A High-order Cumulant-based Sparse Ruler

Beining (Cathy) Zhou, St. Mark's School Mentor: Hanshen Xiao

> MIT PRIMES Conference Oct.18th

The Sparse Ruler

The Sparse Ruler

Definition 1.1. A sparse ruler is a set of integers $\mathbb{S} = \{s_1, s_2, \ldots, s_n\}$. We say that S generates the set of lags $\Phi(\mathbb{S})$ if for any integer $\phi \in \Phi(\mathbb{S})$, there are i, j such that $s_i - s_j = \phi$.

Problem: given a fixed number (n) of marks, how do we construct the ruler (S) to maximize the number of consecutive lags (Φ) ?

Motivation

- NP-Completeness
- Information Theory
- Error-Correcting Code
- Signal Processing

Nested Ruler

$$S = S_1 \cup S_2$$

$$S_1 = \{n_1 N_2 \mid n_1 = 1, 2, \dots, N_1\}$$

$$S_2 = \{n_2 \mid n_2 = 1, 2, \dots, N_2\}$$

Then, $\Phi(S) = \{\mu \mid -N_1 N_2 + 1 \le \mu \le N_2 N_2 - 1\}$

Example: take

 $1, 2, 3, \dots (10)$ $10, 20, 30, \dots 100$

Nested Ruler

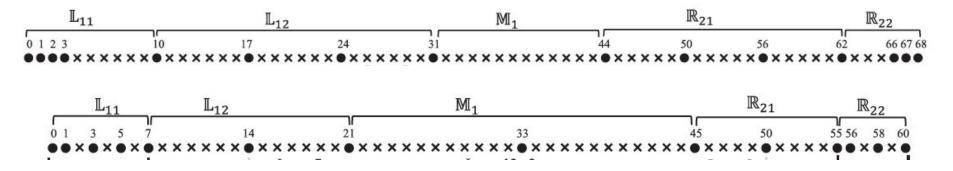
$$S = S_1 \cup S_2$$

$$S_1 = \{n_1 N_2 \mid n_1 = 1, 2, \dots, N_1\}$$

$$S_2 = \{n_2 \mid n_2 = 1, 2, \dots, N_2\}$$

Then, $\Phi(S) = \{\mu \mid -N_1 N_2 + 1 \le \mu \le N_2 N_2 - 1\}$

Variations:



Coprime Ruler

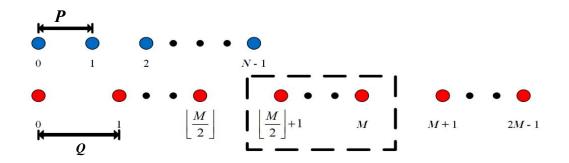
General form: For integers P, Q where gcd(P, Q) = 1

$$S = S_1 \cup S_2$$

$$S_1 = \{n_1 \cdot P \mid n_1 = 0, 1, 2, \dots, Q1\}$$

$$S_2 = \{n_2 \cdot Q \mid n_2 = 0, 1, 2, \dots, 2P - 1\}$$

Then, $\Phi(S) = \{\mu \mid -PQ - P + 1 \le \mu \le PQ + P - 1\}$



Cumulants and High-Order Rulers

Definition 2.1. Consider a ruler S. The set of 2q-th order lags

$$\Phi^{2q}(\mathbb{S}) = \{\sum_{i=1}^{q} p_{n_i} - \sum_{i=q+1}^{2q} p_{n_i} \mid n_i \in [1, N]\}$$

We denote Φ^2 as Φ for short.

Benefit: Increased lag generation from $O(N^2)$ to $O(N^2q)$

Cumulants and High-Order Rulers

Definition 2.1. Consider a ruler S. The set of 2q-th order lags

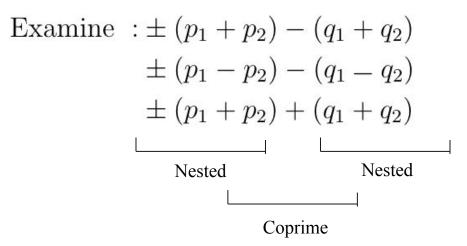
$$\Phi^{2q}(\mathbb{S}) = \{\sum_{i=1}^{q} p_{n_i} - \sum_{i=q+1}^{2q} p_{n_i} \mid n_i \in [1, N]\}$$

We denote Φ^2 as Φ for short.

