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Abstract—TIterative Approximate Byzantine Consensus (IABC)
is a fundamental problem of fault-tolerant distributed computing
where machines seek to achieve approximate consensus to arbi-
trary exactness in the presence of Byzantine failures. We present
a novel algorithm for this problem, named Relay-IABC, which
relies on the usage of a multi-hop relayed messaging system and
crytographically secure message signatures. The use of signatures
and relays allows the strict necessary network conditions of
traditional IABC algorithms to be circumvented. In addition, we
show evidence that Relay-IABC achieves faster convergence than
traditional algorithms even under these strict network conditions
with both theoretical analysis and experimental results.

Index Terms—IABC, consensus, networks, byzantine, relay

I. INTRODUCTION

The idea of the Byzantine fault-tolerance problem was
first introduced in the seminal paper of Lamport et al. [1].
Byzantine consensus has since become a large research topic,
with applications in a variety of fields including blockchain
technology and machine learning [2] [3].

Dolev et al. [4] modified and extended the problem of
Byzantine agreement by introducing approximate Byzantine
agreement, allowing machines to reach approximate consensus
rather than exact consensus. This was motivated by the fact
that exact consensus in asynchronous systems was proven
to be impossible [5]. Additionally, in synchronous systems,
approximate Byzantine consensus can be used to create algo-
rithms that do not require complete knowledge of the network
topology [6].

This approximate Byzantine consensus problem aims to
have all honest machines converge to a single state within
the convex hull of initial states as the number of iterations
approaches infinity [4]. Vaidya [7] utilizes a method describing
the progression of states in the network using transition
matrices to prove consensus.

The main contribution of this paper is to utilize two key
tools that have seen a lot of use and success in traditional
Byzantine consensus problems: crytographically secure signa-
tures [1], [8], [9] and message relays [1], [10]; our work is
a generalization of the work presented in [7], with signatures
and relays used to circumvent certain network assumptions
that would otherwise be necessary.

Much work has been done on the application of multi-
hop communications for standard Byzantine Broadcast [11],
[12]. Additionally, the work done in [13] extended multi-hop
communication to the setting of IABC problems. However, our

work is significant in two ways: First, it differs from [13] in
that it considers the case of only local communication, where
messages may only be sent directly to direct neighbors as
opposed to more distant ones. Second, our work also analyzes
the convergence rate of IABC algorithms, which has not been
done previously in the multi-hop communication setting.

Byzantine consensus has had applications to machine learn-
ing by having machines perform gradient descent steps to
minimize a loss function on top of consensus techniques. The
combination of delays and signatures may have additional ap-
plications in Byzantine gradient descent. [14] extends approx-
imate Byzantine consensus algorithms for use in Byzantine
gradient descent methods. Our work analyzes the convergence
rate of IABC algorithms, which is of interest in any application
to machine learning protocols.

II. PROBLEM FORMULATION
A. Definitions

1) Network Definitions:

e Let m be the total number of machines (or "nodes”), h
the number of honest machines, and b be the number of
Byzantine machines (h + b = m).

o Let B denote the set of byzantine nodes and H denote
the set of honest nodes. The set of all nodes V' is equal
to BUH.

« Denote N/ to be the set of all machines that have
incoming edges from machine i. Denote NP to be the
set of all machines that have outgoing edges to machine
i

o Define dist(i,j), for some ¢,j € V as the length of the
shortest path from node 7 to j

2) Matrix Definitions:

o Throughout this paper, we will refer to a value that can
be lower bounded by some arbitrary positive constant as
a ’non-zero value”.

e A non-zero column denotes a column of a matrix that is
filled entirely with non-zero values.

o Transition matrix M denotes a square matrix of size h x h

o M;[t] denotes the ith row of matrix M |t]

o M;;[t] denotes the element at row ¢ and column j of
matrix Mt]

o We define the first row and column in every matrix as
row/column 0



B. Decentralized Communication Model

We consider a static, directed network G(V, E'), where V' =
{0,1,2,...,m — 1} and F representing communication links
between neighboring nodes. If (i,j) € E, then node ¢ may
send messages to node j.

Our protocol is analyzed in the synchronous communication
setting, where communication occurs over a sequence of
iterations. Messages sent during an iteration are guaranteed
to be received by the intended recipient before the beginning
of the subsequent iteration, and given finite amount of time.

Each node ¢ € V starts with an initial real-valued input.
The goal of the protocol is to approach a state that satisfies
the following two conditions:

1) Validity condition: At the beginning of each iteration
of the protocol, the state of each honest node remains
within the convex hull of the states of all honest nodes
at the beginning of the previous iteration.

