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Introduction

What is group theory and its applications?

Image Source: Dymetman, M. (1998). Group Theory and Computational Linguistics. Journal of Logic, Language and
Information, 7, 461-497.
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Groups

Definition 1.1
A group is an ordered pair (G, ⋆), where G is a set and ⋆ is a binary
operation on G that follows the following axioms:

i) The operation ⋆ is associative, for all a, b, c ∈ G, we have
(a ⋆ b) ⋆ c = a ⋆ (b ⋆ c)

ii) The group G contains an element e, called the identity, such that for all
a ∈ G, we have a ⋆ e = e ⋆ a = a

iii) For all a ∈ G, there is an element a−1, called an inverse, such that a⋆
a−1 = a−1 ⋆ a = e
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Order

Definition 1.2
The order of a group, denoted by |G|, is the cardinality of the set G, the
number of elements in it. G is an infinite group when its order is infinite.

Definition 1.3
The order of an element x in a group G, is the smallest m ∈ Z+ such that
xm = e where e is the identity of G.
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Subgroups

Definition 1.4
For a group G, we say that a subset H of G is a subgroup, denoted H ≤ G,
if H is a group under the operation of G. Trivial subgroup: H = {1};
Proper subgroups: all H 6= G.

Definition 1.5
A subgroup N is normal, denoted by N ⊴ G, if the conjugate of N,
gNg−1 = {gng−1 | n ∈ N}, is equal to N for all g ∈ G.
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Alhambra

Alhambra (Granada, Spain)

Image Source: mathstat.slu.edu
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M.C. Escher

Image Source: youtu.be/uEBgG-Am0vA
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Transformations
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Symmetries

Definition 2.1
A symmetry is a transformation of the figure under which the figure is
invariant.

Each symmetry g maps points of F 7→ F′

120◦ rotation

Image Source: youtu.be/uEBgG-Am0vA
Lisa Liu and Tanvi Ganapathy Group Theory: Special Topics May 22, 2021 10 / 33

youtu.be/uEBgG-Am0vA


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Symmetry Groups and Group Axioms

Definition 2.2
A symmetry group G is a set of all symmetries of a shape under the binary
operation of composition of transformations.

Binary operation is ◦
associativity: ◦ is associative
identity: e is symmetry that leaves all points unchanged
inverse: inverse of a transformation is a composition of
transformations
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Cn

Symmetries n = 3 n = 4

Cn Rotations

Cn = {1,R1,R2, ...,Rn−1} where Ri is a rotation of
(2π

n
)

i radians.
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Dn

Symmetries n = 3 n = 4

Cn Rotations

Dn Rotations and Reflections

n rotations about the center, these are the elements of Cn

n reflections through the n lines of symmetry.

Image Source: youtu.be/uEBgG-Am0vA
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Frieze Patterns

Definition 2.3
A frieze pattern is a 2-dimensional design that repeats in 1 direction.

Image Source: eecs.berkeley.edu/~sequin/
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Frieze Groups

Definition 2.4
Frieze groups are the symmetries of a frieze pattern.

Image Source: eecs.berkeley.edu/~sequin/
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Wallpaper Patterns

Definition 2.5
A wallpaper pattern is 2-dimensional design that repeats in 2 directions.

Image Source: Artin, Michael. Algebra. Pearson, 2011.
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Wallpaper Groups

Definition 2.6
Wallpaper groups are the symmetries of a wallpaper pattern.
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Wallpaper Groups

Definition 2.6
Wallpaper groups are the symmetries of a wallpaper pattern.

Image Source: Agustí-Melchor, Manuel & Rodas, Angel & González, José M. Computational Framework for Symmetry
Classification of Repetitive Patterns. Communications in Computer and Information Science, 2013.
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Tarski Groups

Definition 3.1 [Tarski Groups]
A Tarski group T is an infinite group where all nontrivial proper subgroups
are of prime order.

