Decentralized gradient descent:
how network structure affects convergence

Jason Yang, Jun Wan, Hanshen Xiao

Motivation

Suppose several agents want to train a machine learning
model:

- each agent has their own training data
- the agents want to train their model on the collective data
of all the agents

- no agent wants to release their data to anyone else

- Ex. these agents could be hospitals, each holding confidential medical
data

General Model

- Let agent i's cost function be f(x)
- f(x) is private to everyone except agent i
- All the agents want to minimize
tf(x)=mean(f,(x))=1/N*sum(f.(x))
- All agents are connected in a graph
- Every agent has a self-loop to themself

General Model (cont.)

- Each agent i has a random initial value x.(0) in round 0

- In round k:
- Every agent i sends their x(k-1) to all their neighbors |
- Every agent i sets x(k) < F(S.(k)) - T*V1(x.(k-1))

- S/(k): set of values agent i received Iin round K

- F: some aggregate function over a set, ex. Mean, median, trimmed
mean

- T: step size

- Compare to standard gradient descent: x(k) < x.(k-1) - T*Vf(x(k-1))

Initial Model

- f(x) is of the form (ax-v) for xeR
- a¥f[0,1), v€[-100,100], x,(0)€[-200,200] uniformly random
- We consider random graphs

- every edge has probability P€{0.05, 0.10,... 0.95, 1} of being made
- We repeatedly generate random graphs until we have one that is connected

- Fis the mean

- N fixed to 50

- T€{0.01,0.005,0.002,0.001}

- We focus on two quantities of the DGD:
- sd(k) = mean(x,(k)) - argmin(tf)
- od(k) = mean(tf(x.(k))) - min_(tf)

- We arbitrarily end DGD at 10000 rounds

Sample test set of fi and DGD: line, 10000 rounds

f i(x), tf(x) (N=50,P=0.05,T=0.001) _ f i(x), tf(x) (N=50,P=0.05,T=0.001)

3763.07
70000 A
3762.5 -
60000 -
50000 - 3762.0 -
40000 A
3761.5 -
30000 A
3761.0 -
20000 A
10000 _\——/ 3760.5 -
0 - —_—
T 1 T 1 T ! T 3760.0 T T T T T T T T
-200 -150 -100 -50 0 50 100 150 200 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5

X X

Sample DGDs for various P

DGD converges for various P and T in 10000 rounds

|sd(k)| over time (N=50,P=0.05)

od(k) over time (N=50,P=0.05)

— T=0.01 — T=0.01
—— T=0.005 —— T=0.005
10 — T=0.002 1054 — T=0.002
— T=0.001 — T=0.001
100
10?
< 107 ~
= 5 1
B '8 10
10-2
10° 4
10-3
101
104
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
k k
|sd(k)| over time (N=50,P=0.25) od(k) over time (N=50,P=0.25)
— T=0.01
10! —— T=0.005
10° — T=0.002
— T=0.001
100 102
— . 1ot
~ i <
£ 10~ =
E g 10°
107 10-1
— T=0.01
—— T=0.005 g2
- — T=0.002
10 = T=0.001
-3
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

|sd(k)| over time (N=50,P=0.1)

od(k) over time (N=50,P=0.1)

— T=0.01 — T=0.01
S ABE —— T=0.005 —— T=0.005
— T=0.002 — T=0.002
— T=0.001 " — T=0.001
10
|
= 10! \ —_
2 =
= T 102
3 \ g 10
6x10°
10!
4x10°
3x10°
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
k k
|sd(k)| over time (N=50,P=0.5) od(k) over time (N=50,P=0.5)
— T=0.01
10! 5 —— T=0.005
10 — T=0.002
— T=0.001
100
102 el
-1
=10 _ 10!
Z)
B 102 8 100 4
1073 10-1
— T=0.01
— —— T=0.005 102
— T=0.002
— T=0.001
10-3
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Mean |sd(10000)|, od(10000)

For each (T,P), test DGD on 100 test sets
N=50

—_— T=0.01 lol 4
—— T=0.005]
—— T=0.002
—— T=0.001
— 0 4
=) 10 o 10°
o o
o o
o o
i i
§e) §e)
L O 107!
et
c
© 107! 8
(]
< =
1072
10_2 T T | | T T ¥ T T T
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Adversary

- There are A corrupt agents added to graph

- Can send anything they want to worsen the DGD
- We assume each corrupt agent:

- Is connected to all honest agents

- Has exact knowledge of the DGD algorithm

N=6, A=1

1 corrupt agent

- Naturally the adversary wants to send very high or very
low values to the honest nodes in order to throw them off
- — Change F to trimmed mean [1:-1] (i.e. remove lowest

and highest values)

