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Abstract. In this paper, we prove stability results about orthogonal groups over finite com-
mutative rings where 2 is a unit. Inspired by Putman and Sam (2017), we construct a cate-
gory OrI(R) and prove a Noetherianity theorem for the category of OrI(R)-modules. This
implies an asymptotic structure theorem for orthogonal groups. In addition, we show gen-
eral homological stability theorems for orthogonal groups, with both untwisted and twisted
coefficients, partially generalizing a result of Charney (1987).
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1. Introduction

1.1. A motivating example. Consider a compact oriented manifold X with nonempty
boundary. The configuration space of n points in X is defined as the space of all possible
choices of n distinct points in X:

Confn(X) = Xn
∖
{(x1, x2, . . . , xn) | xi = xj for some i 6= j}.

There is a natural action of the symmetric group Sn on Confn(X) by permuting the co-
ordinates. Note that there exist natural maps Confn+1(X) → Confn(X) by forgetting the
(n + 1)th coordinate. These maps induce morphisms at each level of cohomology, with
coefficients in a fixed field k (or more generally a Noetherian ring) with char k = 0:

H i(Confn(X); k)→ H i(Confn+1(X); k).

Denote by UConfn(X) the unordered configuration space, which is the orbit space of the
action of Sn on Confn(X). In the unordered case, it is a classical result [McD75] that for
any fixed index i, H i(UConfn(X); k) ∼= H i(UConfn+1(X); k) for all n � 0. For Confn(X),
however, this does not hold. Instead, we have representation stability : notice that the action
of Sn on Confn(X) induces a representation of Sn on Vn := H i(Confn(X); k), and therefore
Vn splits into the direct sum of irreducible representations, which are naturally parametrized
by partitions of n. For any partition λ of a positive integer k, we write cλ(Vn) to denote
the multiplicity inside the expansion of Vn of the irreducible representation corresponding
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to the partition (n− k, λ) of n. In [Chu12], it was shown that there exists N such that the
following three properties hold for all n > N :

(1) Injectivity: the maps Vn → Vn+1 are injective;
(2) Surjectivity: the image of Vn spans Vn+1 as a k[Sn+1]-module;
(3) Multiplicity stability: for any k and any partition λ of k, cλ(Vn) = cλ(Vn+1).

A direct corollary is that the dimensions of Vn exhibit polynomial growth as n� 0.

1.2. Background, history, and known results. In general, the notion of representation
stability considers a sequence of representations Vn of a family of groups Gn, with maps
Vn → Vn+1 and Gn → Gn+1 between them that are compatible with the action of Gn on
Vn. This framework was first introduced in [CF13] to describe the frequent observation that
various representation-theoretic properties of Vn stabilize for sufficiently large n. Stability
came to possess a very broad meaning: one example is homological stability, which holds
for UConfn(X) as discussed above. Another example is multiplicity stability, which holds
for Confn(X). In §4 of this paper, we prove for orthogonal groups a categorical version of
representation stability, phrased in terms of Kan extensions.

A framework was developed in [CEF15], involving the functor category of modules over
a category named FI. This category of FI-modules carries the rich structure of an abelian
category, and it acts as a large algebraic structure which altogether controls the growth be-
havior of a sequence of representations, thus providing a fundamental explanation of various
stability behavior associated with representations of the symmetric groups Sn.

The objects of the category FI are finite sets, and the morphisms between them are
injections (hence the name FI). The reason that FI plays a prominent role in the representa-
tion stability of symmetric groups is because the automorphism group of an n-element object
in FI is precisely Sn. Key to the utility of FI-modules is a certain Noetherian property that
roughly states that any submodule of a finitely generated FI-module is also finitely generated.
This local Noetherianity property is a key ingredient in [CEF15]’s proof of representation
stability of Confn(X).

In [PS17], analogues (VIC-modules, SI-modules) to the functor category of FI-modules
were constructed by replacing the symmetric groups with the general linear groups and
the symplectic groups (over finite rings). Similar Noetherian properties and asymptotic
structure theorems were proven, as well as broad homological stability theorems with twisted
coefficients. Some of these results were strengthened in [MW20], where an explicit bound
for the stability degree was shown.

1.3. Main results. Our motivation for this paper was that among the classical groups, only
the orthogonal groups were not studied much in the context of representation stability. The
main obstacle in this case stems from the fact that, unlike alternating forms and symplectic
groups, more than one symmetric bilinear forms exist (up to isometry), even for modules
over finite rings.

In this paper, we address this problem for orthogonal groups over finite commutative rings
R where 2 is a unit. Extending methods in [PS17], we construct a category OrI(R) and
the functor category of OrI(R)-modules, and show a Noetherian property (Theorem 3.2)
analogous to that of FI-modules. We then prove that this implies the analogous version of
the asymptotic structure theorem for orthogonal groups (Theorems 4.5, 4.13 and Corollary
4.9).
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In addition, applying our Theorem 3.2, we showed general homological stability theorems
(Theorem 5.1) with twisted coefficients for (indefinite) orthogonal groups. Interestingly,
these results yield reverse implications for the usual stability with untwisted coefficients,
partially generalizing a result in [Cha87].

Our results also provided an application to homological stability of rings of integers quo-
tiented by an ideal, though this implication is very straightforward and omitted in this paper.
It is possible that our results also have interesting implications in the context of mapping
class groups of high-dimensional manifolds.

1.4. Roadmap. This paper is structured as follows. In §2, we review the framework of
functor categories of modules over a category, recall the definition of column-adapted maps,
and recount the theory of symmetric bilinear forms over finite commutative rings. In §3, we
define the category OrI(R) and the category of OrI(R)-modules, and show that the latter
is locally Noetherian. In §4, we show the asymptotic structure theorem, which is a strong
stability result for finitely generated OrI(R)-modules. Finally, in §5, we show homological
stability with twisted coefficients (coefficients determined by some finitely generated OrI(R)-
module), as well as its interesting reverse implication for stability with untwisted coefficients.

Acknowledgments. This paper is the result of PRIMES-USA, a program in which high
school students (the second author) engage in research-level mathematics led by a mentor
(the first author). This paper is based upon work supported by The National Science Foun-
dation Graduate Research Fellowship Program under Grant No. 1842490 awarded to the first
author. The authors would like to thank the organizers of the PRIMES-USA program for
providing the opportunity for this research. We are also grateful to Dr. Tanya Khovanova
and Dr. Kent Vashaw for their helpful comments and to Prof. Steven V. Sam for suggesting
this research topic and providing valuable suggestions.

2. Preliminaries

2.1. Finitely generated C-modules. We begin by reviewing the necessary framework of
functor categories of modules over a category.

Definition 2.1. Let C be a category and k a ring. A C-module over k is a functor M : C →
Modk, where Modk is the category of k-modules. If the ring k is clear from the context,
we shall just use the term C-module. A C-module homomorphism η : M → N between two
C-modules M and N is a natural transformation of functors. The category of all C-modules
forms a category, which we call Repk(C).

