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Fields

Definition
A field F is a commutative ring containing the multiplicative
identity where every non-zero element is a unit (has an
inverse).

Example

Q, R, and C are all examples of fields.

Non-Example

Z (the ring of integers) is not a field since only 1 and −1
have a multiplicative inverse.
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Finite Fields

Definition
A finite field is a field with a finite number of elements.

Example

Fp = Z/pZ is a finite field (p is prime).
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The element 1 in any finite field generates a subfield of size a
prime number p.

Proposition

Therefore every finite field is a finite extension of some Fp.

We denote these as Fq where q = pk .
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Cyclotomic Fields

Definition
The nth roots of unity are the n (distinct) complex solutions
to xn = 1.

The n nth roots of unity form a regular n-gon with its
vertices on the unit circle.
These are the powers of ζn := e

2πi
n .

Definition
The nth cyclotomic field Q(ζn), is the field consisting of
a0 + a1ζn + a2ζ

2
n + · · ·+ an−1ζ

n−1
n for a0, a1, . . . , an−1 ∈ Q.

Remark: it actually has dimension φ(n) as a Q-vector space,
not n.
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Number Fields

Definition
Algebraic number fields K , also known as number fields, are
finite degree extension fields of Q. In other words, the
following conditions are satisfied:
I K is a field.
I Q ⊆ K .
I K is a finite dimensional vector space over Q.
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Examples of Number Fields
Example

Q, Q(i), Q(
√
d), and Q(ζn) are all number fields.

Non-Example

The finite fields Fq are not number fields because they do
not contain Q.

Non-Example

The fields R, C, and Q(π) (or any other transcendental
number) are not number fields because they are
infinite-dimensional vector spaces over Q (alternatively,
infinite-degree extensions).

Non-Example

The ring Q[x ]/(x2) is not a number field because it is not a
field.
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Minimal Polynomials

Definition
The minimal polynomial for a constant α over a given field
F is a monic polynomial f (x) of minimum degree that is
irreducible over F such that f (α) = 0.

Essentially, the minimal polynomial is the smallest polynomial
which still has α as a root.

Example

x2 + 1 is the minimal polynomial for i over the field R.
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Characterizing Number Fields

Theorem (Primitive Element Theorem)

Every finite extension of Q is Q(α) where α is a root of its
minimal polynomial f (x) over Q.

In other words, every number field is realized by adjoining
some single element to Q!

Example

Q ⊂ Q(
√
2,
√
3,
√
5,
√
7,
√
11)

Q(
√
2,
√
3,
√
5,
√
7,
√
11) would still be just Q adjoin some

single element.
In fact, Q(

√
2,
√
3,
√
5,
√
7,
√
11) = Q(α) where

α =
√
2+
√
3+
√
5+
√
7+
√
11.
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Ring of Integers

Definition
The ring of integers of a number field K , denoted OK , is
the subset of K whose minimal polynomial over Q is monic
and integer.

The field Q is the fractions using Z, and Z is the "integer"
part of Q. In the same way, for a number field K , OK is the
"integer" part of K , and K is the fractions of using OK .

Proposition

K ⊂ L, where L is an extension of the field K , implies
OK ⊂ OL.
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Examples of Rings of Integers

Example

The ring of integers of Q is Z.

Example

The ring of integers of Q(i) is Z[i ].

Example

The ring of integers of Q(
√
2) is Z[

√
2].

Example

The ring of integers of Q(
√
d) for d ≡ 1 (mod 4) (and d

squarefree) is actually Z
[

1+
√
d

2

]
.
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Prime Ideals

Definition
A prime ideal of a commutative ring R is a proper ideal p
such that for two elements a1, a2 ∈ R and a1a2 ∈ p implies
a1 ∈ p, a2 ∈ p, or a1, a2 ∈ p.

Example

The prime ideals of Z are (0) and (p) for all prime integers p.

Example

The only prime ideal of a field F is the zero ideal (0).

