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Partially-ordered Sets

Definition

A finite set P is called a partially-ordered set (poset) if it is equipped
with relation ≤ with the following properties for a, b, c ∈ P:

a ≤ a for all a.

a ≤ b and b ≤ a implies a = b.

a ≤ b and b ≤ c implies a ≤ c .

Example: The Boolean algebra Bn, which consists of all subsets of the set
{1, 2, . . . , n}.

Relation ≤ is defined such that sets a, b ∈ Bn satisfy a ≤ b if a is a
subset of b.

{1} ≤ {1, 2}, whereas {1} and {3} are incomparable.
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Chains

Definition

For a poset P, a chain is a subset C ⊆ P for which all elements of C are
pairwise comparable.

Define the overall rank of P as the length of the maximum chain
within P, and define the rank of element p ∈ P, denoted by ρ(p), as
the length of the maximum chain with greatest element p.
Define the nth level of P as the subset Pn ⊆ P consisting of all
elements p ∈ P for which ρ(p) = n.

Figure: Hasse Diagram of B3; from Stanley’s Algebraic Combinatorics
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Antichains

Definition

For a poset P, an antichain is a subset A ⊆ P for which no elements of A
are pairwise comparable.

Note that each level of P is an individual antichain.

Figure: Hasse Diagram of B3; from Stanley’s Algebraic Combinatorics
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Sperner Problem

Problem

What is the size of the largest antichain in Bn?

A reasonable guess would be that the largest antichain is the largest
level of Bn, i.e. (Bn)bn/2c.

Definition

A poset P has the Sperner property if the maximum size of an antichain
is equal to the size as the largest level of P.

We seek to prove the Sperner property for Bn.
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Order-raising operators

Consider a poset P with levels denoted by Pj .

Definition

A linear transformation U : RPi → RPi+1 is an order-raising operator if
for any x ∈ Pi , the image U(x) can be expressed as a linear combination
of elements in Pi+1 comparable to x .

We can assign a pi+1 × pi matrix [U] to each order-raising operator
U, where the columns are lined by bases x1, . . . , xpi of Pi and the
rows are lined by bases y1, . . . , ypi+1 of Pi+1.
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Order-matchings

Definition

A one-to-one function µ is called an order-matching if across every
x ∈ Pi , the relationship between x and µ(x) is the same. That is, if µ is
from Pi → Pi+1, then all x < µ(x), and if µ is from Pi+1 → Pi , then all
x > µ(x).

Lemma

If an order-raising operator U : RPi → RPi+1 is one-to-one, then there is
an order-matching from Pi to Pi+1. Similarly, if U is onto, then there is an
order-matching from Pi+1 to Pi .

The lemma can be proved by examining the determinant of a
submatrix of [U], whose terms will allow us to directly construct the
order-matching we seek.
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Application to Bn

Define order-raising operators Ui : R(Bn)i → R(Bn)i+1 where Ui (x) is
the sum of all elements in (Bn)i+1 comparable to x .

Define dual operators Di : R(Bn)i → R(Bn)i−1, where Di (y) is the
sum of all elements in (Bn)i−1 comparable to y .

Note that [Di ] = [Ui−1]T , which implies that [Ui−1][Di ] is positive
semidefinite. Thus, it has nonnegative eigenvalues.

Lemma

For any i ∈ [0, n], the property Di+1Ui − Ui−1Di = (n − 2i)Ii holds for
identity transformation Ii on R(Bn)i .

Thus, [Di+1][Ui ] = [Ui−1][Di ] + (n− 2i)[Ii ]. Then, for all i < n/2, the
matrix [Di+1][Ui ] has all positive eigenvalues and Di+1Ui is invertible.
Hence, Ui is one-to-one for i < n/2.

Employing a similar lemma allows us to conclude that UiDi+1 is
invertible for i ≥ n/2 and that Ui is onto for those i .



8/15

Application to Bn

Define order-raising operators Ui : R(Bn)i → R(Bn)i+1 where Ui (x) is
the sum of all elements in (Bn)i+1 comparable to x .

Define dual operators Di : R(Bn)i → R(Bn)i−1, where Di (y) is the
sum of all elements in (Bn)i−1 comparable to y .

Note that [Di ] = [Ui−1]T , which implies that [Ui−1][Di ] is positive
semidefinite. Thus, it has nonnegative eigenvalues.

Lemma

For any i ∈ [0, n], the property Di+1Ui − Ui−1Di = (n − 2i)Ii holds for
identity transformation Ii on R(Bn)i .

Thus, [Di+1][Ui ] = [Ui−1][Di ] + (n− 2i)[Ii ]. Then, for all i < n/2, the
matrix [Di+1][Ui ] has all positive eigenvalues and Di+1Ui is invertible.
Hence, Ui is one-to-one for i < n/2.

Employing a similar lemma allows us to conclude that UiDi+1 is
invertible for i ≥ n/2 and that Ui is onto for those i .



