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Introduction

• A Markov process is characterized by the memoryless property that the
future only depends on the current state and not on the previous states.
• For example, a student may follow the chain below every 15 minutes.

• Another example is radioactive decay where the time before the next
particle decays does not depend on when the previous particles decayed.
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Necessary Definitions and Theorems

Definition (State Space)

The state space I is the set of all possible states of the Markov Chain.

Definition (Measure and Distribution)

A measure is a row vector λ = (λi : i ∈ I) taking non-negative values in R. A distribution
is a measure with

∑
λi = 1.

Definition (Transition Matrix P )

P = (pij : i, j ∈ I), where pij is the probability of jumping from state i to state j. p(n)
ij is

the probability of transitioning from i to j in n steps and is the ij entry of Pn.

Definition (Markov Chain)

A sequence of random variablesXn taking values in I is Markov(λ, P ) if P(X0 = i) = λi
and P(Xn+1 = j|Xn = i) = pij .
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Hitting Times and Probabilities

Definition

For a certain subset A ⊂ I and state i ∈ I , the hitting probability is defined as
hAi = Pi(hit A) and the hitting time is defined as kAi = Ei(time to hit A).

The hitting probabilities satisfy{
hA
i = 1 i ∈ A
hA
i =

∑
j∈I pijh

A
j i 6∈ A

The hitting times satisfy{
kAi = 0 i ∈ A
kAi = 1 +

∑
j∈I pijk

A
j i 6∈ A

Moreover, hA
i and kAi are the minimal non-negative solutions to these equations.
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Proof for Hitting Probabilities

{
hA
i = 1 i ∈ A
hA
i =

∑
j∈I pijh

A
j i 6∈ A

If i ∈ A, hA
i = 1 trivially

for i 6∈ A, letHA(ω) = inf{n|Xn(ω) ∈ A}.

hA
i = Pi(H

A <∞)

Pi(H
A <∞|X1 = j) = Pj(H

A <∞)

hA
i =

∑
j∈I

pijPj(H
A <∞) =

∑
j∈I

pijh
A
j
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A Simple Example

In the chain above, what is the probability of getting to state 4 starting from
state 2?

h4 = 1

h1 = h1

h2 = h1/2 + h3/2

h3 = h2/2 + h4/2

h2 = 1/3
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Gamblers’ Ruin

Problem

Imagine that you enter a casino with a fortune of $i and gamble, $1 at a time, with
probability p of doubling your stake and probability q of losing it. What is the probability that
you leave broke?

Let hi = Pi(hitting 0).
We get the system h0 = 1, hi = phi+1 + qhi−1.

General solution: hi = A+B
(

q
p

)i
If p < q, then B = 0, so hi = 1. Similarly, if

p = q, then hi = A+Bi, and B = 0 once again. Thus, hi = 1.

If p > q, then hi =
(

q
p

)i
+A

(
1−

(
q
p

)i)
, with the minimal nonnegative

solution being hi =
(

q
p

)i
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Recurrence and Transience

Definition (Recurrence)

A state i is recurrent if Pi({t ≥ 0 : Xt = i} is unbounded) = 1

Definition (Transience)

A state i is transient if Pi({t ≥ 0 : Xt = i} is unbounded) = 0

Definition (Communicating States)

State i communicates with state j if Pi(Xn = j for n ≥ 0) > 0 and Pj(Xn = i for
n ≥ 0) > 0

Communicating is an equivalence relation, and partitions the state space into
communicating classes. If I is a single class, P is said to be irreducible.

Definition (Closed Communicating Class)

A communicating class is closed if i ∈ C and i communicates with j implies that j ∈ C
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Properties of Recurrence and Transience

Figure: Communicating classes : {1,2,3}, {4}, {5, 6}

Definition (First Passage Time to State i)

Ti(ω) = inf{n ≥ 1 : Xn(ω) = i}

Definition (Return probability)

fi = Pi(Ti <∞)
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Definition (Number of visits Vi)

Vi =
∞∑

n=0

1Xn=i,Ei(Vi) =
∞∑

n=0

p
(n)
ii

Theorem

• If fi = 1, then i is recurrent and
∑∞

n=1 p
(n)
ii =∞

• If fi < 1, then i is transient and
∑∞

n=1 p
(n)
ii <∞

Proof.

If Pi(Ti <∞) = 1, then Pi(Vi =∞) = 1, so i is recurrent, and
∑∞

n=0 p
(n)
ii = Ei(Vi) =∞.

If fi = Pi(Ti <∞) < 1, then
∞∑

n=0

p
(n)
ii = Ei(Vi) =

∞∑
r=0

Pi(Vi > r) =

∞∑
r=0

fri =
1

1− fi
<∞
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Theorem

All states in a communicating class are either recurrent or transient

Proof.

