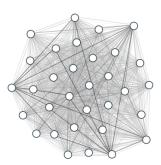
A Topological Centrality Measure for Directed Networks

Linda Fenghuan He Mentor: Lucy Yang

Commonwealth School

October 16, 2021 MIT PRIMES Conference



3 🕨 🖌 3

<ロト <回 > < 三 > < 三 >

Ξ

Networks model complex systems as (directed) graphs

< 🗆 🕨

< 回 > < 回 > < 回 >

500

Þ

Networks model complex systems as (directed) graphs

Node Centrality

< 🗆 🕨

▲ □ ▶ ▲ □ ▶ ▲ □

Networks model complex systems as (directed) graphs

Node Centrality

- Betweenness centrality in social networks (J.Lee, 2021)
- Eigenvector centrality in temporal networks (D.Taylor, 2016)

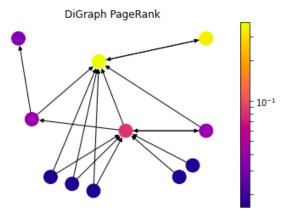
< 同 > < 三 > < 三 >

SQ (V

Networks model complex systems as (directed) graphs

Node Centrality

- Betweenness centrality in social networks (J.Lee, 2021)
- Eigenvector centrality in temporal networks (D.Taylor, 2016)

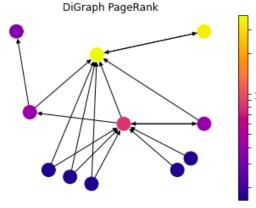


SQ (V

Networks model complex systems as (directed) graphs

Node Centrality

- Betweenness centrality in social networks (J.Lee, 2021)
- Eigenvector centrality in temporal networks (D.Taylor, 2016)



Goal

¹⁰⁻¹ Define a centrality measure that captures non-local propagating effects and directedness.

▲ □ ► < □ ►</p>

SQ (P

æ.

Definition

A **network** *G* is a pair (X, w_X) where *X* is a finite set and $w_X : X \times X \to \mathbb{R}$ is called the weight function.

<ロ> < 回 > < 回 > < 回 > < 回 >

5900

Þ

Definition

A **network** *G* is a pair (X, w_X) where *X* is a finite set and $w_X : X \times X \to \mathbb{R}$ is called the weight function.

We will be restricted to networks *G* where $w_X(x, x) = 0$ for all $x \in X$.

<ロト < 回 > < 回 > < 回 > < 回 >

Definition

A **network** *G* is a pair (X, w_X) where *X* is a finite set and $w_X : X \times X \to \mathbb{R}$ is called the weight function.

We will be restricted to networks *G* where $w_X(x, x) = 0$ for all $x \in X$.

Definition (F.Iannelli, 2017)

Let $G = (X, w_X)$ be a network, define $\gamma(G)$ to be (X, m_X) where $m_X : X \times X \to \mathbb{R}$ is given by:

$$m(x, y) = \begin{cases} 1 - \log \frac{w(x, y)}{\sum_{z \neq y} w(x, z)} \ge 1 & \text{if } y \neq x \\ 0 & \text{if } y = x \end{cases}$$

Two nodes that interact a lot $(w(x, y) \gg 0)$ will be closer $(m(x, y) \sim 1)$.

<ロ > < 回 > < 回 > < 回 > < 回 > <

SQ (V

Goal

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

€

~) Q (~

Goal

Definition

Given a network *G* and *x* a node in *G*, define $f(G, x) = (X \setminus \{x\}, w_X|_{X \setminus \{x\}})$, i.e. the sub-network induced by deleting *x* and all edges incident to *x* in *G*.

<ロト < 回ト < 回ト < 回ト

э

Goal

Definition

Given a network *G* and *x* a node in *G*, define $f(G, x) = (X \setminus \{x\}, w_X|_{X \setminus \{x\}})$, i.e. the sub-network induced by deleting *x* and all edges incident to *x* in *G*.

Idea

Given *x* a node in *G*, we compare the difference in the "[dis]connectivity" of $\gamma(G)$ and $\gamma(f(G, x))$.

< ロ > < 同 > < 三 > < 三 >

SQ Q

Question

How to quantify [dis]connectivity of a graph G?

<ロト < 回 ト < 巨 ト < 巨 ト</p>

æ

JQ (?

Question

How to quantify [dis]connectivity of a graph G?

Algebraic topology measures the "holes" in a "shape" using "homology".

Idea

We use the "size" of the homology of a "shape" built from G as a proxy for disconnectivity.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

SQ Q

Question

How to quantify [dis]connectivity of a graph G?

Algebraic topology measures the "holes" in a "shape" using "homology".

Idea

We use the "size" of the homology of a "shape" built from G as a proxy for disconnectivity.

Recall a *simplicial complex* is a set of tetrahedrons of any dimension "glued together in a nice way".

- 4 同 1 4 三 1 4 三 1

SQ (~

Question

How to quantify [dis]connectivity of a graph G?

Algebraic topology measures the "holes" in a "shape" using "homology".

Idea

We use the "size" of the homology of a "shape" built from G as a proxy for disconnectivity.

Recall a *simplicial complex* is a set of tetrahedrons of any dimension "glued together in a nice way".