2) Convergence condition: The difference between the
states of any two honest nodes approaches zero as the
number of iterations approaches infinity.

To make analysis easier, we will differentiate between
iterations phases. We define an iteration as a given finite
duration of time where machines may communicate with one
another. During each iteration, every honest node sends and
receives messages from its neighbors. Define a phase as a set
of D iterations. Therefore the ith phase contains iterations ;D
to (i +1)D. Since the distance between any two honest nodes
is at most D, any message from an honest node is guaranteed
to reach all other honest nodes within D iterations.

Note that even though nodes do not have edges connecting
to themselves, they may always “send” messages to them-
selves.

C. Byzantine Failure Model

Among the m machines in the decentralized network, b
of them are Byzantine machines. Byzantine machines may
deviate arbitrarily from the standard protocol. For example,
a Byzantine machine may output any arbitrary real value, and
send mismatching messages to each of its neighbors. However,
key restrictions of Byzantine nodes are that they cannot forge
signatures of honest users, and they cannot manipulate the
contents of existing signed messages.

III. RELAY-IABC ALGORITHM

A. Assumptions

Definition III.1. Honest Subgraph: Define the honest sub-
graph as the graph that is formed by removing all byzantine
nodes and all edges connected to byzantine nodes in the
original graph.

o The number of byzantine machines is strictly less than
one-third the total number of machines (b < %m).

o We assume the honest subgraph is bidirectionally con-
nected (there exists directed paths from every honest node
to every other honest node).

o We assume the diameter of the honest subgraph is upper-
bounded by D.

Note that individuals machines do not need to have knowl-
edge of the exact network topology besides the value of D.

B. Our Contributions

Our work is an extension of the work done in [7]. Our
network assumptions are much less restrictive. In particular,
we assume no network connectivity assumptions besides the
honest subgraph being bidirectionally connected.

The goal of this protocol is to use a relay system to bypass
traditional network connectivity assumptions outlined in [15],
which has a necessary but insufficient condition that each node
has an indegree of at least 2b+-1. This requires that each honest
node have at least b+1 incoming edges from honest neighbors.
On the other hand, bidirectional connectivity of the honest
subgraph may possibly be achieved when each honest node
has a maximum indegree of as low as one honest neighbor.

One additional advantage of Relay-IABC is that even for
graphs with the strict network assumptions of [7], we show
evidence that our algorithm achieves faster convergence than
traditional non-relay algorithms both theoretically and empir-
ically.

This comes at the tradeoff of higher communication costs, as
now machines send to each other at most m sets of parameters
in each message, as opposed to one parameter in most other
algorithms in literature.

Our paper proposes an Iterative Approximate Byzantine
Consensus algorithm with unforgeable signatures, which to
our knowledge has never been done before. Signatures have
seen lots of successful usage in standard byzantine consensus,
but until now have not been used in Iterative Approximate
Byzantine Consensus methods.

C. High-Level Idea

Since the honest subgraph is bidirectionally connected, this
allows all honest machines to receive signed messages from
every other honest machine through a broadcast and relay
system. Thus we create a pseudo-complete communication
graph over the course of an entire phase of D rounds. Since
a complete graph does indeed satisfy the necessary conditions
of [15], our relay protocol achieves convergence as well.

We use a trimmed-mean aggregation step [7], [14] to
ensure Byzantine robustness. The trimmed-mean step works
by eliminating the greatest b values and the smallest b values,
and then taking the arithmetic mean of the remaining values.
By removing the greatest and least b values, we ensure that the
maximum and minimum values of the set of remaining values
are both values of honest machines. This prevents Byzantine
machines from forcing the states of honest machines to deviate
arbitrarily.

Each honest machine ¢ keeps track of their own vector
v;. This vector consists of (v;(0),v;(1)...v;(m — 1)), where
v;(j) represents machine i’s most recently updated record of
machine j’s state. v; may not always contain a state that



was received from an actual message for each machine in
the network, as machine ¢ may not have yet have received a
message from all machines within the current iteration.

Machine ¢ only performs a trimmed-mean step after each
D iterations, as this ensures that each broadcast of all honest
machines has had sufficient time to relay across the entire
graph and reach every other honest node. This means that
each honest machine is outputting an identical message, their
current state value, for D consecutive iterations.

We choose the specific value D, the upper-bound of the
diameter of the honest subgraph, so after D iterations, all
honest vectors will always contain more honest parameters
than byzantine parameters. D is in the worst-case O(h), but
with high probability is O(logh) in Erdos-Renyi random
graphs [16].

The Relay-IABC algorithm guarantees that for all honest
machines 7 and j, any state v;(j) in the vector v; will contain
a valid signature from machine j.