Non-Example

The ideal (3, x2 + 11) of Z[x ] is not prime since
x2 + 11− 3 · 4 = x2 − 1 = (x − 1)(x + 1), but neither x − 1
nor x + 1 is in the ideal.
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The only prime ideal of a field F is the zero ideal (0).

Non-Example

The ideal (3, x2 + 11) of Z[x ] is not prime since
x2 + 11− 3 · 4 = x2 − 1 = (x − 1)(x + 1), but neither x − 1
nor x + 1 is in the ideal.
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Factorizing Ideals in OK

Theorem
All rings of integers OK are Dedekind domains. All prime
ideals are maximal ideals. Crucially, all ideals have unique
factorization into prime ideals.

I Q ⊂ K =⇒ OQ = Z ⊂ OK .
I Prime ideal pZ ⊂ Z; lifting to OK , have pOK (multiples

of p in OK ).
I This is an ideal, but unlike pZ, it is usually not prime.
I We will study its prime factorization.
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General Factorization Properties

Because pOK is an ideal, it has prime factorization

pOK =
r∏

i=1

Qei
i ,

where Qi are prime ideals of OK .

We already know that Z/pZ is a field. On the other hand,
OK/Qi is also a field.
Just as how Z is a subring of OK , Z/pZ is a subfield of
OK/Qi .

Definition
We will denote fi to be the degree of the extension. In other
words, fi := [OK/Qi : Z/pZ].
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Relationship of dimension with factorization

Theorem
We have

[K : Q] =
r∑

i=1

ei fi .

Even better, when K/Q is Galois (which we will define later):

Theorem
Let K/Q be Galois. Then all of the ei and fi are the same, so

[K : Q] = ref .
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Computing The Factorization

By the Primitive element theorem, K = Q(α). Let f (x) be
the minimal polynomial of α. It turns out that factorization
of pOK is as easy as factorizing f (x) modulo p (for all but
finitely many p).

Example

I In Q(
√
2)/Q, α =

√
2, and f (x) = x2 − 2.

I To factor 7OQ(
√

2), we just factor x2 − 2 (mod 7).

I x2 − 2 ≡ (x − 3)(x − 4) (mod 7).
I Plug in x = α to get product of ideals:

7OQ(
√

2) = (7, α− 3)(7, α− 4).
I Degree of terms are all 1, so all fi = 1.



Number Fields
and Galois

Theory

Garima Rastogi
and Xavier Choe

Introduction

Number Fields

Factorizing Ideals

Galois Theory

Computing The Factorization

By the Primitive element theorem, K = Q(α). Let f (x) be
the minimal polynomial of α. It turns out that factorization
of pOK is as easy as factorizing f (x) modulo p (for all but
finitely many p).

Example

I In Q(
√
2)/Q, α =

√
2, and f (x) = x2 − 2.

I To factor 7OQ(
√

2), we just factor x2 − 2 (mod 7).

I x2 − 2 ≡ (x − 3)(x − 4) (mod 7).
I Plug in x = α to get product of ideals:

7OQ(
√

2) = (7, α− 3)(7, α− 4).
I Degree of terms are all 1, so all fi = 1.



Number Fields
and Galois

Theory

Garima Rastogi
and Xavier Choe

Introduction

Number Fields

Factorizing Ideals

Galois Theory

Computing The Factorization

By the Primitive element theorem, K = Q(α). Let f (x) be
the minimal polynomial of α. It turns out that factorization
of pOK is as easy as factorizing f (x) modulo p (for all but
finitely many p).

Example

I In Q(
√
2)/Q, α =

√
2, and f (x) = x2 − 2.

I To factor 7OQ(
√

2), we just factor x2 − 2 (mod 7).

I x2 − 2 ≡ (x − 3)(x − 4) (mod 7).
I Plug in x = α to get product of ideals:

7OQ(
√

2) = (7, α− 3)(7, α− 4).
I Degree of terms are all 1, so all fi = 1.



