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Rogue Waves

@ What are rogue waves?
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Rogue Waves

@ Approximation of the water waves system
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The Dysthe Equation

@ The Dysthe equation is a fourth order approximation of the incom-
pressible Navier-Stokes equation
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The Dysthe Equation

@ The Dysthe equation is a fourth order approximation of the incom-
pressible Navier-Stokes equation

o The Dysthe equation

1 i 1
i 3 1 ‘

@ u represents the wave modulation enevelope
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The Dysthe Equation

@ The Dysthe equation is a fourth order approximation of the incom-
pressible Navier-Stokes equation

o The Dysthe equation

1 i 1
i 3 1 .
= gl Sl — o0 4 Sl

@ u represents the wave modulation enevelope

@ Quasilinear dispersive PDE with cubic nonlinearity
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The Dysthe Equation

@ The Dysthe equation is a fourth order approximation of the incom-
pressible Navier-Stokes equation

o The Dysthe equation
1 i 1

i 3 1 é

@ u represents the wave modulation enevelope

@ Quasilinear dispersive PDE with cubic nonlinearity

@ Spatial periodicity: u(x,t) = u(x + 27,t), or equivalently z € T.
The periodic setting is more applicable to numerical studies.
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Well-posedness

@ Well-posedness of an initial value problem for a PDE means a solu-
tion exists, is unique, and varies continuously with the initial value.
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Well-posedness

@ Well-posedness of an initial value problem for a PDE means a solu-
tion exists, is unique, and varies continuously with the initial value.

o Why is well-posedness important?
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Well-posedness

@ Well-posedness of an initial value problem for a PDE means a solu-
tion exists, is unique, and varies continuously with the initial value.

o Why is well-posedness important?

@ Banach Fixed Point Theorem
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Duhamel Form

e Duhamel (integrated) form for Dysthe equation:

u(t) = n(t)e“uy — n(t) /0 dre’EN (u(T))

where
1

i 3 1.
N(u) = §|u|2u + §|u|28xu + Zu28mu* - 51U|8x||u|2
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Project Goal

o Obtain well-posedness results of the 1D periodic Dysthe equation,
and relevant estimates to the Dysthe equation in various function
spaces.
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o Obtain well-posedness results of the 1D periodic Dysthe equation,
and relevant estimates to the Dysthe equation in various function
spaces.

@ Mathematical significance: Estimates give us tools to show well or
ill posedness and to understand Dysthe equation.
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o Obtain well-posedness results of the 1D periodic Dysthe equation,
and relevant estimates to the Dysthe equation in various function
spaces.

o Mathematical significance: Estimates give us tools to show well or
ill posedness and to understand Dysthe equation.

o Physical significance: well-posedness or vibration modes correspond
to numeric modelling and prediction of rogue waves.
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Project Goal

o Obtain well-posedness results of the 1D periodic Dysthe equation,
and relevant estimates to the Dysthe equation in various function
spaces.

o Mathematical significance: Estimates give us tools to show well or
ill posedness and to understand Dysthe equation.

o Physical significance: well-posedness or vibration modes correspond
to numeric modelling and prediction of rogue waves.

o Philosophical significance: well-posedness = deterministic nature of
the system, and ensures that algorithms give the correct results (that
converge to the genuine solution).
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Fourier Series

@ For a sqaure-summable periodic function, we can always uniquely
represent it with Fourier series:

21
u(@) = S am)e™,  (n) = /O e~y () da.
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Fourier Series

@ For a sqaure-summable periodic function, we can always uniquely
represent it with Fourier series:

2
u(@) = S am)e™,  (n) = /0 e~y () da.

neL

o Property: uT(F) = —inu(n)

@ Parseval Theorem-Pythagorean Theorem for an infinite dimensional
space: function-vector, Fourier modes -projections on orthogonal
directions

1
2

lullzery = D [a(n)P?

neL

€2
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Function Norms

@ LP spaces are metric function spaces for 1 < p < oo equipped with
the norm

1
P
||u||Lp(E)=( / IUIpdu) » ullooe s = sup fu()|
E rxeE
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Function Norms

@ LP spaces are metric function spaces for 1 < p < oo equipped with
the norm

1
P
||u||Lp<E)=( / IUIpdu) » ullooe s = sup fu()|
E rxeE

@ Measure the “distance” between functions under various scales.
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Function Norms

@ LP spaces are metric function spaces for 1 < p < oo equipped with
the norm

P
||u||Lp<E>=( / IUIpdu) » ullooe s = sup fu()|
E rxeE

@ Measure the “distance” between functions under various scales.