A C-module homomorphism η : M → N is injective (resp. surjective) if for each object
C ∈ C, the component ηC : M(C) → N(C) is injective (resp. surjective). We say N
is a submodule (resp. quotient module) of M if there is an injective (resp. surjective)
homomorphism N → M (resp. M → N). It is a well-known fact that concepts such as
subobjects, quotients, kernels, cokernels, images, direct sums, etc. can all be defined in this
“pointwise” fashion in the context of C-modules. In other words, Repk(C) has the structure
of an abelian category.

One of the key ingredients in [CEF15] is the notion of a Noetherianity property. Recall
that a module over a ring k is Noetherian if every submodule is finitely generated (assuming
the axiom of choice). The following definitions generalize these notions to C-modules.
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Definition 2.2. A C-module M is finitely generated if there exist objects C1, C2, . . . Cn ∈ C
and elements xi ∈ M(Ci) for each i, satisfying that if N is a submodule of M such that
N(Ci) contains xi, then N = M . The set {xi} is called the generating set of M .

Definition 2.3. A C-module M is Noetherian if every submodule of M is finitely generated.
The category of C-modules is locally Noetherian if for any Noetherian ring k, all finitely
generated C-modules are Noetherian.

An equivalent formulation of Definition 2.2 is occassionally useful. For any object X ∈ C,
let PC,X denote the covariant representable C-module generated at X, i.e. the functor defined
by

PC,X : C →Modk

Y → k[HomC(X, Y )]

for all Y ∈ C. Then the following lemma holds:

Lemma 2.4. A C-module is finitely generated if and only if it is a quotient of a direct sum
of modules of the form PC,X .

Proof. By the Yoneda lemma, a C-module homomorphism η : PC,X → M is determined
uniquely by choosing an element x ∈ M(X) and letting ηX(1X) = x. It is straightforward
to check that if M is finitely generated, then M is a quotient of the direct sum of the
representable functors attached to the generating set. Similarly, if M is a quotient of this
form, then the elements corresponding to each representable functor will be a generating set
of M . �

Let f : C → D be a functor. This induces a functor f ∗ : Repk(D) → Repk(C). The
functor f is defined to be finite if for every X ∈ D, f ∗(PD,X) is finitely generated. We
end this subsection by recalling the following two lemmas, which appeared respectively as
Lemmas 2.1 and 2.2 in [PS17].

Lemma 2.5. Let C be a category. The category of C-modules is locally Noetherian if and
only if for any object X ∈ C, any submodule of PC,X is finitely generated.

Lemma 2.6. If the category of C-modules is locally Noetherian, and f : C → D is a finite
and essentially surjective functor, then the category of D-modules is locally Noetherian.

2.2. Semilocal rings and finite rings. In this paper, we shall consider only finite commu-
tative rings with unit. However, the literature of orthogonal forms often deal with semilocal
rings, which are more general, so we briefly mention them here. Recall that a ring is Ar-
tinian if there is no infinite descending chain of ideals, and a ring R is semilocal if R/ radR
is Artinian. We recall an equivalent characterization of semilocal rings (c.f. [Lam01]):

Proposition 2.7. A ring R is semilocal if and only if it has finitely many maximal ideals.

Therefore, it is clear that a finite ring is semilocal. Furthermore, if p is a prime ideal in a
finite ring R, then R/p is a finite integral domain and therefore a field. This implies that p
is maximal. Therefore, we have the following result (c.f. [Lam01]):

Proposition 2.8. A finite ring R is the direct product of finite local rings.
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Therefore, given a finite commutative ring R, we can express it as the product of finite
local rings R =

∏n
i=1Ri. Then, since each Ri is local, there is a unique maximal ideal mi in

each Ri, and this gives a projection map πi : Ri → Ri/mi, the codomain of which is a field;
in particular, the product map π =

∏n
i=1 πi gives a projection map from R to a product of

finite fields R/m, where m =
∏n

i=1mi.

2.3. Symmetric bilinear forms. We now wish to define and characterize symmetric bi-
linear forms on finite commutative rings. As revealed shortly, we need to assume that 2 is a
unit.

Definition 2.9. Let R be a semilocal ring, and let V be a finite-rank free R-module. A
bilinear form B : V × V → R is called symmetric or orthogonal if B(v, w) = B(w, v) for all
v, w. The form is said to be non-degenerate if it it induces an isomorphism to the dual space
V ∗ = HomR(V,R). If B is non-degenerate, call the pair (V,B) an orthogonal module. If
(V,BV ) and (W,BW ) are two orthogonal modules, an R-module homomorphism φ : V → W
is called an isometry if BV (v, w) = BW (φ(v), φ(w)) for all v, w ∈ V .

From the definition, it follows that isometries are necessarily injective.
The classification of orthogonal modules over a finite ring up to bijective isometry is more

difficult than the symplectic case. We first recall the following diagonalization theorem (c.f.
[Bae06]):

Proposition 2.10. Let R be a semilocal ring, and let V be an orthogonal R-module. Then
there exists a basis of V in which the matrix of B is diagonal and whose diagonal entries are
units in R.

In other words, we can find a bijective isometry from (V,B) to (RrkV , D), where D is a
diagonal form as in the theorem. (Here, rkV denotes the rank of a free R-module V .) While
this theorem greatly simplifies the classification problem, it it still redundant (for instance,
permuting basis vectors in RrkV will change D but the resulting module is still isometric).
In the case where R is a finite field, the answer is well-known (though a proof is hard to find,
c.f. [Gla05]):

Proposition 2.11. Let F be a finite field (of characteristic p > 2), and let (V,B) be an
orthogonal F-module (i.e. a finite-dimensional vector space endowed with a non-degenerate
symmetric bilinear form). Then, there exists a basis of V such that matrix of B is either 1)
the identity matrix, or 2) the diagonal matrix diag(1, . . . , 1, x), where x is any nonsquare in
F×, where different choices of x yield isometric forms.

In other words, there are two isomorphism classes, and the dimension of V and the deter-
minant of B determine the isomorphism class.

A similar result can be proven for a finite local ring. If R is a finite local ring, let π : R→ F
denote the projection onto its residue field F = R/m, where m is the maximal ideal in R.
Then we have the following well-known proposition (we provide a proof because we could
not find a proof in the literature):

Proposition 2.12. Let R be a finite local ring (where 2 is a unit), and let (V,B) be an
orthogonal R-module. Then, there exists a basis of V such that matrix of B is either 1) the
identity matrix, or 2) the diagonal matrix diag(1, . . . , 1, x), where x ∈ R is such that π(x) is
a nonsquare in F×, and where different choices of x yield isometric forms.
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Proof. First of all, since R is a local ring, m consists of the non-units in R, so for any unit
u ∈ R, the coset u+m consists solely of units. By Proposition 2.10 and applying Proposition
2.11 to the induced orthogonal F-module, we can find a basis {v1, . . . , vn} of V such that
with respect to this basis the form is diagonal, B(vi, vi) = (1 + ti)

−1 where ti ∈ m for each
1 ≤ i ≤ n− 1 and B satisfies one of the following two cases: either B(vn, vn) = (1 + tn)−1 or
B(vn, vn) = (x + tn)−1, where tn ∈ m and x is a unit in R such that π(x) is a nonsquare in
F×.

