The Sperner Property and Quotients of Boolean Algebras Jason Tang Mentor: Luis Kumanduri May 22, 2021 ### Partially-ordered Sets #### **Definition** A finite set P is called a **partially-ordered set (poset)** if it is equipped with relation \leq with the following properties for $a, b, c \in P$: - a < a for all a. - $a \le b$ and $b \le a$ implies a = b. - $a \le b$ and $b \le c$ implies $a \le c$. ### Partially-ordered Sets #### **Definition** A finite set P is called a **partially-ordered set (poset)** if it is equipped with relation \leq with the following properties for $a, b, c \in P$: - *a* < *a* for all *a*. - $a \le b$ and $b \le a$ implies a = b. - $a \le b$ and $b \le c$ implies $a \le c$. **Example:** The Boolean algebra B_n , which consists of all subsets of the set $\{1, 2, ..., n\}$. - Relation \leq is defined such that sets $a, b \in B_n$ satisfy $a \leq b$ if a is a subset of b. - $\{1\} \le \{1,2\}$, whereas $\{1\}$ and $\{3\}$ are incomparable. ### Definition For a poset P, a **chain** is a subset $C \subseteq P$ for which all elements of C are pairwise comparable. #### **Definition** For a poset P, a **chain** is a subset $C \subseteq P$ for which all elements of C are pairwise comparable. • Define the overall **rank** of P as the length of the maximum chain within P, and define the **rank of element** $p \in P$, denoted by $\rho(p)$, as the length of the maximum chain with greatest element p. #### Definition For a poset P, a **chain** is a subset $C \subseteq P$ for which all elements of C are pairwise comparable. - Define the overall **rank** of P as the length of the maximum chain within P, and define the **rank of element** $p \in P$, denoted by $\rho(p)$, as the length of the maximum chain with greatest element p. - Define the *n*th level of P as the subset $P_n \subseteq P$ consisting of all elements $p \in P$ for which $\rho(p) = n$. #### **Definition** For a poset P, a **chain** is a subset $C \subseteq P$ for which all elements of C are pairwise comparable. - Define the overall **rank** of P as the length of the maximum chain within P, and define the **rank of element** $p \in P$, denoted by $\rho(p)$, as the length of the maximum chain with greatest element p. - Define the *n*th level of P as the subset $P_n \subseteq P$ consisting of all elements $p \in P$ for which $\rho(p) = n$. Figure: Hasse Diagram of B₃; from Stanley's Algebraic Combinatorics ### **Antichains** ### Definition For a poset P, an **antichain** is a subset $A \subseteq P$ for which no elements of A are pairwise comparable. ### **Antichains** #### Definition For a poset P, an **antichain** is a subset $A \subseteq P$ for which no elements of A are pairwise comparable. • Note that each level of *P* is an individual antichain. Figure: Hasse Diagram of B₃; from Stanley's Algebraic Combinatorics ### Sperner Problem ### **Problem** What is the size of the largest antichain in B_n ? ### Sperner Problem #### **Problem** What is the size of the largest antichain in B_n ? • A reasonable guess would be that the largest antichain is the largest level of B_n , i.e. $(B_n)_{\lfloor n/2 \rfloor}$. ### Sperner Problem #### Problem What is the size of the largest antichain in B_n ? • A reasonable guess would be that the largest antichain is the largest level of B_n , i.e. $(B_n)_{\lfloor n/2 \rfloor}$. #### Definition A poset P has the **Sperner property** if the maximum size of an antichain is equal to the size as the largest level of P. We seek to prove the Sperner property for B_n . ### Order-raising operators Consider a poset P with levels denoted by P_j . ### **Definition** A linear transformation $U: \mathbb{R}P_i \to \mathbb{R}P_{i+1}$ is an **order-raising operator** if for any $x \in P_i$, the image U(x) can be expressed as a linear combination of elements in P_{i+1} comparable to x. ### Order-raising operators Consider a poset P with levels denoted by P_j . #### **Definition** A linear transformation $U: \mathbb{R}P_i \to \mathbb{R}P_{i+1}$ is an **order-raising operator** if for any $x \in P_i$, the image U(x) can be expressed as a linear