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Graph Theory Fundamentals



Graphs

Definition of Graph

A graph is a set of vertices V that are connected by a set of edges E

with a function ψ that maps edges to unordered pairs of vertices.

Figure 1: An undirected graph

(Image from https://brilliant.org/wiki/graph-theory/)
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Graphs

Definition of Graph

A graph is a set of vertices V that are connected by a set of edges E

with a function ψ that maps edges to unordered pairs of vertices.

Figure 1: An undirected graph

(Image from https://brilliant.org/wiki/graph-theory/)
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Graphs

Definition of Directed Graph

A directed graph is a graph where each edge represents an ordered

pair of vertices (i.e. has orientation).

Figure 2: A directed graph with 7 vertices and 9 edges

(Image from https://en.wikipedia.org/wiki/Directed graph)
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Walks on Graphs

Definition of Walk

A walk on a graph G consists of an alternating sequence

V1E1V2E2 · · ·EnVn+1

where each Vi is a vertex and Ei is an edge connecting Vi and Vi+1.

Example:

A 1 B 2 B 3 C – length 3

D 5 A 6 D – length 2, closed
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Counting Walks On Graphs

From here, a natural question arises. For an arbitrary graph G , is

there a way to count the number of walks of length ℓ?
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Linear Algebra Fundamentals



Eigenvalues and Eigenvectors

Definition of Eigenvector and Eigenvalue

An eigenvector of a matrix A is a vector which, when multiplied

by A, gives a scalar multiple of itself. The scalar multiple is called

the corresponding eigenvalue.

This relationship can be modeled by the following equation:

Ax = λx

where x is the eigenvector and λ is the eigenvalue.
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The Adjacency Matrix

Definition of Adjacency Matrix

Given a graph G with n vertices, the adjacency matrix of G ,

denoted as A(G ), is an n× n matrix whose (i , j)-entry aij is equal

to the number of edges connecting vi to vj .
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The Adjacency Matrix

Example:

A(G) =


0 1 0 2

1 1 1 0

0 1 0 1

2 0 1 0


In this example, we denoted A as v1, B as v2, C as v3, and D as v4.
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Properties of the Adjacency Matrix

The adjacency matrix:

• is symmetric

• has real eigenvalues

• has trace equal to the number of loops in G
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Counting Walks on Graphs



Counting Walks on Graphs

Theorem 1.1

For a graph G , the number of walks of length ℓ for ℓ ≥ 1 that

begin at vertex vi and end at vertex vj is the (i , j)-entry of A(G )ℓ.

Proof:

By the principles of matrix multiplication, the (i , j)-entry of A(G )ℓ

is the sum of aii1ai1i2 . . . aaℓ−1aj which counts the number of paths

of length ℓ which pass through the vertices vi , vi1 , vi2 , . . . , viℓ−1
, vj

over all such combinations of vi , vi1 , vi2 , . . . , viℓ−1
, vj .
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Counting Walks on Graphs

Corollary 1.2

For a graph G , let λ1, λ2, . . . , λp be the eigenvalues of A(G ). For

each i , j , there exist real c1, c2, . . . , cp such that for all ℓ,(
A(G )ℓ

)
ij
= c1λ

ℓ
1 + c2λ

ℓ
2 + · · ·+ cpλ

ℓ
p.

Proof:

Let U be the matrix whose columns are orthonormal eigenvectors

of A(G ), u1, u2, . . . , up. Then we have A(G )ℓ = UDℓU−1 where D

is the diagonal matrix of the eigenvalues λ1, λ2, . . . , λp. Because U

is orthogonal, U−1 = UT and simplifying gives us

(A(G )ℓ)ij =
∑
k

uikλ
ℓ
kujk so ck = uikujk .
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Counting Closed Walks on Graphs

Corollary 1.3

For a graph G , let λ1, λ2, . . . , λp be the eigenvalues of A(G ).

Then the number of closed walks in G of length ℓ is

λℓ1 + λℓ2 + · · ·+ λℓp.

Proof:

Because closed walks begin and end at the same vertex, the

number of closed walks of length ℓ is just the sum of the diagonal

(trace) of A(G )ℓ. Because the trace of a matrix is the sum of its

eigenvalues and the eigenvalues of A(G )ℓ are λℓ1, λ
ℓ
2, . . . , λ

ℓ
p,

corollary 1.3 follows.
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Counting Closed Walks on the Complete Graph

Corollary 1.4

The number of closed walks on the complete graph Kp from

vertex vi to itself is

(A(Kp)
ℓ)ii =

1

p

(
(p − 1)ℓ + (p − 1)(−1)ℓ

)
.

Proof:

The adjacency matrix of Kp has 0’s on the diagonal and 1’s

everywhere else. The eigenvalues of A(Kp) are p − 1 and −1 with

a multiplicity of p − 1. We divide by p for an individual vertex vi

due to symmetry.
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The Matrix-Tree Theorem



Trees

Definition of Path

A path is a walk with no repeated vertices.

Definition of Tree

A tree is an undirected graph such that any two vertices are

connected by exactly one path.