Let us do case 1) first. For each i in {1, . . . , n}, consider the following quadratic equation
in m: (1 + m)2 = 1 + ti, which can be rewritten as m2 + 2m − ti = 0. Since ti ∈ m,
reducing this monic polynomial modulo m gives a monic quadratic equation with two distinct
roots m(m + 2) = 0, one of them being m = 0. By Theorem 3.12 in [GM73], it follows
m2 + 2m− ti = 0 has a root mi in m. Then, in the basis {(1 + m1)v1, . . . , (1 + mn)vn}, we
have B((1 +mi)vi, (1 +mi)vi) = (1 +mi)

2B(vi, vi) = (1 +mi)
2(1 + ti)

−1 = 1 for all i.
For case 2), we can do the same thing for 1 ≤ i ≤ n − 1. For i = n, we consider the

polynomial equation (x + m)2 = x(x + tn), which when reduced modulo m gives m(m +
2π(x)) = 0. The same reasoning gives a root m = mn ∈ m of (x + m)2 = x(x + tn). Then,
we have B((x+mn)vn, (x+mn)vn) = (x+mn)2(x+ tn)−1 = x. This proves the theorem. �

Corollary 2.13. Let R be a finite ring (where 2 is a unit), and write R =
∏q

i=1Ri as the
product of finite local rings. Then, there are 2q isomorphism classes of orthogonal R-modules.

Proof. Such a decomposition exists by Proposition 2.8. Let ei = (0, . . . , 0, 1Ri
, 0, . . . , 0)

(nonzero in the i-th spot) be the central idempotent arising from Ri = eiR, so R =
⊕n

i=1 eiR.
Then, since 1R = e1 + · · ·+ en, it is clear that a bilinear form on R splits as the direct sum
of bilinear forms on Ri. The result then follows from Theorem 2.12. �

2.4. Column-adapted maps. In this last subsection, we discuss the notion of column-
adapted and row-adapted maps, introduced in [PS17]. They are used in our proof of Lemma
3.4.

Definition 2.14. Let R be a commutative local ring. An R-linear map f : Rm → Rn is
column-adapted if there is an n-element subset Sc(f) = {s1 < s2 < · · · < sn} ⊆ [m] such
that, if we write f as a n×m matrix M with respect to the standard basis, then

• The sith column of M has 1 on the ith position and 0 elsewhere;
• The entries (i, j) where j < si are all non-invertible.

For example, the map f : R5 → R3 defined by the matrix∗ 1 0 • 0
∗ 0 1 • 0
∗ 0 0 ∗ 1


is column adapted, if the entries labeled with ∗ are non-invertible.

In the general case where R is a finite commutative ring, by Proposition 2.8 there exists
an isomorphism

R ∼= R1 × · · · ×Rq

where the Ri’s are finite commutative local rings. In this case, we say a map f : Rm → Rn

is column-adapted if the induced maps Rm
i → Rn

i are all column-adapted. Also, we say f is
row-adapted if its transpose is column-adapted; in this case, we also define Sr(f) = Sc(f

T ).
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The next two lemmas were established in [PS17] as Lemmas 2.9 and 2.10.

Lemma 2.15. The composition of two column-adapted maps is column-adapted. Similarly,
the composition of two row-adapted maps is row-adapted.

Lemma 2.16. Let R be a finite commutative ring, and let f : Rn′ → Rn be a surjection.
Then we can uniquely factor f = f2f1, where f1 : Rn′ → Rn is column-adapted and f2 :
Rn → Rn is an isomorphism.

3. Local Noetherianity

Throughout this section, we fix a finite commutative ring R where 2 is a unit. Suppose
we fix a factorization R ∼= R1 ×R2 × · · · ×Rq, where each Ri is a local ring.

Definition 3.1. Define the following categories:

• OrI(R): objects are orthogonal R-modules (V,B), and morphisms are isometries.
• OrIsq(R): the full subcategory of OrI(R) spanned by objects (V,B) such that the

projection of detB onto the residue fields of each Ri (1 ≤ i ≤ q) is a square.

We point out the important point that for any object (V,B) ∈ OrI(R), its group of
automorphisms AutOrI(R)(V ) is precisely the orthogonal group associated to (V,B).

The goal in this section is to prove the following theorem:

Theorem 3.2. For a finite commutative ring R and a Noetherian ring k, the category

Repk(OrI(R))

is locally Noetherian.

Our plan is to show the theorem with OrI(R) replaced with OrIsq(R) in §3.1, and gener-
alize it to the full category in §3.2.

3.1. The square case. In this subsection, our goal is to show that the category of OrIsq(R)-
modules is locally Noetherian (stated as Theorem 3.8 below). The proof is essentially iden-
tical to the analogous argument in [PS17].

Definition 3.3. Define the following categories:

• OOrI′sq(R): objects are orthogonal R-modules (Rn, B) such that the projection from
detB onto Ri is a square, and morphisms are row-adapted isometries.
• OOrIsq(R): full subcategory of OOrI′sq(R) spanned by objects which are orthogonal
R-modules (Rn, Bsq) such that Bsq is the identity matrix under the standard basis.

Lemma 3.4. Let R be a finite commutative ring where 2 is a unit. Let

f ∈ HomOrIsq(R)((R
n, B), (Rn′ , B′)),

then we can uniquely write f = f1f2 such that

• f2 ∈ HomOrIsq(R)((R
n, B), (Rn, β)) where β has square determinant;

• f1 ∈ HomOOrI′sq(R)((R
n, β)→ (Rn′ , B′)).

Proof. Transposing, applying Lemma 2.16, then transposing back, we can uniquely write
f = f1f2, where f1 : Rn → Rn′ is row-adapted and f2 : Rn → Rn is an isomorphism. We
can then uniquely choose β a symmetric form on Rn so that f1 and f2 are isometries. �
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Our first step in achieving the goal of this subsection is to show the existence of a well
partial ordering � on the set

PR(d,B) =
⊔
n≥0

HomOOrI′sq(R)((R
d, B), (Rn, Bsq))

as described in the following lemma.

Lemma 3.5. Fix R, d,B. There exists a well partial ordering � on PR(d,B) that can be
extended to a total ordering ≤ such that for f, g ∈ PR(d,B), mapping to Rn, Rn′ respectively,
satisfying f � g, there exists some φ ∈ HomOOrIsq(R)((R

n, Bsq), (R
n′ , Bsq)) such that:

• g = φf ;
• For any f1 ∈ HomOOrI′sq(R)((R

d, B), (Rn, Bsq)) with f1 < f , φf1 < g.

To prove Lemma 3.5, we need to first show the following technical lemma. The proof of
Lemma 3.5 is located shortly after it.

