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Motivation

Suppose several agents want to train a machine learning
model:

- each agent has their own training data
- the agents want to train their model on the collective data
of all the agents

- no agent wants to release their data to anyone else

- Ex. these agents could be hospitals, each holding confidential medical
data



General Model

- Let agent i's cost function be f(x)
- f(x) is private to everyone except agent i
- All the agents want to minimize
tf(x)=mean(f,(x))=1/N*sum(f.(x))
- All agents are connected in a graph
- Every agent has a self-loop to themself



General Model (cont.)

- Each agent i has a random initial value x.(0) in round 0

- In round k:
- Every agent i sends their x(k-1) to all their neighbors |
- Every agent i sets x(k) < F(S.(k)) - T*V1(x.(k-1))

- S/(k): set of values agent i received Iin round K

- F: some aggregate function over a set, ex. Mean, median, trimmed
mean

- T: step size

- Compare to standard gradient descent: x(k) < x.(k-1) - T*Vf(x(k-1))



Initial Model

- f(x) is of the form (ax-v ) for xeR
- a¥f[0,1), v€[-100,100], x,(0)€[-200,200] uniformly random
- We consider random graphs

- every edge has probability P€{0.05, 0.10,... 0.95, 1} of being made
- We repeatedly generate random graphs until we have one that is connected

- Fis the mean

- N fixed to 50

- T€{0.01,0.005,0.002,0.001}

- We focus on two quantities of the DGD:
- sd(k) = mean(x,(k)) - argmin(tf)
- od(k) = mean(tf(x.(k))) - min_(tf)

- We arbitrarily end DGD at 10000 rounds



Sample test set of fi and DGD: line, 10000 rounds
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Sample DGDs for various P

DGD converges for various P and T in 10000 rounds

|sd(k)| over time (N=50,P=0.05)

od(k) over time (N=50,P=0.05)
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|sd(k)| over time (N=50,P=0.1)

od(k) over time (N=50,P=0.1)
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Mean |sd(10000)|, od(10000)

For each (T,P), test DGD on 100 test sets
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Adversary

- There are A corrupt agents added to graph

- Can send anything they want to worsen the DGD
- We assume each corrupt agent:

- Is connected to all honest agents

- Has exact knowledge of the DGD algorithm

N=6, A=1



1 corrupt agent

- Naturally the adversary wants to send very high or very
low values to the honest nodes in order to throw them off
- — Change F to trimmed mean [1:-1] (i.e. remove lowest

and highest values)



Mean |sd(10000)|, od(10000): 1 corrupt agent

Corrupt agent always sends super high value (1000000)
N=50, A=1
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2 corrupt agents

- F now trimmed mean [2:-2] (remove lowest 2 values and
highest 2 values)
- During x.(k) < F(S,(k)) - T*Vf(x(k-1)):

- If[S.(k)[=4, replace F(S (k)) with x.(k-1)



Mean |sd(10000)|, od(10000): 2 corrupt agents
Both corrupt agents always send super high value (1000000)
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Intuition for DGD behavior under adversary

- Ex. A=1, adversary always sends super high value
- Each honest agent trims highest and lowest value
- — trims adversary’s value, but also lowest value of neighboring honest
node
- — honest agents’ x(k) get skewed to higher values

Ex.
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-10



mean sd(10000)

Mean sd(10000): 0, 1, 2 corrupt nodes

- A=0: mean sd(10000) close to O
- A=1, 2: sd(10000) always +

N=50, A=0 N=50, A=1 N=50, A=2

— T=0.01 — T=0.01 350 — T=0.01
—— T=0.005 —— T=0.005 —— T=0.005
— T=0.002 250 1 — T=0.002 65 — T=0.002
— T=0.001 — T=0.001 — T=0.001
S 200 S 250
o o
S S
= 150 ==l 90
o ©
(%} (%}
c < 150 A
© @
D 100 8
£ € 100
50 -
50
T T T T T 0- T T T T T o- T T T T T
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0




Equivocating Adversary: 1 corrupt node

Adversary sends 1000000 to N/2 arbitrarily chosen agents
and -1000000 to all other agents
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Equivocating Adversary: separation of x

f i(x), tf(x) (N=50,A=1,P=0.05,T=0.001) f_i(x), tf(x) (N=50,A=1 (equivocate),P=0.05,T=0.001)
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Equivocating Adversary: gap between x.

- For round k:
- Let S=sorted([x (k) for all i])
- Define gap(k)=maxj(Sj+1-Sj)



mean gap(10000)
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Conclusion

- Higher P — better convergence
- Normal adversary makes all agents’ x. skew high
- Higher A — higher x.
- Equivocating adversary separates agents’ x. only for low P



Future Steps

Advanced adversary
- Ex. splitting honest nodes into better groups to equivocate between

More robust DGD

- Ex. weighted/adaptively trimmed mean, decaying step size

Asymptotics of solution error |sd(k)| w.r.t. N, P, A, k
Multidimensional (nonconvex) functions
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