combination of elements in P_{i+1} comparable to x. • We can assign a $p_{i+1} \times p_i$ matrix [U] to each order-raising operator U, where the columns are lined by bases x_1, \ldots, x_{p_i} of P_i and the rows are lined by bases $y_1, \ldots, y_{p_{i+1}}$ of P_{i+1} . ### Order-matchings #### Definition A one-to-one function μ is called an **order-matching** if across every $x \in P_i$, the relationship between x and $\mu(x)$ is the same. That is, if μ is from $P_i \to P_{i+1}$, then all $x < \mu(x)$, and if μ is from $P_{i+1} \to P_i$, then all $x > \mu(x)$. # Order-matchings #### **Definition** A one-to-one function μ is called an **order-matching** if across every $x \in P_i$, the relationship between x and $\mu(x)$ is the same. That is, if μ is from $P_i \to P_{i+1}$, then all $x < \mu(x)$, and if μ is from $P_{i+1} \to P_i$, then all $x > \mu(x)$. #### Lemma If an order-raising operator $U: \mathbb{R}P_i \to \mathbb{R}P_{i+1}$ is one-to-one, then there is an order-matching from P_i to P_{i+1} . Similarly, if U is onto, then there is an order-matching from P_{i+1} to P_i . • The lemma can be proved by examining the determinant of a submatrix of [U], whose terms will allow us to directly construct the order-matching we seek. • Define order-raising operators $U_i : \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i+1}$ where $U_i(x)$ is the sum of all elements in $(B_n)_{i+1}$ comparable to x. - Define order-raising operators $U_i : \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i+1}$ where $U_i(x)$ is the sum of all elements in $(B_n)_{i+1}$ comparable to x. - Define dual operators $D_i : \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i-1}$, where $D_i(y)$ is the sum of all elements in $(B_n)_{i-1}$ comparable to y. - Define order-raising operators $U_i : \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i+1}$ where $U_i(x)$ is the sum of all elements in $(B_n)_{i+1}$ comparable to x. - Define dual operators $D_i : \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i-1}$, where $D_i(y)$ is the sum of all elements in $(B_n)_{i-1}$ comparable to y. - Note that $[D_i] = [U_{i-1}]^T$, which implies that $[U_{i-1}][D_i]$ is positive semidefinite. Thus, it has nonnegative eigenvalues. - Define order-raising operators $U_i : \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i+1}$ where $U_i(x)$ is the sum of all elements in $(B_n)_{i+1}$ comparable to x. - Define dual operators $D_i : \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i-1}$, where $D_i(y)$ is the sum of all elements in $(B_n)_{i-1}$ comparable to y. - Note that $[D_i] = [U_{i-1}]^T$, which implies that $[U_{i-1}][D_i]$ is positive semidefinite. Thus, it has nonnegative eigenvalues. #### Lemma For any $i \in [0, n]$, the property $D_{i+1}U_i - U_{i-1}D_i = (n-2i)I_i$ holds for identity transformation I_i on $\mathbb{R}(B_n)_i$. - Define order-raising operators $U_i : \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i+1}$ where $U_i(x)$ is the sum of all elements in $(B_n)_{i+1}$ comparable to x. - Define dual operators $D_i : \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i-1}$, where $D_i(y)$ is the sum of all elements in $(B_n)_{i-1}$ comparable to y. - Note that $[D_i] = [U_{i-1}]^T$, which implies that $[U_{i-1}][D_i]$ is positive semidefinite. Thus, it has nonnegative eigenvalues. #### Lemma For any $i \in [0, n]$, the property $D_{i+1}U_i - U_{i-1}D_i = (n-2i)I_i$ holds for identity transformation I_i on $\mathbb{R}(B_n)_i$. • Thus, $[D_{i+1}][U_i] = [U_{i-1}][D_i] + (n-2i)[I_i]$. Then, for all i < n/2, the matrix $[D_{i+1}][U_i]$ has all positive eigenvalues and $D_{i+1}U_i$ is invertible. Hence, U_i is one-to-one for i < n/2. - Define order-raising operators $U_i: \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i+1}$ where $U_i(x)$ is the sum of all elements in $(B_n)_{i+1}$ comparable to x. - Define dual operators $D_i: \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i-1}$, where $D_i(y)$ is the sum of all elements in $(B_n)_{i-1}$ comparable to y. - Note that $[D_i] = [U_{i-1}]^T$, which implies that $[U_{i-1}][D_i]$ is positive semidefinite. Thus, it has nonnegative eigenvalues. #### Lemma For any $i \in [0, n]$, the property $D_{i+1}U_i - U_{i-1}D_i = (n-2i)I_i$ holds for identity transformation I_i on $\mathbb{R}(B_n)_i$. - Thus, $[D_{i+1}][U_i] = [U_{i-1}][D_i] + (n-2i)[I_i]$. Then, for all i < n/2, the matrix $[D_{i+1}][U_i]$ has all positive eigenvalues and $D_{i+1}U_i$ is invertible. Hence, U_i is one-to-one for i < n/2. - Employing a similar lemma allows us to conclude that U_iD_{i+1} is invertible for $i \ge n/2$ and that U_i is onto for those i. #### Lemma If an order-raising operator $U : \mathbb{R}P_i \to \mathbb{R}P_{i+1}$ is one-to-one, then there is an order-matching from P_i to P_{i+1} . Similarly, if U is onto, then there is an order-matching from P_{i+1} to P_i . Combining the above results with our previous lemma, we conclude there is a sequence of order-matchings $$(B_n)_0 \to (B_n)_1 \to \cdots \to (B_n)_{\lfloor n/2 \rfloor} \leftarrow B_{\lfloor n/2 \rfloor+1} \cdots \leftarrow (B_n)_n$$ #### Lemma If an order-raising operator $U : \mathbb{R}P_i \to \mathbb{R}P_{i+1}$ is one-to-one, then there is an order-matching from P_i to P_{i+1} . Similarly, if U is onto, then there is an order-matching from P_{i+1} to P_i . Combining the above results with our previous lemma, we conclude there is a sequence of order-matchings $$(B_n)_0 \to (B_n)_1 \to \cdots \to (B_n)_{\lfloor n/2 \rfloor} \leftarrow B_{\lfloor n/2 \rfloor + 1} \cdots \leftarrow (B_n)_n$$ • Note that due to the sequence of order-matchings, all chains of B_n contain an element of $(B_n)_{\lfloor n/2 \rfloor}$. #### Lemma If an order-raising operator $U : \mathbb{R}P_i \to \mathbb{R}P_{i+1}$ is one-to-one, then there is an order-matching from P_i to P_{i+1} . Similarly, if U is onto, then there is an order-matching from P_{i+1} to P_i . Combining the above results with our previous lemma, we conclude there is a sequence of order-matchings $$(B_n)_0 \to (B_n)_1 \to \cdots \to (B_n)_{\lfloor n/2 \rfloor} \leftarrow B_{\lfloor n/2 \rfloor+1} \cdots \leftarrow (B_n)_n$$ - Note that due to the sequence of order-matchings, all chains of B_n contain an element of $(B_n)_{\lfloor n/2 \rfloor}$. - An antichain can intersect each chain at most once, so it cannot exceed the size of $(B_n)_{\lfloor n/2 \rfloor}$. #### Lemma If an order-raising operator $U : \mathbb{R}P_i \to \mathbb{R}P_{i+1}$ is one-to-one, then there is an order-matching from P_i to P_{i+1} . Similarly, if U is onto, then there is an order-matching from P_{i+1} to P_i . Combining the above results with our previous lemma, we conclude there is a sequence of order-matchings $$(B_n)_0 \to (B_n)_1 \to \cdots \to (B_n)_{\lfloor n/2 \rfloor} \leftarrow B_{\lfloor n/2 \rfloor+1} \cdots \leftarrow (B_n)_n$$ - Note that due to the sequence of order-matchings, all chains of B_n contain an element of $(B_n)_{\lfloor n/2 \rfloor}$. - An antichain can intersect each chain at most once, so it cannot exceed the size of $(B_n)_{\lfloor n/2 \rfloor}$. ### Theorem (Sperner's Theorem) B_n is Sperner. ### Quotient Posets of B_n While it's nice to know B_n is Sperner, we often want to understand how sets like B_n behave under group action. #### **Definition** The **quotient poset**, denoted by B_n/G , of B_n under a subgroup G of S_n consists of the orbits of G and is equipped with relation \leq such that sets $a, b \in B_n/G$ satisfy $a \leq b$ if an element of a is less than or equal to an element of b under B_n 's relation. #### Theorem B_n/G is Sperner for any subgroup G of the symmetric group S_n . #### Theorem B_n/G is Sperner for any subgroup G of the symmetric group S_n . • We essentially recreate the proof used for B_n with some additions and modifications. #### Theorem B_n/G is Sperner for any subgroup G of the symmetric group S_n . • We essentially recreate the proof used for B_n with some additions and modifications. #### **Definition** Define $\mathbb{R}(B_n)_i^G$ as the subset of $\mathbb{R}(B_n)_i$ whose elements are fixed under the action of G. #### Theorem B_n/G is Sperner for any subgroup G of the