Lemma 3.6. Fix R, d,B, f, g, n, n′ as described in Lemma 3.5, except here we further restrict
to the case where R is a finite commutative local ring. Let the rows of g be r1, . . . , rn′.
Suppose that f can be obtained from g by deleting certain rows ri1 , . . . , rin′−n

where I =

{i1, . . . , in′−n} ⊆ [n′] such that I ∩ Sr(g) = ∅. Then there exists φ ∈ HomOOrIsq(R)(R
n, Rn′)

such that:

• For any h ∈ HomOOrI′sq(R)((R
d, B), (Rn, Bsq)) with Sr(h) = Sr(f), φh can be obtained

from h by inserting the rows ri in position i for each i ∈ I. In particular, g = φf .
• For any h ∈ HomOOrI′sq(R)((R

d, B), (Rn, Bsq)) with Sr(h) < Sr(f) in lexicographic

order, then Sr(φh) < Sr(g) in lexicographic order.

Proof. The desired map φ can be defined by the following n′×n matrix: take a (n′−n)×n
matrix whose kth row r̂k is obtained from rik by replacing the entries not in Sr(f) with zeros.
Then, we shuffle the rows of this matrix with the rows of a n× n identity matrix, such that
the former rows occupy exactly the indices in I. It is straightforward to check that the two
points hold and φ preserves the standard symmetric forms.

As a toy example, let (d, n, n′) = (3, 4, 6), and let

f =


1 0 0
a b c
0 1 0
0 0 1

 and g =


1 0 0
a b c
0 1 0
d e f
0 0 1
g h i

 .
Then we take φ to be

φ =


1 0 0 0
0 1 0 0
0 0 1 0
d 0 e f
0 0 0 1
g 0 h i

 .
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Consider two vectors vi = (wi, xi, yi, zi) where i ∈ {1, 2}, let us now prove Bsq(v1, v2) =
Bsq(φ(v1), φ(v2)). We know, by definition of f and g, that

Bsq(f(w1, y1, z1), f(w2, y2, z2)) = B((w1, y1, z1), (w2, y2, z2)) = Bsq(g(w1, y1, z1), g(w2, y2, z2)),

so

(dw1 + ey1 + fz1)(dw2 + ey2 + fz2) + (gw1 + hy1 + iz1)(gw2 + hy2 + iz2) = 0,

which is equivalent to Bsq(v1, v2) = Bsq(φ(v1), φ(v2)). In the general case, let the rows of f
be fi (1 ≤ i ≤ n), and the rows of g be gi (1 ≤ i ≤ n′). Let α = (αi), β = (βi) be any
two vectors in Rn, we want to prove that Bsq(α, β) = Bsq(φ(α), φ(β)). Let α′, β′ denote the
vectors in Rd obtained from α, β by only selecting the entries with indices in Sr(f). Then

Bsq(α, β) =
n∑
i=1

αiβi;

Bsq(φ(α), φ(β)) =
n∑
i=1

αiβi +
∑
i∈I

(gi · α′)(gi · β′);

Bsq(f(α′), f(β′)) =
n∑
i=1

(fi · α′)(fi · β′);

Bsq(g(α′), g(β′)) =
n′∑
i=1

(gi · α′)(gi · β′).

Because Bsq(f(α′), f(β′)) = B(α, β) = Bsq(g(α′), g(β′)), we conclude that

Bsq(α, β) = Bsq(φ(α), φ(β)).

�

We now give the proof of Lemma 3.5.

Proof of Lemma 3.5. Assume first that R is a finite commutative local ring. Let f, g ∈
PR(d,B) mapping to Rn, Rn′ respectively. We declare f � g if f can be obtained from g by
deleting some set of rows I ⊆ [n′] such that I ∩ Sr(g) = ∅. This is clearly a partial order.

Let Σ = Rd t {•}, • being a formal symbol. Let Σ∗ be the set of words whose letters
come from Σ. There is a natural well-ordered poset structure on Σ∗ (cf. [PS17] Lemma 2.5).
We will prove that (PR(d,B),�) is isomorphic to a subposet of Σ∗, which would imply that
� is a well partial ordering. For f ∈ HomOOrI′sq(R)((R

d, B), (Rn, Bsq)), let ri represent the

ith row of f if i /∈ Sr(f), else let ri = •. Thus, each ri ∈ Σ, and we map f to the word
r1r2 . . . rn ∈ Σ∗. Clearly this map is an order-preserving injection, so we conclude that � is
a well partial ordering.

Next, we extend � to a total ordering ≤. Fix an arbitrary total order on Rd. For f 6= g
the order is defined by

• If n < n′ then f < g;
• Otherwise, if Sr(f) < Sr(g) in lexicographic order, then f < g;
• Otherwise, compare the sequences of rows of f and g by lexicographic order and the

total order on Rd.
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This clearly extends �, and the claimed properties follow by taking φ as described by Lemma
3.6. This shows Lemma 3.5 in the case where R is a finite commutative local ring.

In the general case where R is a finite commutative ring, fix an isomorphism

R ∼= R1 ×R2 × · · · ×Rq

where each Ri is a commutative local ring. Then

HomOOrI′sq(R)(R
n, Rn′) = HomOOrI′sq(R1)(R

n
1 , R

n′

1 )× · · · × HomOOrI′sq(Rq)(R
n
q , R

n′

q ).

This implies that each element f ∈ PR(d,B) can be viewed as a tuple

(f1, . . . , fq) ∈ PR1(d,B)× · · · × PRq(d,B),

where each fi maps into Rn′
i for fixed n′. We can construct a partial order on the product

by using the product partial order (where one element is smaller than another iff every
component is). Then, extend this to a total order by lexicographic order. This restricts to
a total order on PR(d,B) that satisfies the necessary assumptions of Lemma 3.5. �

Using this well ordering, we can deduce the following theorem. The proof closely follows
ideas in Section 4 of [SS17].

Theorem 3.7. Let R be a finite commutative ring. For d ≥ 0 and B a symmetric form on
Rd, any OOrIsq(R)-submodule of the OOrIsq(R)-module

Qd,B = k[HomOOrI′sq(R)((R
d, B),−)]

is finitely generated. As a corollary, the category of OOrIsq(R)-modules is locally Noetherian.

Proof. In view of Lemma 2.5, it suffices to prove that any submodule of Qd,B is finitely
generated (since we can take B = Bsq).

Fix d,B,R,k, so we abbreviate Qd,B as Q. For an element f ∈ HomOOrI′sq(R)((R
d, B), Rn),

let ef denote the basis vector in Q(Rn) corresponding to f . For an element x ∈ Q(Rn), define
its initial term init(x) as follows: if f is ≤-maximal such that ef has coefficient αf 6= 0
in x, init(x) = αfef . Let M be a submodule of Q, we also define init(M) to be a function
taking Rn to the k-module k[init(x) | x ∈M(Rn)].

We claim that if N is a submodule of M and N 6= M , then init(N) 6= init(M). Suppose
for contradiction that init(N) = init(M). Pick y ∈ M(Rn)\N(Rn) such that init(y) = αtet
is ≤-minimal. Since init(M) = init(N), there exists z ∈ N(Rn) such that init(z) = init(y),
but then z − y /∈ N(Rn) and init(z − y) is smaller than et, contradiction. This proves the
claim.