@ The Sobolev space H® is equipped with the norm

N|=

1flzre = 1) F(m) iz = (Z <n>25|f(n)|2>

nez

Sobolev norm = norm of order s weak derivative
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Function Norms

@ LP spaces are metric function spaces for 1 < p < oo equipped with
the norm

1
P
||u||Lp<E>=( / IUIpdu) » ullooe s = sup fu()|
E rxeE

@ Measure the “distance” between functions under various scales.

@ The Sobolev space H® is equipped with the norm

1
3
[ fllzs = [[(n)° F () iz = (Z <n>25\f(n)|2> :
nez
Sobolev norm = norm of order s weak derivative

@ Sobolev Embedding Theorem: weakly differentiable functions ex-
hibit some regularity properties.
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Linearized Dysthe equation

o Linearized equation after scaling = direction:

Ot — 80,u — 21055u + Opzzt = 0

Garrett Heller Mentor: Chengyang Shao (IStrichartz Estimates and Well-Posedness for tMIT PRIMES Conference, October 2021



Linearized Dysthe equation

o Linearized equation after scaling = direction:
Ot — 80,u — 21055u + Opzzt = 0
@ Apply the Fourier Transform in x :

di(n) +i(n® —2n? + 8n)i(n) =0
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Linearized Dysthe equation

o Linearized equation after scaling = direction:

Ot — 80,u — 21055u + Opzzt = 0
@ Apply the Fourier Transform in x :

di(n) +i(n® —2n? + 8n)i(n) =0

o Dispersive relation: P(n) = n® — 2n? + 8n. Important concept in
analyzing PDE!

Garrett Heller Mentor: Chengyang Shao (IStrichartz Estimates and Well-Posedness for tMIT PRIMES Conference, October 2021



Linearized Dysthe equation

o Linearized equation after scaling = direction:

Ot — 80,u — 21055u + Opzzt = 0
@ Apply the Fourier Transform in x :

di(n) +i(n® —2n? + 8n)i(n) =0

o Dispersive relation: P(n) = n® — 2n? + 8n. Important concept in
analyzing PDE!
e Solution given by @(n) = e *“P(M7g5(n), so

u(m’ t) — Z eixn—itP(n)aa(n)

ne’
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Dispersive Relation Graph
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Bourgain Spaces

@ The Bourgain space captures the vibrating nature of the solution,
i.e. that the space-time Fourier transform of the solution should
concentrate near the curve given by the dispersive relation
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Bourgain Spaces

@ The Bourgain space captures the vibrating nature of the solution,
i.e. that the space-time Fourier transform of the solution should
concentrate near the curve given by the dispersive relation

o The Bourgain space is denoted X*? and is equipped with the norm:

lull oo = [l(n)*(7 — P(n))*u(n, 7)]iz
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Diophantine Equation in L5 Strichartz Estimate

The solution u to the linearized Dysthe equation with initial condition ug
satisfies

ez, < Mol

o Expand the L% norm with Parseval’s Identity
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Diophantine Equation in L5 Strichartz Estimate

The solution u to the linearized Dysthe equation with initial condition ug
satisfies

ez, < Mol

o Expand the L% norm with Parseval’s Identity

@ Control the resonances by bounding the number of solutions to the
Diophantine equation P(n1)+ P(ng)+ P(n—mnj —ng) = j for fixed

n,J.
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Diophantine Equation in L5 Strichartz Estimate

The solution u to the linearized Dysthe equation with initial condition ug
satisfies

ez, < Mol

o Expand the L% norm with Parseval’s Identity

@ Control the resonances by bounding the number of solutions to the
Diophantine equation P(n1)+ P(ng)+ P(n—mnj —ng) = j for fixed
n,J.

@ Result: We have an upper bound of O(n¢) solutions to the previous
diophantine equation.
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For the Bourgain space X*° corresponding to the dispersive relation of
the Dysthe equation, there holds

10z, S 171 os-

@ Main idea: control the L? norm of two dyadic frequency regions of
f based off the (1t — P(n)) term.
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For the Bourgain space X*° corresponding to the dispersive relation of
the Dysthe equation, there holds

10z, S 171 os-

@ Main idea: control the L? norm of two dyadic frequency regions of
f based off the (1t — P(n)) term.

o Why are Strichartz type estimates important?
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Multilinear Estimates

[[P(u1 ) P(uz) ||
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Obstructions to Low-regularity Well-posedness

o We work a contraction mapping argument using the theorems on
prior slides

@ One difficulty in proving the well-posedness of the Dysthe equation
is that the mean is not conserved unlike the widely studied Korteweg
de-Vries equation.

@ Thus the terms in the critical case for the bilinear estimate with
ni =0, (t—P(n)) <1, (m— P(n2)) S 1, pose issues that we
leave as an open question
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