Definition 3.2 [Tarski Monsters]
T is a Tarski Monster when it is an infinite group with all nontrivial proper
subgroups having the same prime order p.

Existence
In a series of work published in the 1980s, Alexander Yu. Olshanskii has
proven the existence of Tarski Monsters by constructing that the Tarski
Monster exists for all primes p > 1075.
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Existence
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Burnside Problem

Burnside Problem
Must a finitely generated group with elements of finite order be finite?

As Tarski Monsters are generated by two elements [Olshanskii], they
suffice as counterexamples to the Burnside Problem.
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Two Important Theorems

Theorem 3.3 [Cauchy]
For finite group G, there must be an element of order prime p if p divides
|G|.

Theorem 3.4 [Lagrange]
If G is a finite group and H is a subgroup of G, the order of H divides the
order of G.
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Cyclic Groups and Generators

Definition 3.5
We say that a group G is generated by its subset S, denoted G = 〈S〉, if
every element of G can be written as a finite product of elements in S.
The elements of S are called generators of G.

Example 3.6
A cyclic group is generated by a single element: H = {xn | n ∈ Z} for
some x ∈ H.
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Cyclic Subgroups

Theorem 3.7
All nontrivial proper subgroups of a Tarski Monster are cyclic.

Proof.
Let H be a subgroup of a Tarski Monster. It must have cardinality prime
p. By Cauchy’s Theorem, there must be an element x ∈ H that has order
p. The p elements x, x2, . . . , xp−1, xp = 1 must be all distinct. For if
xa = xb for some 1 ≤ a < b ≤ p, we get that 1 = xb−a by the Cancellation
Law, which contradicts that the order of x is p. And there are exactly p
elements in H, so x is a generator of H and H is cyclic.
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Cyclic Subgroups

Corollary 3.8
For distinct proper subgroups H and K of T, we have H ∩ K = {1}.

Proof.
For a cyclic group of prime order, any element that is not the identity can
be the generator. This is true because the order of an element must divide
the order of the group. In the case for prime p, all non-identity elements
must have order p and thus can be a generator. Then, if there exists
non-identity element x ∈ H ∩ K, then H = 〈x〉 = K. Hence, H ∩ K must
only include 1.
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The Subgroup Lattice

Definition 3.9
The lattice of subgroups of a group G is a plot of all subgroups as points
positioned such that H is higher than K if |H| > |K|. In addition, a path is
drawn from subgroups H to K if and only if H ≤ K.

Modular lattices are a special type of lattice in that they are highly
symmetric. They are rare among subgroup lattices of non-abelian groups.
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The Subgroup Lattice

Theorem 3.10 [Dedekind]
A lattice L is modular if and only if it does not contain N5 as a sublattice.

The pentagon lattice N5 is:
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The Subgroup Lattice
The Tarski Monster lattice is modular:

In contrast, here is the subgroup lattice of C12:

Image Source: math.colostate.edu/~jwilson/math/12/C12.html
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Simple Groups

Definition 3.11
A group G is simple if |G| > 1 and its only normal subgroups are itself and
the trivial subgroup.

Theorem 3.12
Tarski Monsters are simple groups.
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Proving Tarski Monsters Are Simple

Lemma 3.13
If H and K are subgroups of group G, then HK = {hk | h ∈ H, k ∈ K} is a
subgroup of G if and only if HK = KH.

Lemma 3.14
For finite subgroups H and K of a group, the cardinality of HK is

|HK| = |H||K|
|H ∩ K|
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Proving Tarski Monsters Are Simple

Proof.
Assume we have a Tarski Monster T that is not a simple group for the
sake of contradiction. There exists a normal subgroup N ⊴ T. We find
another subgroup H of T and show that HN = NH.

By Lemma 3.13, HN ≤ T. By Lemma 3.14 we get that
|HN| = |H| · |N| = p2, a contradiction.
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Thank You!
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