Suppose now that there exists a increasing sequence of submodules of Q

M0 (M1 (M2 ( . . . .

The claim implies that init(Mi − 1) 6= init(Mi), so there exists, for every i ≥ 1, some ni ≥ 0
and λiefi ∈ init(Mi)(R

ni)\init(Mi−1)(R
ni). Because � is a well partial ordering, there exists

an infinite sequence i0 < i1 < i2 < . . . such that

fi0 � fi1 � fi2 � . . .

Since k is Noetherian, we can choose m such that λim =
∑m−1

j=0 cjλij for cj ∈ k. For each

0 ≤ j ≤ m − 1, let xj ∈ Mij(R
nij ) such that init(xj) = λijefij . By Lemma 3.5, there exists
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φj ∈ HomOOrIsq(Rij , Rim) such that φjfij = fim and for any f ′ij < fij in the same Hom set,
φjfij < fim .

Consider the element X =
∑m−1

j=0 cjφjxj, which belongs to Mim−1(R
im). Then the proper-

ties in Lemma 3.5 implies that init(X) = λimefim /∈Mim−1(R
im), contradiction. �

Finally, we are ready to show that the category of OrIsq(R)-modules is locally Noetherian.

Theorem 3.8. Let R be a finite commutative ring. The category of OrIsq(R)-modules is
locally Noetherian.

Proof. By Lemma 2.6 and Theorem 3.7, it suffices to show that the inclusion functor Φ :
OOrIsq(R)→ OrIsq(R) is finite (the essential surjectivity of Φ is obvious). Fix d,B, and let
M = POrIsq(R),(Rd,B), it suffices to prove that the OOrIsq(R)-module Φ∗ = M ◦ Φ is finitely
generated. Recall that by Theorem 3.7, Qd,B′ is finitely generated for any symmetric form
B′ with square determinant on Rd. If we fix B′ and an isometry τ : (Rd, B) → (Rd, B′),
then we get a natural transformation Qd,B′ → Φ∗, and the map⊕

B′

⊕
τ

Qd,B′ → Φ∗(M)

is surjective by Lemma 3.4. It follows then that Φ∗(M) = M ◦ Φ is finitely generated, as
desired. �

3.2. The general case. In the general case, we define the following subcategories of OrI(R):
for each nonempty subset I of {1, 2, . . . , q}, let OrII(R) be the full subcategory of OrI(R)
spanned by the objects (V,B), where detB is a nonsquare in the residue field of Ri for all
i ∈ I, and is a square otherwise. By Corollary 2.13, there are 2q − 1 of these categories. For
each of them, we will show:

Theorem 3.9. Let R be a finite commutative ring. The category of OrII(R)-modules is
locally Noetherian.

Proof. Define a functor Φ : OrIsq(R)→ OrII(R), sending

(V,B) 7→ (V,B)⊕ (R,X)

where X is the form on a 1-dimensional R-module sending 1 to x = (x1, x2, . . . , xq) ∈ R,
where xi is an arbitrary nonsquare in the residue field of Ri if i ∈ I, and is 1 otherwise.
This functor sends every isometry f : (V,B) → (W,B′) in OrIsq(R) to the isometry Φ(f) :
(V,B)⊕ (R,X)→ (W,B′)⊕ (R,X) where the last component is preserved. By Lemma 2.6,
because Φ is clearly essentially surjective, it suffices to check that it is finite, i.e. for any
fixed (V,B) ∈ OrII(R), the OrIsq(R)-module P mapping

(W,B′) 7→ k[HomOrII(R)((V,B), (W,B′)⊕ (R,X))]

is finitely generated.
Consider the representable OrII(R)-module POrII(R),(V,B). This is clearly finitely gener-

ated. Pick a set of generators x1, . . . , xn. Then the same elements also generate P , which
implies that it is finitely generated. �

Using Theorems 3.8 and 3.9, we now give the proof of Theorem 3.2.
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Proof of Theorem 3.2. Suppose that there exists a rising chain of OrI(R)-submodules

M1 (M2 ( · · · ⊂M

for some OrI(R)-module M . Restricting M and its submodules M i to OrIsq, we get a chain
of OrIsq(R)-submodules

M1
sq (M2

sq ( · · · ⊂Msq.

Theorem 3.8 implies that this chain must stabilize at some finite Nsq. Similarly, restricting
to each OrII , we get a chain of OrII(R)-submodules

M1
I (M2

I ( · · · ⊂MI .

Theorem 3.9 implies that each such chain must stabilize at some finite NI . Therefore, the
original chain must also stabilize at a finite point, namely 1 + max(Nsq, NI). �

4. Asymptotic Structure Theorem

4.1. Preliminaries. Let R be a finite commutative ring where 2 is a unit. Recall that a
complemented category is a symmetric monoidal category (C,⊗) satisfying that:

• The identity object in C is initial (hence there are canonical morphisms V → V ⊗V ′
and V ′ → V ⊗ V ′);
• Every morphism in C is a monomorphism;
• The map HomC(V ⊗ V ′,W ) → HomC(V,W ) × HomC(V

′,W ), defined by composing
with the canonical morphisms, is injective;
• For every subobject V ofW , there exists a unique subobject V ′ ofW such that there is

an isomorphism V ⊗V ′ → W , which satisfies that the compositions V → V ⊗V ′ → W
and V ′ → V ⊗ V ′ → W are the inclusions.
• The map Sn o AutC(V )→ AutC(V

n) is injective.

Furthermore, a complemented category C is generated by an object X if any object is isomor-
phic to Xn for an unique n ≥ 0. We recall the following theorem, whose three-part structure
reflects a parallel with the multiplicity stability theorem described in §1:

Theorem 4.1 (Theorem F, [PS17]). Let (C,⊗) be a complemented category with a generator
X; assume that the category of C-modules is locally Noetherian, and let M be a finitely
generated C-module. For N ≥ 0, denote by CN the full subcategory of C generated by all
objects of X-rank at most N . Then:

• (Injective stability) If f : V → W is a morphism in C, then M(f) : M(V )→M(W )
is injective when the X-rank of V is sufficiently large.
• (Surjective stability) If f : V → W is a morphism in C, then the orbit under AutC(W )

of the image of M(f) spans M(W ) when the X-rank of V is sufficiently large.
• (Central stability) For N sufficiently large, the functor M is the left Kan extension

to C of the restriction of M to CN .

Because the category OrIsq(R) is a complemented category generated by the 1-dimensional
R-module (R, 1), and the category of OrIsq(R)-modules is locally Noetherian by Theorem
3.8, Theorem 4.1 holds for OrIsq(R). In this section, we will prove an analogous theorem
for OrI(R) (Theorems 4.5 and 4.13 and Corollary 4.9).
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4.2. Surjective stability. For simplicity, we will use A in place for OrI(R) in this section.

Lemma 4.2. The category A = OrI(R) is a complemented category.