8/15

Application to Bn

Define order-raising operators Ui : R(Bn)i → R(Bn)i+1 where Ui (x) is
the sum of all elements in (Bn)i+1 comparable to x .

Define dual operators Di : R(Bn)i → R(Bn)i−1, where Di (y) is the
sum of all elements in (Bn)i−1 comparable to y .

Note that [Di ] = [Ui−1]T , which implies that [Ui−1][Di ] is positive
semidefinite. Thus, it has nonnegative eigenvalues.

Lemma

For any i ∈ [0, n], the property Di+1Ui − Ui−1Di = (n − 2i)Ii holds for
identity transformation Ii on R(Bn)i .

Thus, [Di+1][Ui ] = [Ui−1][Di ] + (n− 2i)[Ii ]. Then, for all i < n/2, the
matrix [Di+1][Ui ] has all positive eigenvalues and Di+1Ui is invertible.
Hence, Ui is one-to-one for i < n/2.

Employing a similar lemma allows us to conclude that UiDi+1 is
invertible for i ≥ n/2 and that Ui is onto for those i .



8/15

Application to Bn

Define order-raising operators Ui : R(Bn)i → R(Bn)i+1 where Ui (x) is
the sum of all elements in (Bn)i+1 comparable to x .

Define dual operators Di : R(Bn)i → R(Bn)i−1, where Di (y) is the
sum of all elements in (Bn)i−1 comparable to y .

Note that [Di ] = [Ui−1]T , which implies that [Ui−1][Di ] is positive
semidefinite. Thus, it has nonnegative eigenvalues.

Lemma

For any i ∈ [0, n], the property Di+1Ui − Ui−1Di = (n − 2i)Ii holds for
identity transformation Ii on R(Bn)i .

Thus, [Di+1][Ui ] = [Ui−1][Di ] + (n− 2i)[Ii ]. Then, for all i < n/2, the
matrix [Di+1][Ui ] has all positive eigenvalues and Di+1Ui is invertible.
Hence, Ui is one-to-one for i < n/2.

Employing a similar lemma allows us to conclude that UiDi+1 is
invertible for i ≥ n/2 and that Ui is onto for those i .



8/15

Application to Bn

Define order-raising operators Ui : R(Bn)i → R(Bn)i+1 where Ui (x) is
the sum of all elements in (Bn)i+1 comparable to x .

Define dual operators Di : R(Bn)i → R(Bn)i−1, where Di (y) is the
sum of all elements in (Bn)i−1 comparable to y .

Note that [Di ] = [Ui−1]T , which implies that [Ui−1][Di ] is positive
semidefinite. Thus, it has nonnegative eigenvalues.

Lemma

For any i ∈ [0, n], the property Di+1Ui − Ui−1Di = (n − 2i)Ii holds for
identity transformation Ii on R(Bn)i .

Thus, [Di+1][Ui ] = [Ui−1][Di ] + (n− 2i)[Ii ]. Then, for all i < n/2, the
matrix [Di+1][Ui ] has all positive eigenvalues and Di+1Ui is invertible.
Hence, Ui is one-to-one for i < n/2.

Employing a similar lemma allows us to conclude that UiDi+1 is
invertible for i ≥ n/2 and that Ui is onto for those i .



8/15

Application to Bn

Define order-raising operators Ui : R(Bn)i → R(Bn)i+1 where Ui (x) is
the sum of all elements in (Bn)i+1 comparable to x .

Define dual operators Di : R(Bn)i → R(Bn)i−1, where Di (y) is the
sum of all elements in (Bn)i−1 comparable to y .

Note that [Di ] = [Ui−1]T , which implies that [Ui−1][Di ] is positive
semidefinite. Thus, it has nonnegative eigenvalues.

Lemma

For any i ∈ [0, n], the property Di+1Ui − Ui−1Di = (n − 2i)Ii holds for
identity transformation Ii on R(Bn)i .

Thus, [Di+1][Ui ] = [Ui−1][Di ] + (n− 2i)[Ii ]. Then, for all i < n/2, the
matrix [Di+1][Ui ] has all positive eigenvalues and Di+1Ui is invertible.
Hence, Ui is one-to-one for i < n/2.

Employing a similar lemma allows us to conclude that UiDi+1 is
invertible for i ≥ n/2 and that Ui is onto for those i .



9/15

Sperner’s Theorem

Lemma

If an order-raising operator U : RPi → RPi+1 is one-to-one, then there is
an order-matching from Pi to Pi+1. Similarly, if U is onto, then there is an
order-matching from Pi+1 to Pi .

Combining the above results with our previous lemma, we conclude
there is a sequence of order-matchings

(Bn)0 → (Bn)1 → · · · → (Bn)bn/2c ← Bbn/2c+1 · · · ← (Bn)n

Note that due to the sequence of order-matchings, all chains of Bn

contain an element of (Bn)bn/2c.
An antichain can intersect each chain at most once, so it cannot
exceed the size of (Bn)bn/2c.