Note that trees must also have no double edges as those would be

cycles of length 2. A tree on n vertices has n − 1 edges.
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Spanning Trees

Definition of Spanning Tree

A spanning tree of a graph G is a tree that has its vertices equal to

the vertices of G and its edges among the edges of G .

Example: Examples of spanning trees for the graph below include abc,

bde, and ace. ab is not spanning and acde is not a tree.

Figure 3: Complete Graphs

(Image from Algebraic Combinatorics by Richard Stanley)
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Counting Spanning Trees

Definition of Complexity

The complexity of a graph G , denoted κ(G ), is the number of

spanning trees of G .

The goal of the Matrix-Tree theorem is to determine κ(G ).
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Laplacian Matrix

Definition of Laplacian Matrix

The Laplacian matrix L(G ) of a graph G with p vertices is the

p × p matrix whose (i , j)-entry Lij is determined by:

Lij =

−mij if i ̸= j and there are mij edges between vi and vj

deg(vi ) if i = j

where deg(vi ) is the number of edges incident to vi .

Note that L is a symmetric matrix.
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Incidence Matrix

For a graph G with p vertices and q edges, we choose an

orientation o where each edge e has an initial vertex u and a final

vertex v .

Definition of Incidence Matrix

The incidence matrix M(G ) of a graph G with respect to

orientation o is the p × q matrix whose (i , j)-entry is

Mij =


−1 if edge ej has initial vertex vi

1 if edge ej has final vertex vi

0 else

.
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Incidence and Laplacian Matrices

Figure 4: Red numbers represent edges

M(G) =


1 −1 1 0 0 0

0 0 0 −1 −1 0

0 0 −1 1 1 −1

0 1 0 0 0 0

−1 0 0 0 0 1

 L(G) =


3 0 −1 −1 −1

0 2 −2 0 0

−1 −2 4 0 −1

−1 0 0 1 0

−1 0 −1 0 2
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The Matrix-Tree Theorem

The Matrix-Tree Theorem

Let G be a finite connected graph without loops with laplacian

matrix L(G ). Let L0 denote L with the last row and column

removed. Then,

detL0 = κ(G ).

We will now devote the rest of this presentation to proving the

Matrix-Tree Theorem.
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Incidence and Laplacian Matrices

Lemma 2.1

We have MMT = L.
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Incidence and Laplacian Matrices

Proof:

Pick arbitrary vertices vi , vj ∈ V (G ). Then,(
MMT

)
ij
=

∑
ek∈E(G)

Mik

(
MT

)
kj
=

∑
ek∈E(G)

MikMjk .

If i ̸= j , then in order for this product to not equal 0, we need ek

to connect vi and vj . In that case, one of Mik and Mjk equals 1

and the other is −1, so their product will always be −1. Since we

sum over all edges,
(
MMT

)
ij
= −mij = Lij .

If i = j , then for the product to not equal 0, ek must pass through

vi = vj , in which case the product will be 1. So,
(
MMT

)
ij
=

deg(vi ) = Lij , proving the lemma.
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The Binet-Cauchy Theorem

Theorem 2.2 (The Binet-Cauchy Theorem)

Let A be an m × n matrix and B be an n ×m matrix. If m > n,

then det(AB) = 0. If m ≤ n, then:

det(AB) =
∑
S

(detA[S ])(detB[S ])

where the sum goes through all m-element subsets S of

{1, 2, · · · n}.
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Reduced Incidence Matrix

Definition of the Reduced Incidence Matrix

Given a graph G and its incidence matrix M(G ), the reduced

incidence matrix M0(G ) is formed by removing the last row of

M(G ).

Note that M0(G ) has p − 1 rows and q columns, so the number of

rows equals the number of edges in a spanning tree of G .
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Reduced Incidence Matrix

In the next slide, we discuss the determinants of all

(p − 1)× (p − 1) submatrices N of M0 which are formed as such:

1 Choose a set X = {ei1 · · · eip−1} of p − 1 edges of G

2 Take all columns of M0 indexed by S = {i1 · · · ip−1}.
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The Determinant of the Square Submatrix

Lemma 2.3

Let X be a set of p− 1 edges of G . If X does not form the set of

edges of a spanning tree, then the corresponding square

submatrix N has determinant 0. Otherwise detN = ±1.
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The Matrix Tree Theorem

The Matrix-Tree Theorem

Let G be a finite connected graph without loops with Laplacian

matrix L(G ). Let L0 denote L with the last row and column

removed. Then,

detL0 = κ(G ).
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The Matrix Tree Theorem

Proof: By Lemma 2.1, since L = MMT , L0 = M0M
T
0 . Hence, by

the Binet-Cauchy Theorem (Theorem 2.2), we obtain:

detL0 =
∑
S

(detM0[S ])(detM
T
0 [S ]) =

∑
S

(detM0[S ])
2

where S ranges through all (p − 1)-element subsets of the edges of

G . By Lemma 2.3, det M0[S ] = detN = ±1 if S forms the set of

edges of a spanning tree of G and is 0 otherwise. Since we take

the square, the sum adds 1 for each spanning tree and 0 otherwise.

Hence, the sum equals κ(G ), proving the Matrix-Tree Theorem.

28



Closing Remarks
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Thank you! Any questions?
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