MIT PQIMES STEP JUNIOR GROUP

FUN WITH LATIN SQUARES

PRIMES Conference, May 22nd, 2021

1	2	3	4
4	3	2	1
3	4	1	2
2	1	4	3

Michael Han, Ella Kim, Evin Liang, Mira Lubashev, Oleg Polin, Vaibhav Rastogi, Benjamin Taycher, Ada Tsui, Cindy Wei Mentored by Dr. Tanya Khovanova

INTRODUCTION

TABLE OF CONTENTS

Introduction to Latin Squares
Special Latin Squares

- Chiece Latin Squares
- Anti-Chiece Latin Squares
- Nosy Latin Squares
- Shy Latin Squares

LATIN SQUARE

- n by n grid.
- 1 through n occur exactly once per row and column.

1	2	3
2	3	1
3	1	2

TOROIDAL LATIN sQUARES

- Latin square inscribed onto torus.
- nth row is adjacent to the first row.
- nth column is adjacent to the first column.

cYCLIC LATIN SQUARES

- Every row cycled to left/right of previous row.
- Right-cyclic = cycles to the right; left-cyclic = cycles to the left.

1	2	3	4	5
2	3	4	5	1
3	4	5	1	2
4	5	1	2	3
5	1	2	3	4

sPECIAL LATIN SQUARES

WHAT IS A CHIECE?

We define "Chiece" to refer to any chess piece. It is a portmanteau of the two words chess and piece.

cHIECE LATIN SQUARES

- Every number is a chiece move away from another identical number.

1	2	3	4	5
5	4	1	3	2
4	3	2	5	1
2	5	4	1	3
3	1	5	2	4

Knight Latin Square of Size 5

cHIECE LATIN SQUARES (CONTD.)

- Bishop squares of order 5 do not exist.
- King Latin squares of odd sizes do not exist.
- Bishop Latin squares are equivalent to queen Latin squares.
- There exists a bishop Latin square for any even size.

1	2	3	4
2	1	4	3
3	4	1	2
4	3	2	1

cHIECE LATIN SQUARES (CONTD.)

Theorem 18. If there exists an n by n chiece Latin square, then for all positive integers $n m$, there exists an $n m$ by $n m$ chiece Latin square.

Proof. Consider a chiece Latin square N of order n and any Latin square M of order m . Multiplying N by M , another Latin square of order nm is obtained. This Latin square consists of m^{2} blocks of chiece Latin square N, where each block is incremented by $n\left(m_{x, y}-1\right)$, where $m_{x, y}$ is an entry in M. Within its own block, each number has a copy of itself a chiece move apart, since the Latin square N is a chiece Latin square. Therefore, the Latin square of order nm must be a chiece Latin Square.

cHIECE LATIN SQUARES (CONTD.)

Here is an example using the theorem on the previous slide

1	2	3	4	5
5	4	1	3	2
4	3	2	5	1
2	5	4	1	3
3	1	5	2	4

1	2
2	1

MIT PEIMES STEP Junior Group: Fun With Latin Squares

CHIECE LATIN SQUARES (CONTD.)

1	2	3	4	5	6	7	8	9	10
5	4	1	3	2	10	9	6	8	7
4	3	2	5	1	9	8	7	10	6
2	5	4	1	3	7	10	9	6	8
3	1	5	2	4	8	6	10	7	9
6	7	8	9	10	1	2	3	4	5
10	9	6	8	7	5	4	1	3	2
9	8	7	10	6	4	3	2	5	1
7	10	9	6	8	2	5	4	1	3
8	6	10	7	9	3	1	5	2	4

ANTI-CHIECE LATIN SQUARES

- No number is ever a Chiece move away from another identical number.

1	2	3	4	5
2	3	4	5	1
3	4	5	1	2
4	5	1	2	3
5	1	2	3	4

Anti-Knight Latin Square of Size 5

$\triangle N T I-C H I E C E$ LATIN SQUARES (CONTD.)