Benefit: Increased lag generation from O(N^2) to O(N^2q) But... Not trivial:

- 4th-Order: s_a, s_b, s_c, s_d has $\binom{4}{2} = 6$ sign permutations
- 2qth-Order has $\binom{2q}{q}$

 $\mathbb{S} = \mathbb{P}_1 \cup \mathbb{P}_2 \cup \mathbb{Q}_1 \cup \mathbb{Q}_2$



$$S = \mathbb{P}_{1} \cup \mathbb{P}_{2} \cup \mathbb{Q}_{1} \cup \mathbb{Q}_{2}$$
$$\mathbb{P}_{1} = \{ (n_{1}N_{2} + \left\lfloor \frac{q}{2} \right\rfloor) p \mid n_{1} = 0, 1, 2, \dots, N_{1} \}$$
$$\mathbb{P}_{2} = \{ (n_{2} + q)p \mid n_{2} = 0, 1, 2, \dots, N_{2} \}$$
$$\mathbb{Q}_{1} = \{ (n_{3}N_{4} - \left\lfloor \frac{p}{2} \right\rfloor) q \mid n_{4} = 0, 1, 2, \dots, N_{4} \}$$
$$\mathbb{Q}_{2} = \{ (n_{4} - \left\lfloor \frac{p}{2} \right\rfloor) q \mid n_{5} = 0, 1, 2, \dots, N_{5} \}$$

$$\mathbb{S} = \mathbb{P}_1 \cup \mathbb{P}_2 \cup \mathbb{Q}_1 \cup \mathbb{Q}_2$$
$$\mathbb{P}_1 = \{ (n_1 N_2 + \left\lfloor \frac{q}{2} \right\rfloor) p \mid n_1 = 0, 1, 2, \dots, N_1 \}$$
$$\mathbb{P}_2 = \{ (n_2 + q) p \mid n_2 = 0, 1, 2, \dots, N_2 \}$$

- Nested Ruler
- Common multiple of *p*
- Shifted by a factor
 - Lemma: Shifting adds up

4th-Order: Integration

$$S = \mathbb{P}_1 \cup \mathbb{P}_2 \cup \mathbb{Q}_1 \cup \mathbb{Q}_2$$
$$\mathbb{P}_1 = \{ (n_1 N_2 + \left\lfloor \frac{q}{2} \right\rfloor) p \mid n_1 = 0, 1, 2, \dots, N_1 \}$$
$$\mathbb{P}_2 = \{ (n_2 + q) p \mid n_2 = 0, 1, 2, \dots, N_2 \}$$
$$\mathbb{Q}_1 = \{ (n_3 N_4 - \left\lfloor \frac{p}{2} \right\rfloor) q \mid n_4 = 0, 1, 2, \dots, N_4 \}$$
$$\mathbb{Q}_2 = \{ (n_4 - \left\lfloor \frac{p}{2} \right\rfloor) q \mid n_5 = 0, 1, 2, \dots, N_5 \}$$

- \mathbb{P} and \mathbb{Q} : larger coprime structure
- Orienting $(p_1 + p_2) (q_1 + q_2), (p_1 p_2) (q_1 + q_2), (p_1 + p_2) + (q_1 + q_2)$

4th-Order: Integration + Result

• Orienting $(p_1 + p_2) - (q_1 + q_2), (p_1 - p_2) - (q_1 + q_2), (p_1 + p_2) + (q_1 + q_2)$

12 17 22 27 32 37 42 47 52 57 62 67 72 77 82 87 92 97 102 107 112 117 122 127 132 137 142 147 152 157 162 167 172 177 182 187 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166 171 176 181 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 6 1 4 9 14 19 24 29 34 39 44 49 54 59 64 69 74 79 84 89 94 99 104 109 114 119 124 129 134 139 144 149 154 159 164 169 12 7 2 3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 103 108 113 118 123 128 133 138 143 148 153 158 163 18 13 8 3 2 7 12 17 22 27 32 37 42 7 52 57 62 67 72 77 82 87 92 97 102 107 112 117 122 127 132 137 142 147 152 157 24 19 14 9 4 1 6 11 16 21 26 31 36 41 45 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 30 25 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 36 31 26 21 16 11 6 1 4 9 14 19 24 29 34 39 44 49 54 59 64 69 14 79 84 89 94 99 104 109 114 119 124 129 134 139