Mean |sd(10000)|, od(10000): 1 corrupt agent

Corrupt agent always sends super high value (1000000)
N=50, A=1

Tk —— T=0.01] — T=0.01
] —— T=0.005] —— T=0.005
—— T=0.002 58 —— T=0.002
—— T=0.001] \ —— T=0.001
= 102 A o~
o] o
o o
S g
o 4
— — 10°]
S S
9] ge]
0w o
c
& ©
g QE) 102 4
10?
10? 4
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

2 corrupt agents

- F now trimmed mean [2:-2] (remove lowest 2 values and
highest 2 values)
- During x.(k) < F(S,(k)) - T*Vf(x(k-1)):

- If[S.(k)[=4, replace F(S (k)) with x.(k-1)

Mean |sd(10000)|, od(10000): 2 corrupt agents
Both corrupt agents always send super high value (1000000)

N=50, A=2

— T=0.01] — T=0.01
—— T=0.005 \ —— T=0.005
—— T=0.002
—— T=0.001
— — 10% 5
s S
o 2
S 10?21 o
o o
i [
S S
o T
0w O 107§
=]
& ©
@ (]
= E
102
10! 1
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Intuition for DGD behavior under adversary

- Ex. A=1, adversary always sends super high value
- Each honest agent trims highest and lowest value
- — trims adversary’s value, but also lowest value of neighboring honest
node
- — honest agents’ x(k) get skewed to higher values

Ex.

1000000 34

-10

mean sd(10000)

Mean sd(10000): 0, 1, 2 corrupt nodes

- A=0: mean sd(10000) close to O
- A=1, 2: sd(10000) always +

N=50, A=0 N=50, A=1 N=50, A=2

— T=0.01 — T=0.01 350 — T=0.01
—— T=0.005 —— T=0.005 —— T=0.005
— T=0.002 250 1 — T=0.002 65 — T=0.002
— T=0.001 — T=0.001 — T=0.001
S 200 S 250
o o
S S
= 150 ==l 90
o ©
(%} (%}
c < 150 A
© @
D 100 8
£ € 100
50 -
50
T T T T T 0- T T T T T o- T T T T T
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Equivocating Adversary: 1 corrupt node

Adversary sends 1000000 to N/2 arbitrarily chosen agents
and -1000000 to all other agents

mean |sd(10000)|

10? 1

10° 1

T=0.01

T=0.005
T=0.002
T=0.001

0.2

0.4

0.6

0.8

1.0

mean od(10000)

103

102 4

101 5

109 5

10—1 o

N=50, A=1 (equivocate)

0.2

0.4

0.6

0.8

1.0

Equivocating Adversary: separation of x

f i(x), tf(x) (N=50,A=1,P=0.05,T=0.001) f_i(x), tf(x) (N=50,A=1 (equivocate),P=0.05,T=0.001)

120000 -+
30000 -
100000 -+
25000 A
80000 A
20000 A
60000 A
15000 4
40000 - 10000 4
——-ceo-cmmete—oo ot
20000 - 5000 A \’—.—m/
0 0 A ' p——
282 284 286 288 290 292 294 -75 -50 -25 0 25 50 75 100

Equivocating Adversary: gap between x.

- For round k:
- Let S=sorted([x (k) for all i])
- Define gap(k)=maxj(Sj+1-Sj)

mean gap(10000)

102 4

101 4

100 4

10-1 4

Equivocating Adversary: gap between x.

Equivocation increases mean gap(10000), but only for low P

N=50, A=0

— T=0.01
—— T=0.005
—— T=0.002
—— T=0.001

mean gap(10000)

102 4

101 4

100 4

10-1 4

N=50, A=1

— T=0.01
—— T=0.005
—— T=0.002
—— T=0.001

mean gap(10000)

102 4

101 4

100 4

10-1 4

N=50, A=1 (equivocate)

— T=0.01
~—— T=0.005
—— T=0.002
—— T=0.001

Conclusion

- Higher P — better convergence
- Normal adversary makes all agents’ x. skew high
- Higher A — higher x.
- Equivocating adversary separates agents’ x. only for low P

Future Steps

Advanced adversary
- Ex. splitting honest nodes into better groups to equivocate between

More robust DGD

- Ex. weighted/adaptively trimmed mean, decaying step size

Asymptotics of solution error |sd(k)| w.r.t. N, P, A, k
Multidimensional (nonconvex) functions

Acknowledgments

| would like to thank:

Jun Wan and Hanshen Xiao for their mentorship

MIT PRIMES Computer Science for making this project possible
My parents for supporting me

You for listening