- There are a total of 96 anti-knight squares of size 4 , and 240 of size 5 .
- Anti-bishop squares are equivalent to anti-queen squares.
- All Latin squares are anti-rook Latin squares.
- An anti-king Latin square exists for all $n>6$, where n is composite.
- Anti-queen Latin squares exist for all sizes not divisible by 2 or 3 .

1	2	3	4	5
4	5	1	2	3
2	3	4	5	1
5	1	2	3	4
3	4	5	1	2

MIT PRIMES STEP JUNIOR GROUP: FUN WITH LATIN SQUARES

PROOF FOR LARGE ANTI-QUEEN SQUARES

Theorem 10. We can construct an anti-queen square of size n by shifting the first row by k, where k, $k+1$, and $k-1$ are all coprime with n.

- Proof. To make sure that none of the columns have multiple of the same number, k must be coprime with n.
- The diagonals going downwards from the left and right are shifted by $k+1$ and $k-1$ respectively, so to make sure that none of these repeat both $k+1$ and $k-1$ must also be coprime with n.

1	2	3	4	5
4	5	1	2	3
2	3	4	5	1
5	1	2	3	4
3	4	5	1	2

MIT PRIMES STEP JUNIOR GROUP: FUN WITH LATIN SQUARES

NOSY LATIN SQUARES

- Also known as consecutive Latin square.
- Two cells that share a side must contain consecutive digits.
- All consecutive Latin squares are also toroidal.
- In a modular square, 1 and n are considered consecutive.

1.	2	3	4
2	1	4	3
3	4	1	2
4	3	2	1

NOSY LATIN SQUARES (CONTD.)

- All Latin squares of size $1 \& 2$ are consecutive.

2	1
1	2

- There do not exist any non-modular consecutive Latin squares of size n, where $n>2$.
- Interestingly, for $n=4$, there exist non-cyclic modular nosy Latin squares.
- For $n>4$, there exist $4 n$ nosy modular Latin squares.
- A modular consecutive Latin square with size $n>4$ is either left-cyclic or right-cyclic.

sHY LATIN SQUARES

- Also known as non-consecutive Latin square.
- No number has an identical number orthogonally adjacent to it.

1	3	5	2	4
3	5	2	4	1
5	2	4	1	3
2	4	1	3	5
4	1	3	5	2

sHY LATIN SQUARES (CONTD.)

- Shy Latin squares of size 5 are both anti-knight Latin squares and toroidal.
- Among all Latin squares of order 5, the lexicographically first is also anti-knight.
- Here is a non-toroidal shy Latin square:

1	3	5	2	4	6
3	5	1	4	6	2
5	1	3	6	2	4
2	4	6	1	3	5
4	6	2	3	5	1
6	2	4	5	1	3

1	3	5
3	5	1
5	1	3
4	6	2
6	2	4
2	4	6
4	6	2
6	2	4
	3	5
	5	1
	1	3

MIT PEIMES STEP JuNIOR GROUP: FUN WITH LATIN SQUARES

$\triangle C K N O W L E D G E M E N T S$

Thank you to the MIT PRIMES STEP program and Dr. Tanya Khovanova for providing us with this opportunity.
SPECIAL THANKS TO:

Our Family and Friends,
Especially our Parents.

THANK YOU for watching

Any Questions?

WORKS cONSULTED

- [1] Charles J. Colbourn and Jeffrey H. Dinitz, Handbook of Combinatorial Designs, CRC Press (2006).
- [2] The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org, accessed in 2021.
- [3] P.J. Owens, Knights' move squares, Discrete Mathematics 63 (1987) pp. 39-51.
- [4] Jia-yu Shao and Wan-di Wei, A formula for the number of Latin squares, Discrete Mathematics, 110, pp. 93-296. (1992).
- [5] Walter D. Wallis and John C. George, Introduction to Combinatorics, CRC Press (2011).

IMAGE CREDITS

$0^{\text {Image References, in order }}$
https://www.pngfind.com/mpng/Tiximhi_chess-piece-king-knight-queen-king-chess-piece/ https://blogs.scientificamerican.com/roots-of-unity/a-few-of-my-favorite-spaces-the-torus/ https://www.dreamstime.com/illustration/cartoon-chess-knight.html

