## Spectral Graph Theory

Derek Chen ${ }^{1}$ Advay Goel ${ }^{2}$
December 2021
${ }^{1}$ Student
Belmont High School
${ }^{2}$ Student
Acton-Boxborough Regional High School

## Graph Theory Fundamentals

## Graphs

## Definition of Graph

A graph is a set of vertices $V$ that are connected by a set of edges $E$ with a function $\psi$ that maps edges to unordered pairs of vertices.

## Graphs

## Definition of Graph

A graph is a set of vertices $V$ that are connected by a set of edges $E$ with a function $\psi$ that maps edges to unordered pairs of vertices.


Figure 1: An undirected graph
(Image from https://brilliant.org/wiki/graph-theory/)

## Graphs

## Definition of Directed Graph

A directed graph is a graph where each edge represents an ordered pair of vertices (i.e. has orientation).


Figure 2: A directed graph with 7 vertices and 9 edges
(Image from https://en.wikipedia.org/wiki/Directed_graph)

## Walks on Graphs

## Definition of Walk

A walk on a graph $G$ consists of an alternating sequence

$$
V_{1} E_{1} V_{2} E_{2} \cdots E_{n} V_{n+1}
$$

where each $V_{i}$ is a vertex and $E_{i}$ is an edge connecting $V_{i}$ and $V_{i+1}$.

## Example:



> A 1 B 2 B 3 C - length 3
> D 5 A 6 D - length 2, closed

## Counting Walks On Graphs

From here, a natural question arises. For an arbitrary graph $G$, is there a way to count the number of walks of length $\ell$ ?

Linear Algebra Fundamentals

## Eigenvalues and Eigenvectors

## Definition of Eigenvector and Eigenvalue

An eigenvector of a matrix $A$ is a vector which, when multiplied by $A$, gives a scalar multiple of itself. The scalar multiple is called the corresponding eigenvalue.

This relationship can be modeled by the following equation:

$$
A x=\lambda x
$$

where $x$ is the eigenvector and $\lambda$ is the eigenvalue.

## The Adjacency Matrix

## Definition of Adjacency Matrix

Given a graph $G$ with $n$ vertices, the adjacency matrix of $G$, denoted as $A(G)$, is an $n \times n$ matrix whose $(i, j)$-entry $a_{i j}$ is equal to the number of edges connecting $v_{i}$ to $v_{j}$.

## The Adjacency Matrix

## Example:



$$
\mathrm{A}(\mathrm{G})=\left[\begin{array}{llll}
0 & 1 & 0 & 2 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
2 & 0 & 1 & 0
\end{array}\right]
$$

In this example, we denoted $A$ as $v_{1}, B$ as $v_{2}, C$ as $v_{3}$, and $D$ as $v_{4}$.

## Properties of the Adjacency Matrix

The adjacency matrix:

- is symmetric
- has real eigenvalues
- has trace equal to the number of loops in $G$

Counting Walks on Graphs

## Counting Walks on Graphs

## Theorem 1.1

For a graph $G$, the number of walks of length $\ell$ for $\ell \geq 1$ that begin at vertex $v_{i}$ and end at vertex $v_{j}$ is the $(i, j)$-entry of $A(G)^{\ell}$.

## Proof:

By the principles of matrix multiplication, the $(i, j)$-entry of $A(G)^{\ell}$ is the sum of $a_{i i_{1}} a_{i_{1} i_{2}} \ldots a_{a_{\ell-1} a_{j}}$ which counts the number of paths of length $\ell$ which pass through the vertices $v_{i}, v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{\ell-1}}, v_{j}$ over all such combinations of $v_{i}, v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{\ell-1}}, v_{j}$.

## Counting Walks on Graphs

## Corollary 1.2

For a graph $G$, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ be the eigenvalues of $A(G)$. For each $i, j$, there exist real $c_{1}, c_{2}, \ldots, c_{p}$ such that for all $\ell$,

$$
\left(A(G)^{\ell}\right)_{i j}=c_{1} \lambda_{1}^{\ell}+c_{2} \lambda_{2}^{\ell}+\cdots+c_{p} \lambda_{p}^{\ell}
$$

## Proof:

Let $U$ be the matrix whose columns are orthonormal eigenvectors of $A(G), u_{1}, u_{2}, \ldots, u_{p}$. Then we have $A(G)^{\ell}=U D^{\ell} U^{-1}$ where $D$ is the diagonal matrix of the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$. Because $U$ is orthogonal, $U^{-1}=U^{T}$ and simplifying gives us

$$
\left(A(G)^{\ell}\right)_{i j}=\sum_{k} u_{i k} \lambda_{k}^{\ell} u_{j k} \text { so } c_{k}=u_{i k} u_{j k}
$$

## Counting Closed Walks on Graphs

## Corollary 1.3

For a graph $G$, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ be the eigenvalues of $A(G)$.
Then the number of closed walks in $G$ of length $\ell$ is
$\lambda_{1}^{\ell}+\lambda_{2}^{\ell}+\cdots+\lambda_{p}^{\ell}$.