Proof. The monoidal structure is given by the orthogonal direct sum, and for a free orthog-
onal submodule V ⊆ W the complement of V is given by V ⊥ = {w ∈ W | B(v, w) = 0},
where B is the nondegenerate symmetric form equipped on W . �

We remark that A is generated by not one generator, but instead 2q, one for each subset
I ⊆ {1, 2, . . . , q}: we denote by XI the 1-dimensional free R module equipped with the
bilinear form x = (x1, . . . , xq) where xi is a fixed nonsquare in the residue field of Ri if i ∈ I,
and xi = 1 otherwise. The fact that they generate A follows from Proposition 2.13. We also
remark that X 2

I is isomorphic to X 2
∅, because in the residue fields of Ri, the product of two

nonsquares is a square.

Lemma 4.3. For V,W ∈ A, AutA(W ) acts transitively on HomA(V,W ).

Proof. Suppose we are given morphisms f, g ∈ HomA(V,W ). Suppose the complements of
f(V ) and g(V ) in W are respectively U,U ′. The orthogonal modules f(V ), g(V ) are both
isomorphic to V , and the orthogonal modules U,U ′ are isomorphic as well. So we get the
automorphism

φ : W ∼= f(V )⊕ U
∼=−→ g(V )⊕ U ′ ∼= W

satisfies φf = g, as desired. �

Corollary 4.4. Let f : U → V and g : U → W be morphisms in A, such that rkV < rkW .
Then there exist a morphism h : V → W such that h ◦ f = g.

Proof. Because rkV < rkW , we claim there exists a morphism i : V → W . To see this,
suppose B,B′ are the bilinear forms attached to V and W , and detB is nonsquare in Ri for
i ∈ IV while detB′ is nonsquare in Ri for i ∈ IW . Then W ∼= V ⊕ (R,XIV4IW ) (4 means
set XOR).

By Lemma 4.3, there exists an automorphism k : W → W such that k ◦ g = i ◦ f , hence
g = (k−1 ◦ i) ◦ f . �

Theorem 4.5 (Surjective stability). Let M be a finitely generated A-module. Then surjective
stability holds: for an A-morphism f : V → W with rkV large enough, the image of M(f)
spans M(W ) under M(AutA(W )).

Proof. Suppose f : V → W is any morphism in A. The span of M(f) in M(W ), under the
action of M(AutA(W )), is the span of M(φ ◦ f) as φ ranges in AutA(W ). By Lemma 4.3,
this is the same as the span of M(h) as h ranges in HomA(V,W ).

Now, because M is finitely generated, there exists a generating set {xi ∈ M(Vi)}. Let
r = maxi rkVi, and consider any object V with rank rkV ≥ r + 1. Fix maps φi : Vi → V .
For any x ∈ W , since M is generated by the xi’s, there exist maps fi : Vi → W such that x
is in the span of the images of M(fi) : M(Vi)→M(W ).

If rkV < rkW , then by Corollary 4.4 there exist maps hi : V → W such that hi ◦ φi = fi.
This implies that x lies in the span of M(hi), as desired. If rkV = rkW , then since there
exists a map f : V → W , V must be isomorphic to W , so the proof of Corollary 4.4 still
applies, and x lies in the span of M(hi). �
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4.3. Injective and central stability. We will now prove injective and central stability.

Definition 4.6. Let M be an A-module. The torsion submodule MT of M is defined by

MT (V ) = {x ∈M(V ) | ∃f : V → W, M(f)(x) = 0}.

Lemma 4.7. The torsion submodule MT is an A-submodule of M .

Proof. It suffices to show that if x, y ∈ MT (V ), then x + y ∈ MT (V ). Suppose f : V → W
and g : V → W ′ such that M(f)(x) = M(g)(y) = 0. Consider the maps ı : W ↪→ W ⊕W ′

and ı′ : W ′ ↪→ W ⊕W ′. By Lemma 4.3, there exists h ∈ AutA(W ⊕W ′) such that hı′g = ıf .
This composition maps both x and y to 0, hence also x+ y. �

Lemma 4.8. Let M be finitely generated, then for all V ∈ A with rkV � 0, MT (V ) = 0.

Proof. Because the category of A-modules is locally Noetherian and MT is a submodule of
M , MT is finitely generated as well. Then all maps into sufficiently large-rank spaces are
zero maps by Corollary 4.4. �

Corollary 4.9 (Injective stability). Let M be a finitely generated A-module. Then injective
stability holds: for an A-morphism f : V → W with rkV large enough, M(f) is injective.

Proof. This is a direct consequence of the above lemma. �

Definition 4.10. Let n be a positive integer, and let M be an A-module. Suppose I is a
subset of {1, 2, . . . , q}. Define ΣI,nM to be an A-module mapping each V ∈ A to

ΣI,nM(V ) =
⊕

h∈HomA(Xn
I ,V )

M(Ch),

where Ch denotes the complement of h(X n
I ) in V .

Lemma 4.11. If M is finitely generated, then the A-modules ΣI,nM are all finitely generated.

Proof. Because M is finitely generated, there exists a set of generators x1, . . . , xm, which
respectively belong to M(V1), . . . ,M(Vm). Notice that each M(Vi) is a direct summand in
ΣI,nM(Vi⊕X n

I ). We claim that the images of these elements x1, . . . , xm also generate ΣI,nM .
For any nonzero ΣI,nM(V ), V must be isomorphic to X n

I ⊕ Y for some orthogonal module
Y . Clearly, the direct summand M(Y ) inside ΣI,nM(X n

I ⊕ Y ) is generated by the claimed
set of generators; by Lemma 4.3, the other direct summands are all generated by them as
well. �

We can endow ΣI,•M with a chain complex structure as follows. Consider an object
V ∈ A, and we define the maps d1, . . . , dn : ΣI,nM(V ) → ΣI,n−1M(V ) as induced by
the maps X n−1

I → X n
I by “adding” the ith coordinate (1 ≤ i ≤ n). Finally, define d =

d1 − d2 + · · ·+ (−1)n−1dn. It is straightforward to check that Σ•M is a chain complex.

Theorem 4.12. Let M be finitely generated. Fix n a positive integer, and I ⊆ {1, 2, . . . , q}.
Then the chain complex

ΣI,nM(V )→ · · · → ΣI,1M(V )→M(V )→ 0

is exact for all V with sufficiently large rank (as free R-modules).
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Proof. It suffices to prove that (Hi(ΣI,•M))(V ) = (Hi(ΣI,•M)T )(V ), since then it follows
from Lemma 4.8 that (Hi(Σ•M))(V ) = 0 for sufficiently large rkV , which implies the exact-
ness of the chain complex. To prove the claimed fact, we only need to show that the map
(Hi(ΣI,•M))(V )→ (Hi(ΣI,•M))(V ⊕XI), induced by the canonical morphism V → V ⊕XI ,
is the zero map. But then the argument in Lemma 3.11 of [PS17] applies verbatim. �

Now, we are ready to show central stability. The argument closely follows the proof of
Theorem F in [PS17]. The main modification is the use of the chain complex ΣI,nM , which
is parametrized by I to handle the various isomorphism classes of orthogonal modules for
any given rank.