 42
 37
 32
 27
 22
 17
 12
 7
 2
 3
 18
 23
 28
 33
 38
 43
 48
 53
 58
 63
 68
 78
 83
 88
 93
 98
 103
 108
 113
 118
 123
 128
 133

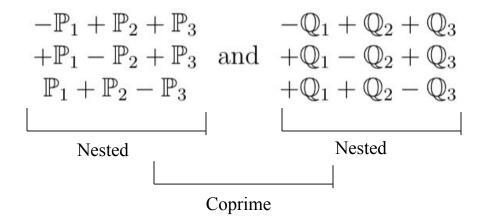
 48
 43
 38
 33
 28
 23
 18
 13
 8
 3
 2
 7
 12
 17
 22
 27
 32
 37
 42
 47
 52
 57
 62
 67
 7
 77
 82
 87
 92
 97
 102
 107
 112
 117
 122
 127

 54 49 44 39 34 29 24 19 14 9 4 1 6 11 16 21 26 31 36 41 46 51 61 66 7 76 81 86 91 96 101 106 111 116 121 56 60 55 50 45 40 35 30 25 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 66 61 56 51 46 41 36 31 26 21 16 11 6 1 4 9 14 19 24 29 34 39 44 49 54 59 64 69 79 84 89 94 99 104 109 74 72 67 62 57 52 47 42 37 32 27 22 17 12 7 2 3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 103

$$M_{max}^{6} = \begin{cases} \left\lfloor \frac{5}{2}pq \right\rfloor \text{ when q is even} \\ \left\lfloor \frac{5}{2}pq \right\rfloor - q \text{ when q is odd} \end{cases} \leq \begin{bmatrix} \frac{5}{2}N_1N_2N_3N_4 \\ \left\lfloor \frac{5}{2}pq \right\rfloor - q \text{ when q is odd} \end{cases}$$

 $\mathbb{S} = \mathbb{P}_1 \cup \mathbb{P}_2 \cup \mathbb{P}_3 \cup \mathbb{Q}_1 \cup \mathbb{Q}_2 \cup \mathbb{Q}_3$

Examine 9 Combinations of:



$$S = \mathbb{P}_1 \cup \mathbb{P}_2 \cup \mathbb{P}_3 \cup \mathbb{Q}_1 \cup \mathbb{Q}_2 \cup \mathbb{Q}_3$$
$$\mathbb{P}_1 = \{ (n_1 N_2 N_3) p \mid n_1 = 0, 1, 2, \dots, N_1 \}$$
$$\mathbb{P}_2 = \{ (n_2 N_3 + q) p \mid n_2 = 0, 1, 2, \dots, N_2 \}$$
$$\mathbb{P}_3 = \{ (n_3 + \left\lfloor \frac{3q}{2} \right\rfloor) p \mid n_3 = 0, 1, 2, \dots, N_3 \}$$
$$\mathbb{Q}_1 = \{ (n_4 N_5 N_6 - \left\lfloor \frac{5p}{2} \right\rfloor) q \mid n_4 = 0, 1, 2, \dots, N_4 \}$$
$$\mathbb{Q}_2 = \{ (n_5 N_6 - \left\lfloor \frac{7p}{2} \right\rfloor) q \mid n_5 = 0, 1, 2, \dots, N_5 \}$$
$$\mathbb{Q}_3 = \{ (n_6 - 5p) q \mid n_6 = 0, 1, 2, \dots, N_6 \}$$

