Exse (0) (1) $\sqrt{a^{2}+b^{2}}=x^{2} 4 x$

andrelatecuidentities

 $x^{2}=y^{2}=d b+4 c$
 \[c(x, y)\left\{$$
\begin{array}{l}
x y=c \\
-x=c y \\
-\pi x=c
\end{array}
$$\right.
\]
 \section*{ál theorem
 \title{

 The birremial theorem}
}
 \title{

 The birremial theorem}
}

Table of contents

Binomial theorem
The pascal's triangle
Binomial coefficient
Generalized binomial theorem
Trinomial theorem
Multinomial theorem
Vandermonde's identity

Common mistake

$$
\begin{gathered}
(a+b)^{0}=1 \\
(a+b)^{1}=a+b \\
\text { Common mistake } \longrightarrow \quad(a+b)^{2}=a^{2}+b^{2}
\end{gathered}
$$

The box method:

The foil method:

$$
(a+b)(a+b)=a^{2}+2 a b+b^{2}
$$

$$
(a+b)^{4}=? ?
$$

Background information- binomial theorem

Help us to expand $(x+y)^{n}$ expression
Explains how to express the coefficient in $(x+y)^{n}$
Can prove the result in combinatorics
Explore probability

The binomial theorem

The binomial theorem formula

$$
\text { any }(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Example

$$
\begin{aligned}
&(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} \\
&\binom{n}{k}=\frac{n!}{k!(n-k)!}
\end{aligned}
$$

Expand $(x+y)^{5}$
$\binom{5}{0} x^{5} y^{0}+\binom{5}{1} x^{4} y^{1}+\binom{5}{2} x^{3} y^{2}+\binom{5}{3} x^{2} y^{3}+\binom{5}{4} x^{1} y^{4}+\binom{5}{5} x^{0} y^{5}$
$\binom{5}{0}=\frac{5!}{0!* 5!}=1$
Answer: $x^{5}+5 x^{4} y^{1}+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x^{1} y^{4}+1 y^{5}$

Prove: $0=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}$

Set $X=-1$ and $y=1$ in the binomial theorem

$$
\begin{aligned}
(-1+1)^{n} & =\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}(1)^{n-k} \\
0 & =\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}
\end{aligned}
$$

The pascal's triangle

Help you to calculate the binomial theorem and find combinations way faster and easier

We start with 1 at the top and start adding number slowly below the triangular.

$$
\begin{aligned}
& 1 \\
& 1_{+, 1} 1 \\
& \text { Binomial coefficient } \\
& 1{ }_{+} 5{ }_{+} 10+{ }_{+10}{ }_{+}^{5}{ }_{+}{ }^{1} \\
& 1+6{ }_{+}{ }^{15}{ }_{+}{ }^{20}{ }_{+}{ }^{15}{ }_{+}{ }^{6}{ }_{+}{ }^{1} \\
& 1
\end{aligned}
$$

Example

+Lets look at an example

Now let solve this problem by using the pascal's triangle 14641
$1(3 x)^{4}(-6)^{0}+4(3 x)^{3}(-6)^{1}+6(3 x)^{2}(-6)^{2}+4(3 x)^{1}(-2)^{3}$ $+1(3 x)^{0}(-6)^{4}$
Answer: $3 x^{4}-648 x^{3}+1944 x^{2}-96 x+1296$

How can people come up with Pascal's triangle

All honnegative integers n and k

$$
\begin{gathered}
\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1} \\
\binom{n}{k}\binom{n}{k+1} \\
\vdots \\
\binom{n+1}{k+1}
\end{gathered}
$$

Why it is true?

$$
\binom{n}{k}+\underbrace{\binom{n}{k+1}}=\binom{n+1}{k+1}
$$

Numbers of Numbers of ways to choose k elements ways to choose k+1 elements from

Counts number of ways to choose $k+1$ elements from $n+1$ elements
from n

$$
2 \text { options }
$$

$\binom{n}{k}$ choose $n+1$ as one of $k+1$ elements

$$
\binom{n}{k+1} \text { do not choose } n+1
$$

(3)

Generalized binomial theorem

The binomial theorem is only truth when $\mathrm{n}=0,1,2 .$. ,
So what is n is negative number or factions how can we solve.
The binomial theorem: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$
The generalized binomial theorem:

$$
(1+b)^{r}=\sum_{k=0}^{\infty}\binom{r}{k} b^{k}, r \in \mathbb{R}
$$

Example

What does r choose k mean when r is not positive interger $\binom{r}{k}$?

