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Rogue Waves

What are rogue waves?
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Rogue Waves

Approximation of the water waves system
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The Dysthe Equation

The Dysthe equation is a fourth order approximation of the incom-
pressible Navier-Stokes equation

The Dysthe equation
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u represents the wave modulation enevelope

Quasilinear dispersive PDE with cubic nonlinearity

Spatial periodicity: u(x, t) ≡ u(x + 2π, t), or equivalently x ∈ T.
The periodic setting is more applicable to numerical studies.
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Well-posedness

Well-posedness of an initial value problem for a PDE means a solu-
tion exists, is unique, and varies continuously with the initial value.

Why is well-posedness important?

Banach Fixed Point Theorem
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Duhamel Form

Duhamel (integrated) form for Dysthe equation:

u(t) = η(t)eitLu0 − η(t)
∫ t

0
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Project Goal

Obtain well-posedness results of the 1D periodic Dysthe equation,
and relevant estimates to the Dysthe equation in various function
spaces.

Mathematical significance: Estimates give us tools to show well or
ill posedness and to understand Dysthe equation.

Physical significance: well-posedness or vibration modes correspond
to numeric modelling and prediction of rogue waves.

Philosophical significance: well-posedness = deterministic nature of
the system, and ensures that algorithms give the correct results (that
converge to the genuine solution).
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Fourier Series

For a sqaure-summable periodic function, we can always uniquely
represent it with Fourier series:

u(x) =
∑
n∈Z

û(n)einx, û(n) =

∫ 2π

0
e−inxu(x)dx.

Property: û′(n) = −inû(n)
Parseval Theorem-Pythagorean Theorem for an infinite dimensional
space: function-vector, Fourier modes -projections on orthogonal
directions

‖u‖L2
x(T) =

(∑
n∈Z
|û(n)|2

) 1
2

Garrett Heller Mentor: Chengyang Shao (MIT)Strichartz Estimates and Well-Posedness for the One-dimensional Periodic Dysthe equationMIT PRIMES Conference, October 2021 8 / 19



Fourier Series

For a sqaure-summable periodic function, we can always uniquely
represent it with Fourier series:

u(x) =
∑
n∈Z
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Function Norms

Lp spaces are metric function spaces for 1 ≤ p ≤ ∞ equipped with
the norm

‖u‖Lp(E) =

(∫
E
|u|pdµ

) 1
p

, ‖u‖L∞(E) = sup
x∈E
|u(x)|

Measure the “distance” between functions under various scales.

The Sobolev space Hs is equipped with the norm

‖f‖Hs = ‖〈n〉sf̂(n)‖l2n =

(∑
n∈Z
〈n〉2s|f̂(n)|2

) 1
2

.

Sobolev norm = norm of order s weak derivative

Sobolev Embedding Theorem: weakly differentiable functions ex-
hibit some regularity properties.
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Linearized Dysthe equation

Linearized equation after scaling x direction:

∂tu− 8∂xu− 2i∂xxu+ ∂xxxu = 0

Apply the Fourier Transform in x :

∂tû(n) + i(n3 − 2n2 + 8n)û(n) = 0

Dispersive relation: P (n) = n3 − 2n2 + 8n. Important concept in
analyzing PDE!

Solution given by û(n) = e−itP (n)û0(n), so

u(x, t) =
∑
n∈Z

eixn−itP (n)û0(n)
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Garrett Heller Mentor: Chengyang Shao (MIT)Strichartz Estimates and Well-Posedness for the One-dimensional Periodic Dysthe equationMIT PRIMES Conference, October 2021 10 / 19



Dispersive Relation Graph
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Bourgain Spaces

The Bourgain space captures the vibrating nature of the solution,
i.e. that the space-time Fourier transform of the solution should
concentrate near the curve given by the dispersive relation

The Bourgain space is denoted Xs,b and is equipped with the norm:

‖u‖Xs,b = ‖〈n〉s〈τ − P (n)〉bû(n, τ)‖l2n,τ
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Garrett Heller Mentor: Chengyang Shao (MIT)Strichartz Estimates and Well-Posedness for the One-dimensional Periodic Dysthe equationMIT PRIMES Conference, October 2021 12 / 19



Diophantine Equation in L6 Strichartz Estimate

Theorem 1

The solution u to the linearized Dysthe equation with initial condition u0
satisfies

‖u‖L6
x,t

. ‖u0‖Hε
x
.

Expand the L6 norm with Parseval’s Identity

Control the resonances by bounding the number of solutions to the
Diophantine equation P (n1)+P (n2)+P (n−n1−n2) = j for fixed
n, j.

Result: We have an upper bound of O(nε) solutions to the previous
diophantine equation.
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L4 Strichartz Estimate

Theorem 2

For the Bourgain space Xs,b corresponding to the dispersive relation of
the Dysthe equation, there holds

‖f‖L4
x,t

. ‖f‖
X0, 13

.

Main idea: control the L2 norm of two dyadic frequency regions of
f based off the 〈τ − P (n)〉 term.

Why are Strichartz type estimates important?
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Multilinear Estimates

Theorem 3

With s ≥ 1
2 , P being the orthogonal projection to zero-mean-value,

‖P(u1)P(u2)‖
Zs,
−1
2

. ‖u1‖
Zs−1, 12

‖u2‖
Zs−1, 13

+ ‖u1‖
Zs−1, 13

‖u2‖
Zs−1, 12

.
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Obstructions to Low-regularity Well-posedness

We work a contraction mapping argument using the theorems on
prior slides

One difficulty in proving the well-posedness of the Dysthe equation
is that the mean is not conserved unlike the widely studied Korteweg
de-Vries equation.

Thus the terms in the critical case for the bilinear estimate with
n1 = 0, 〈τ − P (n)〉 . 1, 〈τ2 − P (n2)〉 . 1, pose issues that we
leave as an open question
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