6th-Order: Integration

12	17	22	27	32	37	42	47	52	57	62	67	72	77	82	87	92	97	102	107	112	117	122	127	132	137	142	147	152	157	162	167	172	177	182	187
6	11	16	21	26	31	36	41	46	51	56	61	66	71	76	81	86	91	96	101	106	111	116	121	126	131	136	141	146	151	156	161	166	171	176	181
0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175
6	1	4	9	14	19	24	29	34	39	44	49	54	59	64	69	74	79	84	89	94	99	104	109	114	119	124	129	134	139	144	149	154	159	164	169
12	7	2	3	8	13	18	23	28	33	38	43	48	53	58	63	68	73	78	83	88	93	98	103	108	113	118	123	128	133	138	143	148	153	158	163
18	13	8	3	2	7	12	17	22	27	32	37	42	47	52	57	62	67	72	77	82	87	92	97	102	107	112	117	122	127	132	137	142	147	152	157
24	19	14	9	4	1	6	11	16	21	26	31	36	41	46	51	56	61	66	71	76	81	86	91	96	101	106	111	116	121	126	131	136	141	146	151
30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145
36	31	26	21	16	11	6	1	4	9	14	19	24	29	34	39	44	49	54	59	64	69	74	79	84	89	94	99	104	109	114	119	124	129	134	139
42	37	32	27	22	17	12	7	2	3	8	13	18	23	28	33	38	43	48	53	58	63	68	18	78	83	88	93	98	103	108	113	118	123	128	133
48	43	38	33	28	23	18	13	8	3	2	7	12	17	22	27	32	37	42	47	52	57	62	67	72	77	82	87	92	97	102	107	112	117	122	127
54	49	44	39	34	29	24	19	14	9	4	1	6	11	16	21	26	31	36	41	46	51	56	61	66	71	76	81	86	91	96	101	106	111	116	121
60	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115
66	61	56	51	46	41	36	31	26	21	16	11	6	1	4	9	14	19	24	29	34	39	44	49	54	59	64	69	74	79	84	89	94	99	104	109
72	67	62	57	52	47	42	37	32	27	22	17	12	7	2	3	8	13	18	23	28	33	38	43	48	53	58	63	68	73	78	83	88	93	98	103

$$M_{max}^6 = \left\lfloor \frac{17}{2} pq \right\rfloor \le \left\lfloor \frac{17}{2} N_1 N_2 N_3 N_4 N_5 N_6 \right\rfloor$$

2q-th Order: Layering

- 6-6-6-6...6
- 6-6-6-...4
- 6-6-6-6...2

2q-th Order: Layering

$$\begin{aligned} \mathbb{S}_{1} &= \{ \alpha_{1}, \alpha_{2}, \dots, \alpha_{N_{1}} \} \\ \mathbb{S}_{2} &= \{ \beta_{1}, \beta_{2}, \dots, \beta_{N_{2}} \} \end{aligned} \text{ with } \begin{aligned} \Phi^{2q_{1}}(\mathbb{S}_{1}) &= \{ -\mu_{1} \leq \mu \leq \mu_{1} \} \\ \Phi^{2q_{2}}(\mathbb{S}_{2}) &= \{ -\mu_{2} \leq \mu \leq \mu_{2} \} \end{aligned} \end{aligned}$$

Take a new 2(q_{1} + q_{2})-th order ruler:

 $\mathbb{S}_1 \cup \mathbb{S}_2'$

$$\mathbb{S}'_{2} = \{2\beta_{1}\mu_{1}, 2\beta_{2}\mu_{1}, \dots, 2\beta_{N_{2}}\mu_{1}\}\$$

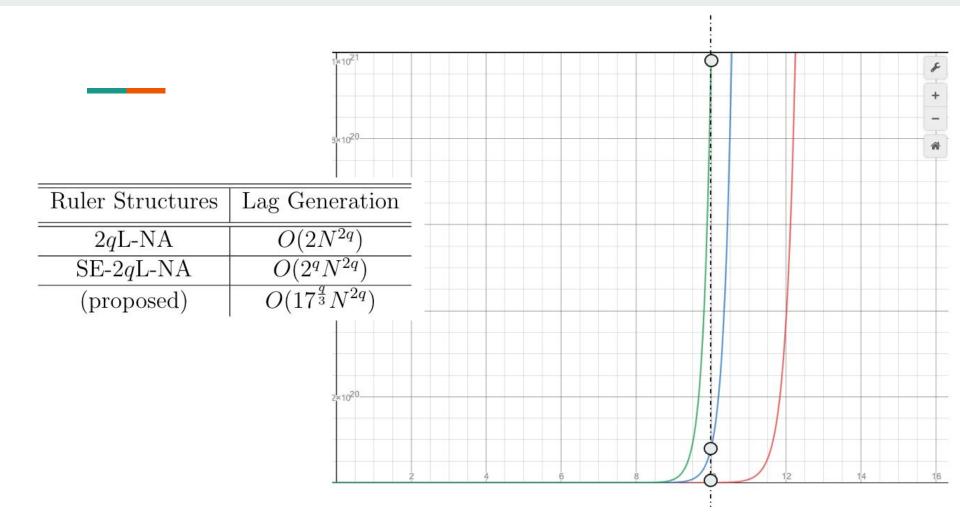
This generates:

$$\Phi^{2(q_1+q_2)}(\mathbb{S}_1 \cup \mathbb{S}'_2) = \{-2\mu_1\mu_2 - \mu_1 \le \mu \le 2\mu_1\mu_2 + \mu_1\}$$