$$
\binom{r}{k}=\frac{r(r-1)(r-2)(r-3) . .(r-(k-1))}{k!}
$$

$$
\binom{-3}{6}=\frac{(-3)(-4)(-5)(-6)(-7)(-8)}{6 * 5 * 4 * 3 * 2 * 1}=28
$$

Example

$$
b=-x
$$

$$
\sum_{k=0}^{\infty}\binom{-1}{k}(-x)^{k}=(1-x)^{-1}
$$

Trinomial theorem

$$
(a+b+c)^{n}=\sum_{i+j+k}\binom{n}{i, j, k} a^{i} b^{j} c^{k}
$$

Where $\mathrm{i}, \mathrm{j}, \mathrm{k}$ will be non-negative number

$$
\binom{n}{i, j, k}=\frac{n!}{i!j!k!}
$$

Example

How many terms in $(a+b+c)^{7}$?
i $+\mathrm{j}+\mathrm{k}=7$
I=2
$J=0$
$\mathrm{K}=5$
$\binom{9}{2}=36$

Background information- multinomial theorem

How can we expand ($\left.\mathrm{x} _1+\ldots+\mathrm{x} _\mathrm{k}\right)^{\wedge} \mathrm{n}$?
Willian L Hosch created the multinomial theorem
Multinomial theorem originally take from binomial theorem
It consist of the sum of many terms

Multinomial theorem

$$
+\left(x_{1}+\cdots+x_{k}\right)^{n}=\sum \frac{n!}{e_{1}!e_{2}!\ldots e_{k}!} x_{1}^{e 1} x_{2}^{e 2} \ldots x_{k}^{e k}
$$

Where: $e_{1}, e_{2} \ldots e_{k} \geq 0$
e_{i} is exponent of x_{i} in a monomial

$$
e_{1}+\cdots+e_{k}=n
$$

Vandermonde’s identity

m, n, and k are non-negative integer with $\mathrm{k} \leq \min (\mathrm{m}, \mathrm{n})$

$$
\binom{n+m}{k}=\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i} \quad r, m, n \in \mathbb{N}_{0}
$$

Example

Prove Vanderdoes's identity using combinatoric

$$
|X|=n
$$

$$
|Y|=m
$$

$|X \cap Y|=|X|+|Y|-0$ $|X \cup Y|=|X|+|Y|=m+n$
One side: $\binom{m+n}{r}$
Other side: let $0 \leq k \leq r$ Choose K elements from $\mathrm{X}\binom{n}{k}$ Choose r-k elemts from $Y\binom{m}{r-k}$ We get $\sum_{k=0}^{r}\binom{n}{k}\binom{m}{r-k}$

Binomial theorem, general version

Formula:

$$
(1+x)^{m}=\sum_{n \geq 0}\binom{m}{n} x^{n}
$$

Where m must be any real number
Sum taken all non-negative integer n

Example

Find the power series expansion of $\sqrt{1-4 x}$

$$
\begin{gathered}
(1-4 x)^{\frac{1}{2}}=\sum_{n \geq 0}\binom{\frac{1}{2}}{n}(-4 x)^{n} \\
\binom{\frac{1}{2}}{n}=\frac{\frac{1}{2} * \frac{-1}{2} * \frac{-3}{2} \ldots \frac{-2 n+3}{2}}{n!}=(-1)^{n-1} * \frac{(2 n-3)!!}{2^{n} * n!}
\end{gathered}
$$

Continue the example

$$
\begin{gathered}
\sqrt{1-4 x}=1-2 x-\sum_{n \geq 2} \frac{2^{n} *(2 n-3)!!}{n!} * x^{n} \\
\frac{2^{n} *(2 n-3)!!}{n!}=2 * \frac{(2 n-2)!}{n!(n-1)!}
\end{gathered}
$$

We got

$$
\sqrt{1-4 x}=1-2 x-\frac{2}{n} \sum_{n \geq 2}\binom{2 n-2}{n-1} x^{n}
$$

Source

A walk-through combinatorics
An introduction to enumeration and graph theory

Fourth edition
Miklos Bona

