
Combinatorics and 
Applications

Ephram Chun
Mentor: (Victor)Jung Soo Chu



Overview

Bona, Miklos. A Walk Through Combinatorics Fourth Edition

❖ PigeonHole Principle
❖ Induction
❖ Basic Counting Problems
❖ Graph Theory
❖ Combinatorial Algorithms and Game Theory
❖ Applications of Combinatorics in Classroom Assignment Optimization



Basic PigeonHole Principle
Pigeonhole Principle: Let n and k be positive integers, and let n > k. Suppose we have to 
place n identical balls into k identical boxes. Then there will be at least one box in which 
we place at least two balls. 

1 2 3 4 5 6 7 8 9

Box 1 Box 2



Proof of PigeonHole Principle
Proof: 

We proceed with proof by contradiction. Let us assume that there is no box with 
at least two balls. Then each of the k boxes must have either 0 or 1 balls in it. 
Then the maximum number of balls that can be in the k boxes is k*1=k. 

However, we are given that n > k thus we have reached a contradiction thus our 
assumption that there is no box with at least two balls must be false. QED



Generalized PigeonHole Principle: Let n, m, and r be positive integers so that n>r*m, 
and let us distribute n identical balls into m identical boxes. Then there will be at least one 
box into which we place at least r +1 balls. 

1 2 3 4 5 6 7 8 9

Box 1 Box 2

Generalized PigeonHole Principle



Generalized PigeonHole Principle Proof

Proof: We proceed with proof by contradiction. Let us assume that there is no box where 
we place at least r +1 balls in. That means we can place an integer between 0 and r balls in 
each of the m boxes. Thus, the maximum possible number of balls we can have is r*m. 

However, it was given to us that n>r*m thus a contradiction thus there must be at least one 
box in which we place at least r +1 balls. QED.



Weak Induction

1. Initial Step: Prove that the statement is 
true for the smallest of n for which it is 
defined.

2. Induction Step: Prove that from the fact 
that the statement is true for n, it follows 
that the statement is also true for n+1. 



Strong Induction

Strong Induction is split into 2 steps.

1. Initial Step: Equivalent to Weak Induction we prove that the statement is true for 
the smallest value of n for which it is defined. 

2. Induction Step: Prove from the fact that the statement is true for all integers less 
than n+1, it follows that the statement is also true for n+1. 



Basic Counting Problems



Graph Theory
Definition 1.1: A graph is a diagram from a set of points and 
lines that connect some pairs of those points.

A

E

D

B

C

F

I
H

G J

Definition 1.2: The vertices also known as nodes are endpoints of 
an edge
Definition 1.3: The edges are the lines that connect the 
vertices to each other
Definition 1.4: The degree of a vertex is the number of 
edges connected to a vertex
Definition 1.5: A walk is where no edge is repeated 
but a vertex can be repeated

Walk: A trail that 
does not touch the 
same edge twice

Definition 1.7: A connected graph is a graph where 
there is a path between any 2 vertices

Definition 1.6: A cycle is a closed trail that 
does not touch any vertex twice except the 
starting and ending vertice. 



Isomorphisms
Bijection: A correspondence between 
2 sets where each element of one set 
corresponds with an element of the 
other set. 

Isomorphism: Graphs G and H are 
isomorphic if there is a bijection f 
from the v(G) to v(H) so that the 
number of edges between any pair of 
vertices X and Y of G is equal to the 
number of edges between vertices 
f(X) and f(Y) of H. 



Automorphism

Automorphism: An automorphism of 
graph G is an isomorphism between G and 
G itself. That is, the permutation f of the 
vertex set of G is an automorphism of G if 
for any two vertices x and y of G, the 
number of edges between x and y is equal to 
the number of edges between f(x) and f(y). 
We are mapping the object onto itself while 
preserving the structure. 



Adjacency Matrix



Matrix Multiplication

=



Greedy Algorithm

The Greedy Algorithm is an algorithm that will make decisions based on the immediate 
reward and never returns to a previously made decision. 

In this example, the greedy 
algorithm is trying to choose 
numbers that will add up to a 
maximum value and will make 
choices at each step:

12 > 3 so it chooses 12
6 > 5 so it chooses 6
9 > 2 so it chooses 9



Dynamic Programming

● Dynamic Programming is an optimization over recursion, where it stores the results 
of subproblems and an optimization is found by a combination of these results. 

● A subproblem is where we look at the smallest part of a problem and solve it there 
and then we use that to solve the next subproblem which is the next smallest part. 

● Similar to Induction
● Dynamic programming optimally explores all the possible outcomes which makes it 

reliable and accurate. 



Prisoner’s Dilemma

The dilemma here is in the perspective of 
each of the criminals betraying the other is 
in their best interest. However, this leads to 
them serving 2 years each instead of 1 year 
each. 



Applications of Combinatorics in Classroom Assignment Optimization

Problem statement: We want to find the 
best way for a group to traverse through 
the school taking the most efficient route. 
Where the total distance traveled by the 
group is the sum of the individual 
distances traveled by each student to 
reach their destination. We will use the 
building images of Lexington High 
School to create our graphs. 



School Mapping

We will use the Lexington High School Math Building Floor 1 and we can change the 
classrooms into points and the hallways into edges. For our purposes, we will assume 
that points A, B, C, D, E, F represent only classrooms and not classes and all hallways 
go in both directions. 



Greedy Algorithm Solution Example

● Apply the Greedy Algorithm
● Minimize for Student 1
● Minimize for Student 2
● Continue through all students



Graphs iterating through each student

Student 1 Student 1 and 2

Student 1,2 and 3

Now that we have finished assigning 
the classrooms to all the points it does 
not matter what classes student 4,5,6 
have as their classes overlap with 
classes that are already on the graph. 



Dynamic Programming Solution Generalized



Above we see how we would 
choose a point and do 
casework on that point by 
assigning it all 6 classes. 
Now we would have a 
subproblem with the 
remaining 5 classes that were 
not yet assigned. 



Evaluation of Algorithms
Greedy Algorithm Dynamic Programming

Optimizes by making a decision in the moment. Optimizes by breaking down a problem using 
subproblems

Runs very quickly because it will iterate from 
each student and create the best scenario for that 
student

Runs more slowly because it breaks down the 
problem into smaller subproblems which does 
take significantly more time due to the 
numerous cases it has to execute. 

Bias and it will give the best solutions to the 
first few students and those it meets last will not 
have as much choice

Fairness and Efficiency because it will go 
through all possible cases to find the best 
solution and all students will get an equal 
chance 

Inaccurate because it misses many possibilities 
because it goes through the students 1 by 1 
without ever thinking back to a student or 
thinking ahead for other students. 

Accurate because it explores every possibility 
and gives you the best assignments for the class 
placement.



Acknowledgements

● PRIMES Circle for making this program and presentation possible
● Mentor: (Victor)Jung Soo Chu for guiding and teaching me throughout this 

semester
● Peter Haine for reading and editing my presentation
● Parents for their support throughout writing my presentation