Theorem (Sperner’s Theorem)

Bn is Sperner.
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Quotient Posets of Bn

While it’s nice to know Bn is Sperner, we often want to understand how
sets like Bn behave under group action.

Definition

The quotient poset, denoted by Bn/G , of Bn under a subgroup G of Sn
consists of the orbits of G and is equipped with relation ≤ such that sets
a, b ∈ Bn/G satisfy a ≤ b if an element of a is less than or equal to an
element of b under Bn’s relation.

Figure: Hasse Diagram of B5/G where G is generated by (5, 1, 2, 3, 4); from Stanley’s
Algebraic Combinatorics
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Sperner Property on Quotient Posets

Theorem

Bn/G is Sperner for any subgroup G of the symmetric group Sn.

We essentially recreate the proof used for Bn with some additions and
modifications.

Definition

Define R(Bn)Gi as the subset of R(Bn)i whose elements are fixed under the
action of G .

Key claims:

Lemma: For any order-raising operator Ui and v ∈ R(Bn)Gi , the
image Ui (v) lies in R(Bn)Gi+1.

A basis for R(Bn)Gi is comprised of

vo = sum of all elements in orbit o

for all orbits o ∈ Bn/G .



11/15

Sperner Property on Quotient Posets

Theorem

Bn/G is Sperner for any subgroup G of the symmetric group Sn.

We essentially recreate the proof used for Bn with some additions and
modifications.

Definition

Define R(Bn)Gi as the subset of R(Bn)i whose elements are fixed under the
action of G .

Key claims:

Lemma: For any order-raising operator Ui and v ∈ R(Bn)Gi , the
image Ui (v) lies in R(Bn)Gi+1.

A basis for R(Bn)Gi is comprised of

vo = sum of all elements in orbit o

for all orbits o ∈ Bn/G .



11/15

Sperner Property on Quotient Posets

Theorem

Bn/G is Sperner for any subgroup G of the symmetric group Sn.

We essentially recreate the proof used for Bn with some additions and
modifications.

Definition

Define R(Bn)Gi as the subset of R(Bn)i whose elements are fixed under the
action of G .

Key claims:

Lemma: For any order-raising operator Ui and v ∈ R(Bn)Gi , the
image Ui (v) lies in R(Bn)Gi+1.

A basis for R(Bn)Gi is comprised of

vo = sum of all elements in orbit o

for all orbits o ∈ Bn/G .



11/15

Sperner Property on Quotient Posets

Theorem

Bn/G is Sperner for any subgroup G of the symmetric group Sn.

We essentially recreate the proof used for Bn with some additions and
modifications.

Definition

Define R(Bn)Gi as the subset of R(Bn)i whose elements are fixed under the
action of G .

Key claims:

Lemma: For any order-raising operator Ui and v ∈ R(Bn)Gi , the
image Ui (v) lies in R(Bn)Gi+1.

A basis for R(Bn)Gi is comprised of

vo = sum of all elements in orbit o

for all orbits o ∈ Bn/G .



11/15

Sperner Property on Quotient Posets

Theorem

Bn/G is Sperner for any subgroup G of the symmetric group Sn.

We essentially recreate the proof used for Bn with some additions and
modifications.

Definition

Define R(Bn)Gi as the subset of R(Bn)i whose elements are fixed under the
action of G .

Key claims:

Lemma: For any order-raising operator Ui and v ∈ R(Bn)Gi , the
image Ui (v) lies in R(Bn)Gi+1.

A basis for R(Bn)Gi is comprised of

vo = sum of all elements in orbit o

for all orbits o ∈ Bn/G .



12/15

Pairing Order-Raising Operators

Start with the classic Ui : R(Bn)i → R(Bn)i+1, defined such that

Ui (vo) =
∑

vo′

across all o ∈ (Bn/G )i and o ′ ∈ (Bn/G )i+1.

Define corresponding operators Ûi : R(Bn/G )i → R(Bn/G )i+1

defined by

Ûi (o) =
∑

o ′

across all o ′ ∈ R(Bn/G )i+1.

There is an isomorphism from RBG
n → RBn/G by mapping vo to o.

The fact that Ui is order-raising implies that Ûi is order-raising.
Ui being one-to-one for i < n/2 implies that Ûi is one-to-one for
i < n/2.
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Concluding the Sperner Property

We define dual operators Di and D̂i analogously, and we can use the
same reasoning to conclude that D̂i is order-lowering and one-to-one
for i ≥ n/2.

Lemma

If an order-raising operator U : RPi → RPi+1 is one-to-one, then there is
an order-matching from Pi to Pi+1. Similarly, if U is onto, then there is an
order-matching from Pi+1 to Pi .

Combining the above results with this lemma that we used before, we can
finish off the proof the exact same way.

Theorem

Bn/G is Sperner for any subgroup G of the symmetric group Sn.
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