Theorem 4.13 (Central stability). Let A≤N denote the full subcategory spanned by the
following objects:

• objects with R-rank at most N − 1;
• objects isometric to the rank-N orthogonal R-module equipped with the bilinear form

whose matrix representation under the standard basis is the identity.

Let M be a finitely generated A-module. Then M is the left Kan extension to M |A≤N
along

the inclusion functor p : A≤N → A.

Proof. Let M ′ be the desired left Kan extension, then the universal property gives a natural
transformation φ : M ′ → M such that φV : M ′(V ) → M(V ) are isomorphisms for all V
with rkV ≤ N . (Here we choose N sufficiently large so that ΣI,2M → ΣI,1M → M → 0 is
exact whenever rkV ≥ N .) It suffices to prove that φV are isomorphisms for all V . Unlike
in the proof of Theorem F in [PS17], the chain complex ΣI,nM we choose will depend on the
isomorphism class of V , which is the key difference from that proof.

Induct on rkV , and we assume φV is an isomorphism for all rkV ≤ r − 1 (r ≥ N +
1). Fix V to be a rank-r object, and without loss of generality V = X r−1

∅ ⊕ XI0 . The
natural transformation φ induces natural transformations ΣI,iM → ΣI,iM

′ for each I, and
by definition we know the induced maps ΣI,iM(V )→ ΣI,iM

′(V ) are isomorphisms for each
i ≥ 1 and I ⊆ {1, . . . , q}.

Consider the commutative diagram

(1)

ΣI0,2M
′(V ) ΣI0,1M

′(V ) M ′(V ) 0

ΣI0,2M(V ) ΣI0,1M(V ) M(V ) 0,

∼= ∼= φV

whose bottom row is exact. We now wish to prove that the map ΣI0,1M
′(V ) → M ′(V ) is

surjective, from which it will follow that φV is an isomorphism by a simple diagram chase
on (1).

By definition of the Kan extension, for V ∈ A, M ′(V ) is the colimit

lim−→((p ↓ V )→ A≤N
M−→Modk).
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Furthermore, it is easy to see that is a filtered colimit (due to our definition of A≤N), so as
a set it is explicitly given by

M ′(V ) =


∐

(U,f):U
f−→V

U∈A≤N

M(U)


/
∼

where ∼ is the usual equivalence relation. By Corollary 4.4, any map f : U → V from an
object U of rank at most N to V factors through an object W of rank r − 1. Furthermore,
we can suppose W = Ch, where h : XI0 → V and Ch is the complement of the image
of h in V . The inclusion W → V induces a map u : M ′(W ) → M ′(V ). Define another
map u′ : M ′(W ) → M ′(V ) by the universal property of M ′(W ) as a filtered colimit. It
suffices to show that u and u′ are the same map, since then it would imply the surjectivity
of ΣI0,1M

′(V )→M ′(V ).
To do this, consider the objects {M ′(U) : U ∈ A≤N , f : U → V }. These, along with the

morphisms M ′(U)→M ′(U ′) defined by

M ′(U)
∼=−→M(U)→M(U ′)

∼=−→M ′(U ′),

form another diagram of shape (p ↓ W ) in A. The colimit of this is again M ′(W ), and the
map u : M ′(W )→M ′(V ) is precisely the (unique) map provided by the universal property.
Therefore, we conclude that u = u′, which finishes the proof. �

5. Twisted Homological Stability

In this section, we fix R to be a finite field with charR > 2. In this case, there are 2
isomorphism classes of non-degenerate symmetric bilinear forms in each dimension.

Define, for an object (V,B) ∈ OrI(R), O(V,B) to be the orthogonal group associated
with (V,B) (i.e. the group of R-linear isomorphisms V → V preserving the bilinear form
B). Then for any morphism (V,B)→ (W,B′), there is an induced map O(V,B)→ O(W,B′)
given by mapping f to f ⊕ id, where id is the identity map on the complement of (V,B) in
(W,B′).

In this section, we prove the following twisted homological stability theorem:

Theorem 5.1. Let R be a finite field with charR > 2. Let M be a finitely generated
OrI(R)-module over k = Z/`Z, where ` is a prime not equal to charR. Fix any index k ≥ 0.
Consider a morphism (V,B)→ (W,B′) in OrI(R). As explained above, this induces a map
on the homologies

Hk(O(V,B);M(V,B))→ Hk(O(W,B′);M(W,B′)).

Then this map is an isomorphism for all V with sufficiently large rank n.

First, we need to state several lemmas.

Lemma 5.2. Let V, V ′ ∈ OrI(R), and let i : V → V ⊕ V ′ be the canonical injection given
by v 7→ v ⊕ 0. Then

{τ ∈ Aut(V ⊕ V ′) : τi = i} ∼= Aut(V ′).
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Proof. See the proof of [PS17], Lemma 3.2. Because OrI(R) is a complemented category,
the conclusion there applies to OrI(R). �

Lemma 5.3. Let V,W ∈ OrI(R), then, as Aut(V )-representations,

k[Hom(V, V ⊕W )] ∼= k[Aut(V ⊕W )/Aut(W )] ∼= Ind
Aut(V⊕W )
Aut(W ) (k).

Proof. By Lemma 4.3, Aut(V ⊕W ) acts transitively on Hom(V, V ⊕W ). By Lemma 5.2,
the stabilizer of any element i ∈ Hom(V, V ⊕W ) is isomorphic to Aut(W ), which proves the
first equality. The second equality follows by definition of an induced representation. �

Corollary 5.4. For any V,W ∈ OrI(R),

Hk(Aut(V ⊕W ); k[Hom(V, V ⊕W )]) ∼= Hk(Aut(W ); k).

Proof. We have

Hk(Aut(W ); k) ∼= Hk(Aut(V ⊕W ); Ind
Aut(V⊕W )
Aut(W ) (k))

∼= Hk(Aut(V ⊕W ); k[Hom(V, V ⊕W )]).

where the first step uses Shapiro’s lemma for group cohomology (Aut(W ) ≤ Aut(V ⊕W )
by acting trivially on V ), and the second step uses Lemma 5.3). �

Now, we prove the main theorem of this section.

Proof of Theorem 5.1. Let X, Y respectively denote the square and nonsquare generator of
OrI(R); in the notation of §4, they would beX = X∅ and Y = X{1}. Also, fix an isomorphism
X2 ∼= Y 2.

First, we consider the case where we impose the following two extra conditions on M :

(i) For any morphism f : V → W in OrI(R), the map M(f) : M(V ) → M(W ) is
injective;

(ii) There exists a set of generators of M such that each generator lies in M(V ), where
V ∼= Xr ⊕ Y for some r ≥ 0 (possibly depending on the generator).

In this case, we will show that for any fixed k, the map

(2) Hk(Aut(Xn ⊕ Y );M(Xn ⊕ Y ))→ Hk(Aut(Xn+1 ⊕ Y );M(Xn+1 ⊕ Y ))

is an isomorphism for all n� 0.
Because M is finitely generated, by Lemma 2.4, M is a quotient module of a projective

module P0, which is the direct sum of finitely many representable OrI(R)-modules. Further-
more, because of condition (ii), we can choose P0 so that it is the direct sum of representable
functors based at objects isomorphic to those of the form Xr ⊕ Y . The kernel of P0 → M
is finitely generated by local Noetherianity. Consider the following commutative diagram,
where f : V → W is a morphism in OrI(R):

P0(V ) P0(W )

M(V ) M(W ).