Definition (F.Memoli and S.Chowdhury, 2016)

Given a network $G = (X, w_X)$ and $\delta \in \mathbb{R}$, the **Dowker Complex** $\mathcal{D}_{\delta,G}$ is the simplicial complex given by:

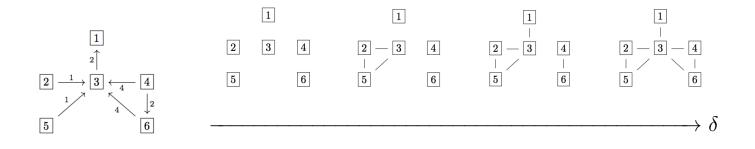
$$\mathcal{D}_{\delta,G} := \{ \sigma \subseteq X : \exists p \in X \text{ s.t. } w(x,p) \le \delta \ \forall \ x \in \sigma \}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sar

Example

$$\mathcal{D}_{\delta,G} := \{ \sigma \subseteq X : \exists p \in X \text{ s.t. } w(x,p) \le \delta \ \forall \ x \in \sigma \}.$$

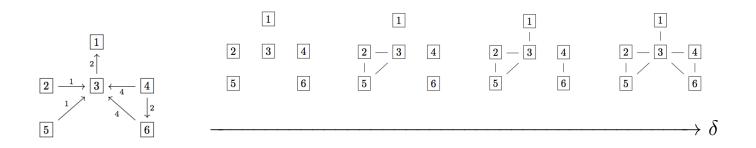


<ロ> <同> <同> < 同> < 同>

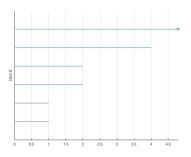
æ

Example

$$\mathcal{D}_{\delta,G} := \{ \sigma \subseteq X : \exists p \in X \text{ s.t. } w(x,p) \le \delta \ \forall \ x \in \sigma \}.$$



- As $\delta \nearrow$, number of path components \searrow .
- This data is recorded on a persistence diagram.
- We denote P₀(G) as the set of 0-dimensional barcodes for the Dowker complex D_{.,G}.



Sac

Quasi-centrality

For a node $x \in X$, let $\mu(x) := d$ to be the value of δ for which x merges into another connected component.

イロト イヨト イヨト イヨト

E

JQ (?

Quasi-centrality

For a node $x \in X$, let $\mu(x) := d$ to be the value of δ for which x merges into another connected component.

Definition

Let *G* be a network. The **quasi-centrality** C(x) for node $x \in X$ is:

$$C(x) = \sum_{c \in \mathbf{P}_0(f(\gamma(G), x))} length(c) - \sum_{c \in \mathbf{P}_0(\gamma(G))} length(c) + d$$

< ロ > < 同 > < 臣 > < 臣 >

Quasi-centrality

For a node $x \in X$, let $\mu(x) := d$ to be the value of δ for which x merges into another connected component.

Definition

Let *G* be a network. The **quasi-centrality** C(x) for node $x \in X$ is:

$$C(x) = \sum_{c \in \mathbf{P}_0(f(\gamma(G), x))} length(c) - \sum_{c \in \mathbf{P}_0(\gamma(G))} length(c) + d$$

Theorem

For a network $G = (X, w_X)$, C(x) is nonnegative for all $x \in X$.

<ロト < 回 > < 回 > < 回 > < 回 >

Applications

Goals

- Demonstrate that *C* is a valid measure of centrality
- Use quasi-centrality to assess the influence of a node in a real-world network.

< 🗆 🕨

日とくほとくほど

SQC.

Applications

Goals

- Demonstrate that *C* is a valid measure of centrality
- Use quasi-centrality to assess the influence of a node in a real-world network.

Trade networks

- Interdependency between far-flung communities
- Trade networks are fragile (Y.Korniyenko, 2017)
- Economic perturbations originated in a single country can propagate elsewhere

SAR

Applications

Goals

- Demonstrate that *C* is a valid measure of centrality
- Use quasi-centrality to assess the influence of a node in a real-world network.

Trade networks

- Interdependency between far-flung communities
- Trade networks are fragile (Y.Korniyenko, 2017)
- Economic perturbations originated in a single country can propagate elsewhere

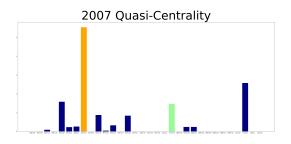
Data

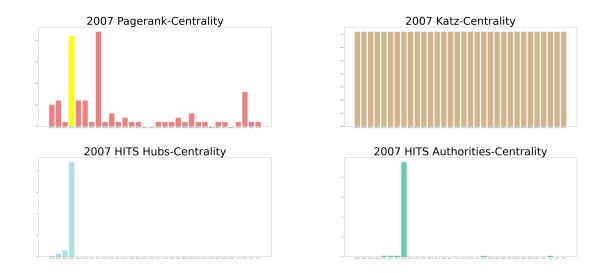
- OECD Inter-Country Input-Output (ICIO) Tables
- Machinery production network in Asia
- Industries: machinery equipment, computer and electronics, electrical machinery, auto machinery

▲□► ▲ □► ▲ □

SAR

Results





< ロ ト < 団 ト < 臣 ト < 臣 ト</p>

æ

Future directions

• Compute the quasi-centrality measure for other asymmetric networks

- biological networks
- airflight networks
- Relate higher dimensional homological features in directed networks to real-world phenomena
 - trade flows
 - embargo
- Define other measures in network analysis using TDA
 - connectivity
 - robustness
 - efficiency

< ロ > < 回 > < 回 > < 回 > < 回 > <

Э

JQ C

Acknowledgements

- My mentor, Lucy Yang
- Prof. Memoli of the Ohio State University
- Dr. Slava Gerovitch
- Prof. Pavel Etingof
- Dr. Tanya Khovanova
- MIT PRIMES
- My family

< 🗆 🕨

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

SQ (P