## Proof:

Because closed walks begin and end at the same vertex, the number of closed walks of length $\ell$ is just the sum of the diagonal (trace) of $A(G)^{\ell}$. Because the trace of a matrix is the sum of its eigenvalues and the eigenvalues of $A(G)^{\ell}$ are $\lambda_{1}^{\ell}, \lambda_{2}^{\ell}, \ldots, \lambda_{p}^{\ell}$, corollary 1.3 follows.

## Counting Closed Walks on the Complete Graph

## Corollary 1.4

The number of closed walks on the complete graph $K_{p}$ from vertex $v_{i}$ to itself is

$$
\left(A\left(K_{p}\right)^{\ell}\right)_{i i}=\frac{1}{p}\left((p-1)^{\ell}+(p-1)(-1)^{\ell}\right) .
$$

## Proof:

The adjacency matrix of $K_{p}$ has 0 's on the diagonal and 1's everywhere else. The eigenvalues of $A\left(K_{p}\right)$ are $p-1$ and -1 with a multiplicity of $p-1$. We divide by $p$ for an individual vertex $v_{i}$ due to symmetry.

## The Matrix-Tree Theorem

## Trees

## Definition of Path

A path is a walk with no repeated vertices.

## Definition of Tree

A tree is an undirected graph such that any two vertices are connected by exactly one path.

Note that trees must also have no double edges as those would be cycles of length 2. A tree on $n$ vertices has $n-1$ edges.

## Spanning Trees

## Definition of Spanning Tree

A spanning tree of a graph $G$ is a tree that has its vertices equal to the vertices of $G$ and its edges among the edges of $G$.

Example: Examples of spanning trees for the graph below include abc, $b d e$, and $a c e . a b$ is not spanning and $a c d e$ is not a tree.


Figure 3: Complete Graphs
(Image from Algebraic Combinatorics by Richard Stanley)

## Counting Spanning Trees

## Definition of Complexity

The complexity of a graph $G$, denoted $\kappa(G)$, is the number of spanning trees of $G$.

The goal of the Matrix-Tree theorem is to determine $\kappa(G)$.

## Laplacian Matrix

## Definition of Laplacian Matrix

The Laplacian matrix $L(G)$ of a graph $G$ with $p$ vertices is the $p \times p$ matrix whose $(i, j)$-entry $L_{i j}$ is determined by:
$L_{i j}= \begin{cases}-m_{i j} & \text { if } i \neq j \text { and there are } m_{i j} \text { edges between } v_{i} \text { and } v_{j} \\ \operatorname{deg}\left(v_{i}\right) & \text { if } i=j\end{cases}$
where $\operatorname{deg}\left(v_{i}\right)$ is the number of edges incident to $v_{i}$.

Note that $L$ is a symmetric matrix.

## Incidence Matrix

For a graph $G$ with $p$ vertices and $q$ edges, we choose an orientation $\mathfrak{o}$ where each edge $e$ has an initial vertex $u$ and a final vertex $v$.

## Definition of Incidence Matrix

The incidence matrix $M(G)$ of a graph $G$ with respect to orientation $\mathfrak{o}$ is the $p \times q$ matrix whose $(i, j)$-entry is

$$
M_{i j}= \begin{cases}-1 & \text { if edge } e_{j} \text { has initial vertex } v_{i} \\ 1 & \text { if edge } e_{j} \text { has final vertex } v_{i} \\ 0 & \text { else }\end{cases}
$$

## Incidence and Laplacian Matrices



Figure 4: Red numbers represent edges

$$
\mathrm{M}(\mathrm{G})=\left[\begin{array}{cccccc}
1 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & -1 & 1 & 1 & -1 \\
0 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \mathrm{L}(\mathrm{G})=\left[\begin{array}{ccccc}
3 & 0 & -1 & -1 & -1 \\
0 & 2 & -2 & 0 & 0 \\
-1 & -2 & 4 & 0 & -1 \\
-1 & 0 & 0 & 1 & 0 \\
-1 & 0 & -1 & 0 & 2
\end{array}\right]
$$

## The Matrix-Tree Theorem

## The Matrix-Tree Theorem

Let $G$ be a finite connected graph without loops with laplacian matrix $L(G)$. Let $L_{0}$ denote $L$ with the last row and column removed. Then,

$$
\operatorname{det} L_{0}=\kappa(G)
$$

We will now devote the rest of this presentation to proving the Matrix-Tree Theorem.

