1}, b_{2}\right) \leftarrow \operatorname{VALUE}\left(n-1, \epsilon, B^{\prime}\right)$ else

$$
\text { payoff }\left(b_{1}, b_{2}\right) \leftarrow 0
$$

Pseudocode

Algorithm Approximate value of $\mathrm{WnR}(n)$
function $\operatorname{Value}(n, \epsilon, B)$
$b \leftarrow\left\{n \cdot \epsilon: 0 \leq n \leq \frac{1}{\epsilon}\right\}$
for $b_{1} \in b, b_{2} \in b$ do
$B^{\prime} \leftarrow \frac{B-b_{1}}{1-b_{2}}$
if $b_{1} \geq b_{2}$ then
$\operatorname{payoff}\left(b_{1}, b_{2}\right) \leftarrow \operatorname{VALUE}\left(n-1, \epsilon, B^{\prime}\right)$
else
payoff $\left(b_{1}, b_{2}\right) \leftarrow 0$
end if
end for
$p \leftarrow \max _{p} \min _{i} \sum_{j} \operatorname{payoff}(j, i) \cdot p(j)$

Pseudocode

 LoAlgorithm Approximate value of $\mathrm{WnR}(n)$
function $\operatorname{Value}(n, \epsilon, B)$
$b \leftarrow\left\{n \cdot \epsilon: 0 \leq n \leq \frac{1}{\epsilon}\right\}$
for $b_{1} \in b, b_{2} \in b$ do
$B^{\prime} \leftarrow \frac{B-b_{1}}{1-b_{2}}$
if $b_{1} \geq b_{2}$ then
$\operatorname{payoff}\left(b_{1}, b_{2}\right) \leftarrow \operatorname{VALUE}\left(n-1, \epsilon, B^{\prime}\right)$
else
payoff $\left(b_{1}, b_{2}\right) \leftarrow 0$
end if
end for
$p \leftarrow \max _{p} \min _{i} \sum_{j} \operatorname{payoff}(j, i) \cdot p(j)$
return $\min _{i} \sum_{j}$ payoff $(j, i) \cdot p(j)$
end function

Graph

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

Bidding
Games?
Win n Times in a Row

Win 2 times in a row

Approx. algorithm

Graph

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

Bidding
Games?
Win n Times in a Row

Win 2 times in a row

Approx. algorithm

Graph

Bidding Games

Matvey Borodin, Kaylee Ji, Yifan Kang Mentor: Chun Hong Lo

What are

Bidding
Games?
Win n Times in a Row

Win 2 times in a row

Approx. algorithm