Take i, j ∈ C and assume i is transient.Thus, there exist n,m ≥ 0 such that p(n)
ij > 0 and

p
(m)
ji > 0. For all r ≥ 0,

p
(m+n+r)
ii ≥ p(n)

ij p
(r)
jj p

(m)
ji ,

so
∞∑
r=0

p
(r)
jj ≤

1

p
(n)
ij p

(m)
ji

∞∑
r=0

p
(n+r+m)
ii <∞
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Random Walks on Z

Given an odd sequence, p(2n+1)
00 = 0 for all n.

Given an even sequence of length 2n, the probability of having n steps up and n
steps down is

(
2n
n

)
pnqn.

By Stirling’s formula,
n! ≈

√
2πn(n/e)n as n→∞

Thus,
p
(2n)
00 =

(2n)!

(n!)2
(pq)n ≈ (4pq)n

A
√
n/2

as n→∞

For p = q = 1
2
,

p
(2n)
00 ≥ 1

2
√
2πn

, so
∞∑

n=N

p
(2n)
00 ≥ 1

2
√
2π

∑ 1√
n

=∞

so the random walk on Z is recurrent.
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Random Walk on Z Continued

If p 6= q, 4pq < 1, so
∞∑

n=N

p
(2n)
00 ≤ 1√

2π

∞∑
n=N

(4pq)n <∞

so this walk is transient.

© Ishita Goluguri, Toyesh Jayaswal, Mentor: Dr. Benjamin Landon 14



Random Walk on Z3

pij =

{
1
6

if |i− j| = 1

0 otherwise

Again, with an odd step sequence, p(2n+1)
00 = 0.

With an even step sequence, we must have i steps up and down, j steps north
and south, k steps east and west with i+ j + k = n.

p
(2n)
00 =

∑
i+j+k=n

(2n)!

(i!j!k!)2

(
1

6

)2n

=

(
2n

n

)(
1

2

)2n ∑
i+j+k=n

(
n

ijk

)(
1

3

)2n

For n = 3m,
(

n
ijk

)
≤
(

n
mmm

)
, so

p
(2n)
00 ≤

(
2n

n

)(
1

2

)2n
(

n

mmm

)(
1

3

)n

≈ 1

2
√
2π

3

(
6

n

)3/2

as n→∞
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Random Walk on Z3 Continued

∑∞
n=0 p

(6m)
00 <∞ because

∑
n−3/2 converges. Since p(6m)

00 ≥
(
1
6

)2
p
(6m−2)
00 and

p
(6m)
00 ≥

(
1
6

)4
p
(6m−4)
00 ,

∞∑
n=0

p
(n)
00 <∞

and this walk is transient.
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Invariant Distributions and Convergence to Equilibrium

A measure π is called invariant if πP = π.

For a processX which is Markov(π, P ) for an invariant distribution π,Xn is also
Markov(π, P ) for all n.

For a fixed state k, let γk
i = Ek

∑Tk−1
n=0 1{Xn=i} be the expected number of visits

to i between visits to k. γk turns out to be an invariant measure with γk
k = 1.

If
∑

i γ
k
i = mk , which is the expected return time to k, is finite (positive

recurrence), γk/mk is an invariant distribution.

If a chain is irreducible and positive recurrent, the invariant measure turns out to
be unique up to scaling and in this case, πk = 1

mk
.

Theorem (Convergence to Equilibrium)

If P is irreducible and aperiodic, P(Xn = j)→ πj as n→∞ for all j regardless of the
initial distribution.

Periodic case:
(
0 1
1 0

)
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Ergodic Theorem

Theorem (Ergodic Theorem)

Let P be irreducible and positive recurrent and letX be Markov(λ, P ). Then, for any
bounded function f : I → R,

P

(
1

n

n−1∑
k=1

f(Xk)→ f̄ as n→∞
)

= 1

where f̄ =
∑

i∈I πif(i) regardless of the initial distribution.
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Example of an Invariant Distribution

An opera singer is due to perform a long series of concerts. She is liable to pull
out each night with probability 1/2. The promoter sends her flowers every day
until she returns. Flowers costing x thousand dollars, 0 ≤ x ≤ 1, bring about a
reconciliation with probability

√
x. The promoter stands to make $750 from each

successful concert. How much should he spend on flowers?

P =

(
1/2 1/2√
x 1−

√
x

)
λ1 = λ1/2 +

√
xλ2

λ2 = λ1/2 + (1−
√
x)λ2

λ1 + λ2 = 1

λ1 =
2
√
x

2
√
x+ 1

, λ2 =
1

2
√
x+ 1

1

n

n−1∑
k=0

f(Xk)→ 750λ1 − 1000xλ2 =
1500
√
x− 1000x

2
√
x+ 1

x = 1/4,E(f)→ $250
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