symmetric group S_n . • We essentially recreate the proof used for B_n with some additions and modifications. #### **Definition** Define $\mathbb{R}(B_n)_i^G$ as the subset of $\mathbb{R}(B_n)_i$ whose elements are fixed under the action of G. ### Key claims: • Lemma: For any order-raising operator U_i and $v \in \mathbb{R}(B_n)_i^G$, the image $U_i(v)$ lies in $\mathbb{R}(B_n)_{i+1}^G$. #### Theorem B_n/G is Sperner for any subgroup G of the symmetric group S_n . • We essentially recreate the proof used for B_n with some additions and modifications. #### **Definition** Define $\mathbb{R}(B_n)_i^G$ as the subset of $\mathbb{R}(B_n)_i$ whose elements are fixed under the action of G. ### Key claims: - Lemma: For any order-raising operator U_i and $v \in \mathbb{R}(B_n)_i^G$, the image $U_i(v)$ lies in $\mathbb{R}(B_n)_{i+1}^G$. - A basis for $\mathbb{R}(B_n)_i^G$ is comprised of $v_o = \text{sum of all elements in orbit } o$ for all orbits $o \in B_n/G$. • Start with the classic $U_i : \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i+1}$, defined such that $$U_i(v_o) = \sum v_{o'}$$ across all $o \in (B_n/G)_i$ and $o' \in (B_n/G)_{i+1}$. • Start with the classic $U_i : \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i+1}$, defined such that $$U_i(v_o) = \sum v_{o'}$$ across all $o \in (B_n/G)_i$ and $o' \in (B_n/G)_{i+1}$. • Define corresponding operators $\hat{U}_i: \mathbb{R}(B_n/G)_i \to \mathbb{R}(B_n/G)_{i+1}$ defined by $$\hat{U}_i(o) = \sum o'$$ across all $o' \in \mathbb{R}(B_n/G)_{i+1}$. • Start with the classic $U_i : \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i+1}$, defined such that $$U_i(v_o) = \sum v_{o'}$$ across all $o \in (B_n/G)_i$ and $o' \in (B_n/G)_{i+1}$. • Define corresponding operators $\hat{U}_i: \mathbb{R}(B_n/G)_i \to \mathbb{R}(B_n/G)_{i+1}$ defined by $$\hat{U}_i(o) = \sum o'$$ across all $o' \in \mathbb{R}(B_n/G)_{i+1}$. • There is an isomorphism from $\mathbb{R}B_n^G \to \mathbb{R}B_n/G$ by mapping v_o to o. • Start with the classic $U_i: \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i+1}$, defined such that $$U_i(v_o) = \sum v_{o'}$$ across all $o \in (B_n/G)_i$ and $o' \in (B_n/G)_{i+1}$. • Define corresponding operators $\hat{U}_i: \mathbb{R}(B_n/G)_i \to \mathbb{R}(B_n/G)_{i+1}$ defined by $$\hat{U}_i(o) = \sum o'$$ across all $o' \in \mathbb{R}(B_n/G)_{i+1}$. - There is an isomorphism from $\mathbb{R}B_n^G \to \mathbb{R}B_n/G$ by mapping v_o to o. - The fact that U_i is order-raising implies that \widehat{U}_i is order-raising. • Start with the classic $U_i : \mathbb{R}(B_n)_i \to \mathbb{R}(B_n)_{i+1}$, defined such that $$U_i(v_o) = \sum v_{o'}$$ across all $o \in (B_n/G)_i$ and $o' \in (B_n/G)_{i+1}$. • Define corresponding operators $\hat{U}_i: \mathbb{R}(B_n/G)_i \to \mathbb{R}(B_n/G)_{i+1}$ defined by $$\hat{U}_i(o) = \sum o'$$ across all $o' \in \mathbb{R}(B_n/G)_{i+1}$. - There is an isomorphism from $\mathbb{R}B_n^G \to \mathbb{R}B_n/G$ by mapping v_o to o. - The fact that U_i is order-raising implies that \widehat{Q}_i is order-raising. - U_i being one-to-one for i < n/2 implies that \widehat{U}_i is one-to-one for i < n/2. # Concluding the Sperner Property • We define dual operators D_i and $\widehat{D_i}$ analogously, and we can use the same reasoning to conclude that $\widehat{D_i}$ is order-lowering and one-to-one for $i \ge n/2$. # Concluding the Sperner Property • We define dual operators D_i and $\widehat{D_i}$ analogously, and we can use the same reasoning to conclude that $\widehat{D_i}$ is order-lowering and one-to-one for $i \ge n/2$. #### Lemma If an order-raising operator $U: \mathbb{R}P_i \to \mathbb{R}P_{i+1}$ is one-to-one, then there is an order-matching from P_i to P_{i+1} . Similarly, if U is onto, then there is an order-matching from P_{i+1} to P_i . Combining the above results with this lemma that we used before, we can finish off the proof the exact same way. #### Theorem B_n/G is Sperner for any subgroup G of the symmetric group S_n . # Acknowledgements #### I would like to thank: - My mentor, Luis Kumanduri - MIT PRIMES ### References