D. Relay-IABC Algorithm

In the following two sections, we prove the correctness of
Relay-IABC by showing that it satisfies both the validity and
convergence conditions.

IV. VALIDITY OF RELAY-IABC

Let us consider an arbitrary iteration ¢ of the Relay-IABC
protocol such that ¢ > 1. We prove the following theorem.

Theorem 1. For each honest node h, the state of h at the
end of iteration t remains within the convex hull of states of
honest nodes from the end of iteration t — 1.

Proof. In iteration ¢, each honest node h receives every single
honest nodes state from iteration ¢ — 1 (including its own),
along with an arbitrary state from each byzantine node in the
network. Thus, each honest node receives a total of 2b + 1
honest states and b byzantine states for the trimmed-mean
update step in Algorithm 1. In this step, each honest node
will sort their list of states and remove the greatest and least
b values each.

For some arbitrary h, without loss of generality, define the
set of the lowest b values as L, the greatest b values as GG, and
the remaining b + 1 values of M. The state of node h at the
end of iteration ¢ is the arithmetic mean of all states within
M. We now consider two possible cases of where byzantine
nodes lie within these three sets.

1) Case I: |[BNM|=0

If all states within M are from honest nodes, this
guarantees that the arithmetic mean of all values within
set M will be within the convex hull of all honest states
from iteration ¢t — 1, proving the theorem.

2) Case 2: [ BNM|#0

In this case, there exists at least one Byzantine node’s
state within the set M. This means that |[HNM| < b and
[(LUG)N H| > b+ 1. Since the size of both L and G
is b, there exists at least one honest node’s state in both

Algorithm 1: Relay-IABC

Remark. This algorithm is implemented by a specific
honest machine i. Each honest machine i € H will
implement this algorithm concurrently.

Result: Each state v;(¢) remains within the convex
hull of the initial states at each Iteration ¢, and
each state converges to the same value as
Iteration ¢ — oo.

Initialization:

v;(i) « Initial State of node 4 (with signature 7).

for Iteration t < 0 to T do
Broadcast v; to all machines j € N
Receive v; from all machines j € N}

Remark. When receiving v;, ignore all parameters
received that are not properly signed. If no proper
message is received from a certain node, set their
incoming value to be an arbitrary predefined real
value (e.g. 0).

for j < 0tom—1do

Remark. In the next two lines, we do the
Sollowing: Out of all parameters v(j) received
from the broadcast step, set v;(j) to a single
arbitrary one v'(j)
if j # i then

| ui(g) < 0'(4)
end

end

if t mod D = 0 then
Trimmed-mean update step:

In a new vector, sort the values of v; in
increasing order:
*
v sort(v;) €))

Ignore the least and greatest b values, and set
the value of v;(4) to be the average of all
remaining values in v}, as defined below:

) _
m — 2b Z

k=b

Ul(l) <

m—b—1
vi(k) @

Add signature ¢ to v; (1)
end

end




L and G. This implies that every single Byzantine state
within M lies within the convex hull of honest states
from iteration ¢ — 1. The arithmetic mean of all states
within M is thus also within this convex hull, proving
the theorem.

O

V. CONVERGENCE OF RELAY-IABC
A. Overview

In this section, we prove that the Relay-IABC algorithm
satisfies the convergence condition for IABC. Our algorithm
and proof is similar to that which is proposed in [7]. We will
refer to said algorithm as "TABC”, and the novel algorithm
proposed in this paper as “Relay-IABC”. We utilize the same
transition matrices M[t] of size h x h in [7] to model the
network iterations.

The main difference between the two algorithms is that each
single transition matrix in Relay-IABC corresponds a single
phase, or a set of a D consecutive transition matrices in [ABC.
Since each node will receive a value from every other node
in the graph within D iterations, communication in Relay-
TIABC per D iterations can be represented as a single iteration
within a complete graph. In the next subsection, we prove that
a complete graph satisfies the network connectivity assump-
tions of TABC. Thus, Relay-IABC satisfies the condition of
convergence for IABC algorithms [7].

B. Source Component Proof

We define a source component as an honest node that has a
directed path of finite length to all other honest nodes in the
network. A necessary condition outlined in [7] for a specific
network to be able to converge with an IABC algorithm is
that any arbitrary “reduced graph” (see Definition V.2) of the
network must contain a source component.

Definition V.1. Complete Graph: A complete graph is a graph
with vertex set V, and edge set E’, such that Vi, j such that
i # j: (i,j) € E'. The network itself contains b Byzantine
nodes, h honest nodes, and ||[V|| = m.