P0(f)

M(f)
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Because M(f) is injective, we see that if v ∈ P0(V ) and P0(f)(v) ∈ ker(P0(W ) → M(W )),
then v ∈ ker(P0(V ) → M(V )). From this, we deduce that the kernel ker(P0 → M) must
also satisfy its analogous properties (i) and (ii).

Therefore, we can repeat this process to extend this to a projective resolution C̄ of M by
direct sums of finitely many representable OrI(R)-modules based at objects isomorphic to
Xr ⊕ Y :

C̄ : · · · → P2 → P1 → P0 →M → 0.

Now, if we delete M from the chain complex C̄ to produce

C : · · · → P2 → P1 → P0 → 0,

then for V an object in OrI(R),

Hk(Aut(V );M(V )) ∼= Hk(Aut(V );C),

where the right hand side is group homology with coefficients in a chain complex. There
exists a spectral sequence (cf. [Bro94]):

(3) E1
pq = Hp(Aut(V );Pq(V )) =⇒ Hp+q(Aut(V );C).

Because each Pq is the direct sum of representable modules based at objects isomorphic
to some Xr ⊕ Y , we see (using Corollary 5.4) that for any fixed p, q, n, there is a map⊕

i

Hp(Aut(X i); k) ∼= Hp(Aut(Xn ⊕ Y );Pq(X
n ⊕ Y ))

→ Hp(Aut(Xn+1 ⊕ Y );Pq(X
n+1 ⊕ Y )) ∼=

⊕
i

Hp(Aut(X1+i); k).

From [Fri76], each map Hp(Aut(X i); k) → Hp(Aut(X1+i); k) is an isomorphism for all
i� 0. Hence, we conclude that

Hp(Aut(Xn ⊕ Y );Pq(X
n ⊕ Y ))

∼=−→ Hp(Aut(Xn+1 ⊕ Y );Pq(X
n+1 ⊕ Y ))

for all n� 0. Applying the spectral sequence (3), we conclude that for any fixed k = p+ q,
the map (2) is indeed an isomorphism for all n� 0.

Next, we consider the second case where M satisfies (i) and the following condition (ii’),
instead of (ii):

(ii’) There exists a set of generators of M such that each generator lies in M(V ), where
V ∼= Xr for some r ≥ 0 (possibly depending on the generator).

Using the exact same argument, we can similarly show that for any fixed k, the map

(4) Hn(Aut(Xn);M(Xn))→ Hn(Aut(Xn+1);M(Xn+1))

is an isomorphism for all n� 0.
We now consider the general case where M is any finitely generated OrI(R)-module. Fix

a large enough positive integer N according to Theorem 4.5 and Corollary 4.9, such that
injective and surjective stability holds for all objects with rank at least N . Let M1 be the
submodule of M given by

M1(V ) =

{
M(V ) if either rkV > N or V ∼= XN−1 ⊕ Y ;

0 otherwise,
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and for any morphism f : V → W , M1(f) is the zero map when M1(V ) = 0, and is the
same as M(f) otherwise. Then by local Noetherianity, M1 is a finitely generated module
satisfying conditions (i) and (ii), and M1(V ) ∼= M(V ) for all V of large enough rank. As a
result,

Hk(Aut(Xn ⊕ Y );M(Xn ⊕ Y )) = Hk(Aut(Xn ⊕ Y );M1(X
n ⊕ Y ))

∼= Hk(Aut(Xn+1 ⊕ Y );M1(X
n+1 ⊕ Y ))

= Hk(Aut(Xn+1 ⊕ Y );M(Xn+1 ⊕ Y ))

is an isomorphism for all n� 0.
Similarly, let M2 be the submodule of M given by

M2(V ) =

{
M(V ) if either rkV > N or V ∼= XN ;

0 otherwise,

and for any morphism f : V → W , M2(f) is the zero map when M2(V ) = 0, and is the
same as M(f) otherwise. Then by local Noetherianity, M2 is a finitely generated module
satisfying conditions (i) and (ii’), and M2(V ) ∼= M(V ) for all V of large enough rank. As a
result,

Hk(Aut(Xn);M(Xn)) = Hk(Aut(Xn);M2(X
n))

∼= Hk(Aut(Xn+1);M2(X
n+1))

= Hk(Aut(Xn+1);M(Xn+1))

is an isomorphism for all n� 0.
Finally, because the composition of isometries Xn−2⊕Y → Xn → Xn⊕Y → Xn+2, given

by the inclusions and isomorphisms

Xn−2 ⊕ Y → Xn−2 ⊕ Y 2 ∼= Xn → Xn ⊕ Y → Xn ⊕ Y 2 ∼= Xn+2

induces the maps

Aut(Xn−2 ⊕ Y )→ Aut(Xn)→ Aut(Xn ⊕ Y )→ Aut(Xn+2),

which induces the maps

Hk(Aut(Xn−2 ⊕ Y );M(Xn−2 ⊕ Y ))
f−→ Hk(Aut(Xn);M(Xn))
g−→ Hk(Aut(Xn ⊕ Y );M(Xn ⊕ Y ))

h−→ Hk(Aut(Xn+2);M(Xn+2)),

and since gf, hg are both isomorphisms, we conclude that g is an isomorphism as well.
Because any object (V,B) ∈ OrI(R) is isomorphic to either Xn or Xn ⊕ Y (n ≥ 0), these
are enough to imply Theorem 5.1. �

As a corollary, we show the following homological stability result with untwisted coeffi-
cients:

Corollary 5.5. Under assumptions stated in Theorem 5.1, the map

Hk(O(V,B); k)→ Hk(O(W,B′); k)

is an isomorphism for all V with sufficiently large rank n.
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Proof. Take m sufficiently large. Consider the finitely generated module POrI(R),Xm . Then
for any object V ∈ OrI(R),

Hk(Aut(V ); k) = Hk(Aut(V ⊕Xm); k[Hom(Xm, V ⊕Xm)])

∼= Hk(Aut(A⊕Xm+1); k[Hom(Xm, V ⊕Xm+1)])

= Hk(Aut(V ⊕X); k),

where the first and third steps follow from 5.4, and the second step follows from Theorem
5.1 (recall we took m sufficiently large so that this is an isomorphism). Similarly,

Hk(Aut(V ); k) = Hk(Aut(V ⊕Xm); k[Hom(Xm, V ⊕Xm)])
∼= Hk(Aut(V ⊕Xm ⊕ Y ); k[Hom(Xm, V ⊕Xm ⊕ Y )])

= Hk(Aut(V ⊕ Y ); k).

These are enough to imply the conclusion. �

We remark that this partially generalizes the main theorem in [Cha87] under our assump-
tions for R and k.
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