Number Fields
and Galois

Theory

Garima Rastogi
and Xavier Choe

Introduction

Number Fields

Factorizing Ideals

Galois Theory

Computing The Factorization

By the Primitive element theorem, K = Q(α). Let f (x) be
the minimal polynomial of α. It turns out that factorization
of pOK is as easy as factorizing f (x) modulo p (for all but
finitely many p).

Example

I In Q(
√
2)/Q, α =

√
2, and f (x) = x2 − 2.

I To factor 7OQ(
√

2), we just factor x2 − 2 (mod 7).

I x2 − 2 ≡ (x − 3)(x − 4) (mod 7).
I Plug in x = α to get product of ideals:

7OQ(
√

2) = (7, α− 3)(7, α− 4).
I Degree of terms are all 1, so all fi = 1.



Number Fields
and Galois

Theory

Garima Rastogi
and Xavier Choe

Introduction

Number Fields

Factorizing Ideals

Galois Theory

Computing The Factorization

By the Primitive element theorem, K = Q(α). Let f (x) be
the minimal polynomial of α. It turns out that factorization
of pOK is as easy as factorizing f (x) modulo p (for all but
finitely many p).

Example

I In Q(
√
2)/Q, α =

√
2, and f (x) = x2 − 2.

I To factor 7OQ(
√

2), we just factor x2 − 2 (mod 7).

I x2 − 2 ≡ (x − 3)(x − 4) (mod 7).

I Plug in x = α to get product of ideals:
7OQ(

√
2) = (7, α− 3)(7, α− 4).

I Degree of terms are all 1, so all fi = 1.



Number Fields
and Galois

Theory

Garima Rastogi
and Xavier Choe

Introduction

Number Fields

Factorizing Ideals

Galois Theory

Computing The Factorization

By the Primitive element theorem, K = Q(α). Let f (x) be
the minimal polynomial of α. It turns out that factorization
of pOK is as easy as factorizing f (x) modulo p (for all but
finitely many p).

Example

I In Q(
√
2)/Q, α =

√
2, and f (x) = x2 − 2.

I To factor 7OQ(
√

2), we just factor x2 − 2 (mod 7).

I x2 − 2 ≡ (x − 3)(x − 4) (mod 7).
I Plug in x = α to get product of ideals:

7OQ(
√

2) = (7, α− 3)(7, α− 4).

I Degree of terms are all 1, so all fi = 1.



Number Fields
and Galois

Theory

Garima Rastogi
and Xavier Choe

Introduction

Number Fields

Factorizing Ideals

Galois Theory

Computing The Factorization

By the Primitive element theorem, K = Q(α). Let f (x) be
the minimal polynomial of α. It turns out that factorization
of pOK is as easy as factorizing f (x) modulo p (for all but
finitely many p).

Example

I In Q(
√
2)/Q, α =

√
2, and f (x) = x2 − 2.

I To factor 7OQ(
√

2), we just factor x2 − 2 (mod 7).

I x2 − 2 ≡ (x − 3)(x − 4) (mod 7).
I Plug in x = α to get product of ideals:

7OQ(
√

2) = (7, α− 3)(7, α− 4).
I Degree of terms are all 1, so all fi = 1.



Number Fields
and Galois

Theory

Garima Rastogi
and Xavier Choe

Introduction

Number Fields

Factorizing Ideals

Galois Theory

Galois Theory



Number Fields
and Galois

Theory

Garima Rastogi
and Xavier Choe

Introduction

Number Fields

Factorizing Ideals

Galois Theory

Motivation

Is i or −i the square root of −1?
We arbitrarily choose i , but there is no real reason to pick
one over another.
In this case, let’s look at the automorphisms of C preserving
R.
These consist of {1, σ} where 1 is the identity on C and σ is
complex conjugation.
Because complex conjugation is in here, we cannot tell i and
−i apart.
Galois theory aims to quantify these issues.
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Galois extensions

Certain extensions (in our case, of number fields) behave
better than others. We will study Galois extensions, but for
the purposes of this talk we will ignore the technical details
of how they are defined.