A complete graph describes the de-facto communication
during an entire phase: since the longest path between any two
honest nodes is at most D, any two nodes may communicate
with each other for at least one iteration during every single
phase. We now introduce a graph that represents the network
graph after the trimming in (2).

Definition V.2. Reduced Graph: A general reduced graph is
a specific graph with all nodes in set B removed, along with
their incoming and outgoing edges. Additional, we remove any
arbitrary set of b incoming edges from each remaining node.

From now on, we choose to use the term “reduced graph”
to specifically refer to the reduced graph of the complete
graph in this paper. The reduced graph represents the “de-
facto communication links” between honest nodes after the
trimmed-mean step is completed.

Note that there may be multiple reduced graphs for every
complete graph, but only a finite number of them. Define Ry
to be the set of all reduced graphs for a given complete graph,
and define 7 as ||Ry||. Note that this definition comes from

[7].

We define a source component of a graph as an honest node
that has a directed path to every other honest node in a graph.
The following lemma is necessary to prove convergence of
Relay-IABC [7]:

Lemma 2. Any arbitrary reduced graph contains at least one
source component.

Proof. A reduced graph is constructed by removing n incom-
ing edges from each node of a fully connected directed graph
of at least 2n 4+ 1 nodes. In this proof, we assume that the
reduced graph has exactly 2n + 1 nodes. The case where the
number of nodes exceeds 2n + 1 is a simple generalization.

In a fully connected graph of 2n+ 1 nodes, there are totally
(2n+1)2n outgoing edges. Thus, after removing n incoming
edges (which are also outgoing edges of some other arbitrary
node) from each node, there still exists at least (2n 4+ 1)n
outgoing edges left in the graph. By Pigeonhole Principle, at
least one node in the reduced graph, let us denote it as vg, has
at least n outgoing edges.

Denote the set of all nodes with direct incoming edges from
vo as set S. We know that ||S|| > n. For each of the nodes
which are not in the set S (there are no more than n nodes
not in S), it is noted that each of them has n incoming edges.

Assume that none of these nodes have incoming edges from
v or any node in set .S. Thus, they can only have edges from
at most a total of 2n +1 — 2 — n = n — 1 nodes. However,
it is known that all nodes have n incoming edges. This is a
contradiction. Thus, they must either have one incoming edge
from a node in S, or an incoming edge from vy. Therefore we
have proven that vy is a source component. [

The above proof also proves the following corollary.

Corollary 3. At least one node in a reduced graph of size
2n + 1 contains at least n outgoing edges.

This corollary will be used later in the paper to derive the
convergence rate of the Relay-IABC algorithm.

C. Transition Matrix Analysis

As explained in Section V-A, we use transition matrices to
model the iteration of network states. However, each matrix
M'[t] models communication over a set of D consecutive
iterations (one phase) as opposed to just a single iteration.
An intuitive understanding of the algorithm is that the com-
munication graph per transition matrix M’[t] is a complete
graph before trimming and a reduced graph after trimming.

The detailed proof of convergence is shown below:

Lemma 4. The product of two transition matrices M1 [t] x
M?[t] will have a column with at least b+ 1 non-zero values.



Proof. From Corollary 3, it is shown that there exists a single
node within the network with outgoing communication edges
to at least b different honest neighbors after the trimmed-mean
step. This implies that this single node has its values received
by at least b+ 1 nodes (including itself). Let us call this central
node Node j. Thus, at least b 4+ 1 rows will have a non-zero
value in column j, proving the lemma. O

Lemma 5. Every transition matrix row M;[t], for all 0 < ¢ <
h, will contain exactly b 4+ 1 non-zero values.

Proof. A transition matrix models the communication during
a single phase, or a set of D iterations. This is modeled by a
complete graph, so each node receives exactly 3b + 1 values
from unique nodes. The trimming step will remove exactly
2b of these, leaving exactly b + 1 remaining non-zero values
M;t] O

Lastly, we introduce one more transition matrix definition:

Definition V.3. Scrambling Matrix: A scrambling matrix is
defined by a transition matrix with at least one non-zero
column.

We now introduce our main result:

Theorem 6. The product of three transition matrices M*[t] x
M?2[t] x M3[t] will result in a scrambling matrix.

Proof. From Lemma 4, M![t] x M?[t] contains a column of
at least b + 1 non-zero values. With loss of generality, define
this column as Column j. From Lemma 5, Vi such that 0 <
i < 2b+ 1, M?[t] contains at least b+ 1 non-zero values.
The size of any transition matrix M[t] is (2b+1) x (2b+1).
From the Pigeonhole Principle, Vi such that 0 < i < 2b+ 1,
3z such that (M'[t] x M?[t]);. and M?; are both non-zero
values. This implies that Vi such that 0 <7 < 2b+1, (M*[t] x
M?[t] x M3[t]);; is a non-zero value. In other words, column
j of matrix M![t] x M?[t] x M?>[t] is a non-zero column,
proving the theorem. O

From [7], Theorem 6 is sufficient to prove that Relay-IABC
satisfies the convergence condition.