## Incidence and Laplacian Matrices

Lemma 2.1
We have $M M^{T}=L$.

## Incidence and Laplacian Matrices

## Proof:

Pick arbitrary vertices $v_{i}, v_{j} \in V(G)$. Then,

$$
\left(M M^{T}\right)_{i j}=\sum_{e_{k} \in E(G)} M_{i k}\left(M^{T}\right)_{k j}=\sum_{e_{k} \in E(G)} M_{i k} M_{j k}
$$

If $i \neq j$, then in order for this product to not equal 0 , we need $e_{k}$ to connect $v_{i}$ and $v_{j}$. In that case, one of $M_{i k}$ and $M_{j k}$ equals 1 and the other is -1 , so their product will always be -1 . Since we sum over all edges, $\left(M M^{T}\right)_{i j}=-m_{i j}=L_{i j}$.
If $i=j$, then for the product to not equal $0, e_{k}$ must pass through $v_{i}=v_{j}$, in which case the product will be 1 . So, $\left(M M^{T}\right)_{i j}=$ $\operatorname{deg}\left(v_{i}\right)=L_{i j}$, proving the lemma.

## The Binet-Cauchy Theorem

## Theorem 2.2 (The Binet-Cauchy Theorem)

Let $A$ be an $m \times n$ matrix and $B$ be an $n \times m$ matrix. If $m>n$, then $\operatorname{det}(A B)=0$. If $m \leq n$, then:

$$
\operatorname{det}(A B)=\sum_{S}(\operatorname{det} A[S])(\operatorname{det} B[S])
$$

where the sum goes through all m-element subsets $S$ of $\{1,2, \cdots n\}$.

## Reduced Incidence Matrix

## Definition of the Reduced Incidence Matrix

Given a graph $G$ and its incidence matrix $M(G)$, the reduced incidence matrix $M_{0}(G)$ is formed by removing the last row of $M(G)$.

Note that $M_{0}(G)$ has $p-1$ rows and $q$ columns, so the number of rows equals the number of edges in a spanning tree of $G$.

## Reduced Incidence Matrix

In the next slide, we discuss the determinants of all
$(p-1) \times(p-1)$ submatrices $N$ of $M_{0}$ which are formed as such:
(1) Choose a set $X=\left\{e_{i_{1}} \cdots e_{i_{p-1}}\right\}$ of $p-1$ edges of $G$
(2) Take all columns of $M_{0}$ indexed by $S=\left\{i_{1} \cdots i_{p-1}\right\}$.

## The Determinant of the Square Submatrix

## Lemma 2.3

Let $X$ be a set of $p-1$ edges of $G$. If $X$ does not form the set of edges of a spanning tree, then the corresponding square submatrix $N$ has determinant 0 . Otherwise $\operatorname{det} N= \pm 1$.

## The Matrix Tree Theorem

## The Matrix-Tree Theorem

Let $G$ be a finite connected graph without loops with Laplacian matrix $L(G)$. Let $L_{0}$ denote $L$ with the last row and column removed. Then,

$$
\operatorname{det} L_{0}=\kappa(G)
$$

## The Matrix Tree Theorem

Proof: By Lemma 2.1, since $L=M M^{T}, L_{0}=M_{0} M_{0}^{T}$. Hence, by the Binet-Cauchy Theorem (Theorem 2.2), we obtain:

$$
\operatorname{det} L_{0}=\sum_{S}\left(\operatorname{det} M_{0}[S]\right)\left(\operatorname{det} M_{0}^{T}[S]\right)=\sum_{S}\left(\operatorname{det} M_{0}[S]\right)^{2}
$$

where $S$ ranges through all $(p-1)$-element subsets of the edges of G. By Lemma 2.3, $\operatorname{det} M_{0}[S]=\operatorname{det} N= \pm 1$ if $S$ forms the set of edges of a spanning tree of $G$ and is 0 otherwise. Since we take the square, the sum adds 1 for each spanning tree and 0 otherwise. Hence, the sum equals $\kappa(G)$, proving the Matrix-Tree Theorem.

Closing Remarks

## Acknowledgements

We'd like to thank

- Luis Kumanduri for his mentorship, clear explanations, and support
- Pavel Etingof, Tanya Khovanova, Slava Gerovitch, and the rest of the MIT PRIMES program for making this reading group possible
- Our parents for facilitating our participation in this program


## Thank you! Any questions?