2q-th Order: Result

- 6-6-6-6...6 $O(17^{\frac{q}{3}}N^{2q})$

- 6-6-6-6...4 $O(2 \cdot 17^{\frac{q-1}{3}} N^{2q})$ • 6-6-6-6...2 $O(5 \cdot 17^{\frac{q-2}{3}} N^{2q})$



References

- P. Erdős and P. Turán, "On a problem of Sidon in additive number theory and some related problems," in *Journal of the London Mathematical Society*, 1941. 16 (4): 212–215, doi:10.1112/jlms/s1-16.4.212.
- [2] J. Liu, Y. Zhang, Y. Lu, S. Ren and S. Cao, "Augmented Nested Arrays With Enhanced DOF and Reduced Mutual Coupling," in *IEEE Transactions on Signal Processing*, vol. 65, no. 21, pp. 5549-5563, 1 Nov.1, 2017, doi: 10.1109/TSP.2017.2736493.
- [3] A. Raza, W. Liu and Q. Shen, "Thinned Coprime Array for Second-Order Difference Co-Array Generation With Reduced Mutual Coupling," in *IEEE Transactions on Signal Processing*, vol. 67, no. 8, pp. 2052-2065, 15 April15, 2019, doi: 10.1109/TSP.2019.2901380.
- [4] Q. Shen, W. Liu, W. Cui and S. Wu, "Extension of nested arrays with the fourth-order difference co-array enhancement," 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016, pp. 2991-2995, doi: 10.1109/ICASSP.2016.7472226.
- [5] Q. Shen, W. Liu, W. Cui and S. Wu, "Extension of Co-Prime Arrays Based on the Fourth-Order Difference Co-Array Concept," in *IEEE Signal Processing Letters*, vol. 23, no. 5, pp. 615-619, May 2016, doi: 10.1109/LSP.2016.2539324.

- [6] J. Cai, W. Liu, R. Zong and Q. Shen, "An Expanding and Shift Scheme for Constructing Fourth-Order Difference Coarrays," in *IEEE Signal Processing Letters*, vol. 24, no. 4, pp. 480-484, April 2017, doi: 10.1109/LSP.2017.2664500.
- [7] T. H. A. Mahmud, Z. Ye, K. Shabir, R. Zheng and M. S. Islam, "Off-Grid DOA Estimation Aiding Virtual Extension of Coprime Arrays Exploiting Fourth Order Difference Co-Array With Interpolation," in *IEEE Ac*cess, vol. 6, pp. 46097-46109, 2018, doi: 10.1109/ACCESS.2018.2865419.
- [8] P. Chevalier, A. Ferreol and L. Albera, "High-Resolution Direction Finding From Higher Order Statistics: The 2rm q-MUSIC Algorithm," in *IEEE Transactions on Signal Processing*, vol. 54, no. 8, pp. 2986-2997, Aug. 2006, doi: 10.1109/TSP.2006.877661.
- [9] P. Pal and P. P. Vaidyanathan, "Multiple Level Nested Array: An Efficient Geometry for 2qth Order Cumulant Based Array Processing," in *IEEE Transactions on Signal Processing*, vol. 60, no. 3, pp. 1253-1269, March 2012, doi: 10.1109/TSP.2011.2178410.
- [10] Q. Shen, W. Liu, W. Cui, S. Wu and P. Pal, "Simplified and Enhanced Multiple Level Nested Arrays Exploiting High-Order Difference Co-Arrays," in *IEEE Transactions on Signal Processing*, vol. 67, no. 13, pp. 3502-3515, 1 July1, 2019, doi: 10.1109/TSP.2019.2914887.

Acknowledgements

- My Mentor, Hanshen Xiao, for his tireless support
- MIT PRIMES, for this incredible opportunity
- My parents
- All of you, for listening

Questions?

THANK YOU!