VI. CONVERGENCE RATE ANALYSIS

In this section we compare the convergence rates of IABC
and compare it to Relay-IABC. We once again extend the
transition matrices presented by Vaidya in [7] to show how
Relay-IABC achieves convergence at a faster rate.

A. TABC Analysis

Let M[t] be the transition matrix that models the update
of iteration t. We now present some convergence analysis of
IABC from [7]:

Jim ST, M) < lim T AME) )
< imn7QG) @
=0 5)

Additionally,
AME]) <1 (6)
AQ) < (1-p") <1 @)

The network converges if and only if lim;_, o 6(ITt_; M [t])
[7]. Thus, we see the convergence rate honest nodes in the
entire network can be described empirically as the rate at
which (4) approaches 0. The exponent in (7) comes from the
fact that it takes the product of h7 transition matrices M t] to
form scrambling matrix Q(7) given a network following the
network assumptions of [7].

B. Relay-IABC Analysis

We now analyze the specific convergence rate of Relay-
IABC compared to IABC. From 6, we have proven that Relay-
IABC only requires the product of three transition matrices to
form a scrambling matrix. From [7], it also is shown that:

Jim S(IT_, M[t]) < Tim TE_, A(M'[¢]) ®)
< lim TEPNQG) O
. =0 (10)
Given that,
AMQM) <(1-pP) <1 (11)

and 3D << hr, then we see that (9) approaches zero
much faster than (4). This evidence suggests that Relay-IABC
achieves network converges at a significantly faster rate than
traditional IABC. In our next section, we support this claim
with empirical data.

VII. PRACTICAL APPLICATIONS

In this section we discuss the merits of the Relay-IABC
algorithm in the context of potential applications in the real-
world.

A. Convergence Rate

In this section, we seek to provide empirical evidence for
analysis done in Section V-C through simulations. All code can
be found at: https://github.com/matthew-ding/primes-project-
2021.

We ran Python scripts to simulate a network of nodes run-
ning both the JABC and Relay-IABC algorithms. The network
was generated as a random Erdos-Renyi graph (p = 0.8),
with 30 honest nodes and 14 Byzantine nodes. Each honest
node was given a random initial state within (—110, 110) and
byzantine nodes would output a random value approximately
within that range with slight variation depending on which
honest node they were communicating with.

In Figure 1, we plot the standard deviation of all honest
nodes in the network over the iterations of the algorithm. We
see that the Relay-IABC algorithm has an empirically faster
convergence rate given the simulation parameters.
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Figure 1. Comparing convergence rates of IABC and Relay-IABC

B. Network Connectivity

Besides Relay-IABC having faster empirical convergence
rates as compared to IABC, another major benefit is that
Relay-IABC may to implemented on sparse networks. On the
other hand, IABC requires very dense network connections
among honest nodes (necessary condition of 2b+ 1 neighbors
per node). Functionality on sparse networks is a major require-
ment for real-life applications, as most graphs that appear in
the “’real-world” are generally sparse (e.g. computer networks)
[17].

VIII. SUMMARY AND FUTURE WORK

In this paper, we introduce the Relay-IABC algorithm
for iterative approximate Byzantine consensus. The algorithm
extends the traditional IABC algorithm [7] with the novel
usage of signed and relayed messages. We also compare
the convergence rates of IABC and Relay-IABC with both
theoretical analysis of transition matrices as well as simulation
results with Python.

Additionally, we also theorize that the upper-bound of the
proportion of Byzantine nodes in this paper of b < %m is
not tight. It is shown that in approximate consensus algo-
rithms where faulty nodes are not allowed to equivocate (send
mismatching messages to separate nodes during the same
iteration), algorithms may actually achieve a bound b < %m
within complete networks [18]. We believe that it may be
possible to achieve an identical bound for IABC by utilizing
cryptography methods to detect Byzantine equivocation. We
leave the exact proof for our future work.

Lastly, the communication method of the Relay-IABC al-
gorithm is that of ”flooding”, where nodes send messages to
all their neighbors in order to relay information. While this is
a highly robust method of communication, it is also incredibly
communication-heavy. The overlay methods proposed in [12]
seek to circumvent this communication cost in the context of
Byzantine Broadcast, and similar results might be able to be
found for TABC problems as well.
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