Example

Q(i)/Q, Q(ζn)/Q, and Q(
√
2)/Q are all Galois extensions.
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Galois group

Definition
Let F ⊂ E be a Galois extension. The Galois group of E/F ,
denoted as G = Gal(E/F ), is the set of all automorphisms of
E that map every element of F to itself.

Example

The automorphisms of C fixing R means that i must be sent
to ±i .
If i 7→ i , then it is the identity on C. If i 7→ −i , it is complex
conjugation on C.
Gal(C/R) = {1, σ}
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Examples of Galois groups

Example

I Consider Gal(Q(
√
2)/Q).

I Minimal polynomial: x2 − 2, roots ±
√
2.

I Galois group: {1, f } ∼= Z/2Z, with 1 is the identity
automorphism and f mapping

√
2 to −

√
2.

Example

I Consider Gal(Q(i ,
√
2)/Q).

I Galois group: {1, α, β, αβ} ∼= Z/2Z× Z/2Z.
I 1 is identity; α fixes

√
2 and sends i 7→ −i ; β fixes i and

sends
√
2 7→ −

√
2.

We now look at a visual way to represent this.



Number Fields
and Galois

Theory

Garima Rastogi
and Xavier Choe

Introduction

Number Fields

Factorizing Ideals

Galois Theory

Examples of Galois groups

Example

I Consider Gal(Q(
√
2)/Q).

I Minimal polynomial: x2 − 2, roots ±
√
2.

I Galois group: {1, f } ∼= Z/2Z, with 1 is the identity
automorphism and f mapping

√
2 to −

√
2.

Example

I Consider Gal(Q(i ,
√
2)/Q).

I Galois group: {1, α, β, αβ} ∼= Z/2Z× Z/2Z.
I 1 is identity; α fixes

√
2 and sends i 7→ −i ; β fixes i and

sends
√
2 7→ −

√
2.

We now look at a visual way to represent this.



Number Fields
and Galois

Theory

Garima Rastogi
and Xavier Choe

Introduction

Number Fields

Factorizing Ideals

Galois Theory

Examples of Galois groups

Example

I Consider Gal(Q(
√
2)/Q).

I Minimal polynomial: x2 − 2, roots ±
√
2.

I Galois group: {1, f } ∼= Z/2Z, with 1 is the identity
automorphism and f mapping

√
2 to −

√
2.

Example

I Consider Gal(Q(i ,
√
2)/Q).

I Galois group: {1, α, β, αβ} ∼= Z/2Z× Z/2Z.
I 1 is identity; α fixes

√
2 and sends i 7→ −i ; β fixes i and

sends
√
2 7→ −

√
2.

We now look at a visual way to represent this.



Number Fields
and Galois

Theory

Garima Rastogi
and Xavier Choe

Introduction

Number Fields

Factorizing Ideals

Galois Theory

Examples of Galois groups

Example

I Consider Gal(Q(
√
2)/Q).

I Minimal polynomial: x2 − 2, roots ±
√
2.

I Galois group: {1, f } ∼= Z/2Z, with 1 is the identity
automorphism and f mapping

√
2 to −

√
2.

Example

I Consider Gal(Q(i ,
√
2)/Q).

I Galois group: {1, α, β, αβ} ∼= Z/2Z× Z/2Z.
I 1 is identity; α fixes

√
2 and sends i 7→ −i ; β fixes i and

sends
√
2 7→ −

√
2.

We now look at a visual way to represent this.



Number Fields
and Galois

Theory

Garima Rastogi
and Xavier Choe

Introduction

Number Fields

Factorizing Ideals

Galois Theory

Galois Correspondence

Gal(Q(i ,
√
2)/Q) = {1, α, β, αβ}

α(
√
2) =

√
2, α(i) = −i ,

β(
√
2) = −

√
2, β(i) = i ,

αβ(
√
2) = −

√
2, αβ(i) = −i .
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Fundamental Theorem of Galois Theory

Definition
Every finite Galois Extension and its subfields share a 1 to 1
correspondence with the Galois Group and its subgroups.

These subfields and subgroups are in an inclusion reversing
bijection.
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