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® set of vertices and edges

® a vertex represents an object of interest in a study or

dataset

® an edge represents a relationship between two vertices.
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Dense Subgraph Discovery
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Bipartite Graphs

® a graph G made up of two mutually exclusive
vertices with edges that connect them

® model the relationship between two groups
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Bi-core L

a = 3 Ul U2 u3 U4 us U6
1
\
A

ﬁ —) Vi V2 V3 V4 V5 V6 V7

(Q, B)-core

(3,2) core means that every U node has at least 3 edges and
every V node has at least 2 edges within the subgraph

Alpha and beta maxes

Induced
subgraph
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Parallelism

Increase in size of graphs and # of cores.
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Work-span Model

I, = Runtime with p processors
Tl — WOl‘k
', =Span

Brent’s Law:

6.886 Lecture 2 Algorithm Engineering, MIT

Work Efficiency: same Work Complexity as the best sequential algorithm

9



Bi-core Decomposition

Prax 2(k) = 3, and we know
Q,..« 3(k) is at least 2

Goal: find ay,,, 4(v) for every f and v and find f, ., ,(u) for every a and u A

1
Process: Peeling-based—remove vertices with min degree—repeat until empty .
ke (2,3),k& (24)

For f = 11to0 é: p 4
Peel from a = 1 to its maximum value :

Vertex k is deleted here at (2,4)

Fora = 1too:
Peel from f = 1 to its maximum value

N W KA O

Liu, B.,Yuan, L., Lin, X et al. Efficient (a,f)-core computation in bipartite K

graphs. The VLDB Journal 29, 1075—1099 (2020). https://doi.org/10.1007/

s00778-020-00606-9
10



In the partition

Sequential Bi-core Decomposition nd the vertex with minimun

Ua=1 V, =2 induced deg
, ’ For each such vertex:

Delete 1t
Update blue vertex degree

Check the blue partition for
vertices with degree < f

For each blue node < f:
Delete node

Update yellow vertex
degree

Update yellow

Liu, B.,Yuan, L., Lin, X. et al. Efficient (a,f)-core computation in bipartite

graphs. The VLDB Journal 29, 1075—1099 (2020). https://doi.org/10.1007/

Finding all cores up to the
1 s00778-020-00606-9

(4,2) core



In the yellow, U partition

Sequential Bi-core Decomposition o5 e

After peeling one side,
we peel the other

V, =2

p

12

1nduced deg

For each such vertex:
Delete 1t
Update blue vertex degree

Check the blue partition for
vertices with degree < f

For each blue node < f:
Delete node

Update yellow vertex
degree

Update yellow

Liu, B.,Yuan, L., Lin, X. et al. Efficient (a,f)-core computation in bipartite

graphs. The VLDB Journal 29, 1075—1099 (2020). https://doi.org/10.1007/
s00778-020-00606-9



In the yellow, U partition

Sequential Bi-core Decomposition ¢ 50

//

We have computed
the (4,2) core

V, =2

p

13

1nduced deg

For each such vertex:
Delete 1t
Update blue vertex degree

Check the blue partition for
vertices with degree < f

For each blue node < f:
Delete node

Update yellow vertex
degree

Update yellow

Liu, B.,Yuan, L., Lin, X. et al. Efficient (a,f)-core computation in bipartite

graphs. The VLDB Journal 29, 1075—1099 (2020). https://doi.org/10.1007/
s00778-020-00606-9
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Parallel Bi-core Decomposition
Ua=1 V=2

deg =1

1 3
2 deg =2
3

deg =3
4

deg =4
)

deg =35

Finding all cores up to the
(4,2) core
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In the . U partition
find all vertices with
minimum 1nduced deg

Parfor each such vertex:

Delete 1t

Update blue neighbor
vertex's degree 1n parallel

Obtain vertices 1in blue, V
partition with degree < f

Parfor each blue node < f:

Delete node

Update yellow vertex degree
1n parallel

Liu, B.,Yuan, L., Lin, X et al. Efficient (a,f)-core computation in

bipartite graphs. The VLDB Journal 29, 1075—-1099 (2020). https://
doi.org/10.1007/s00778-020-00606-9



After peeling one side,
we peel the other

Parallel Bi-core Decomposition
V, =2

deg =1

deg =2

deg =3

deg = 4

deg =3

In the yellow, U partition
find all vertices with
minimum 1nduced deg

Parfor each such vertex:
Delete 1t

Update blue neighbor
vertex’'s degree 1n parallel

Obtain vertices in blue, V
partition with degree < f

Parfor each blue node < f:
Delete node

Update yellow vertex degree
1n parallel

Liu, B.,Yuan, L., Lin, X et al. Efficient (a,f)-core computation in

bipartite graphs. The VLDB Journal 29, 1075—-1099 (2020). https://
doi.org/10.1007/s00778-020-00606-9



Parallel Bi-core Decomposition

V, =2

p

s/

We have computed
the (4,2) core

deg =1

deg =2

deg =3

deg = 4

deg =3

In the yellow, U partition
find all vertices with
minimum 1nduced deg

Parfor each such vertex:
Delete 1t

Update blue neighbor
vertex’'s degree 1n parallel

Obtain vertices 1in blue, V
partition with degree < f

Parfor each blue node < f:
Delete node

Update yellow vertex degree
1n parallel

Liu, B.,Yuan, L., Lin, X et al. Efficient (a,f)-core computation in

bipartite graphs. The VLDB Journal 29, 1075—-1099 (2020). https://
doi.org/10.1007/s00778-020-00606-9



Complexity Results

Liu et al.

(a, f)-core decomposition
is P-complete when a > 3

orf >3

O(6m) or O(m'>) | O(6m) or O(m'>)

O(m) O(p log n)

18



Peeling-space Pruning




Evaluation

® 30-core, 2-way hyperthreading, CPU @3.1
GHz

® has 60 vCPUs and 240 GB of memory

® We used the GBBS (graph based

benchmark suite) to implement our
parallel code

® Graphs were from the KONECT graph
database

® Largest graph run: orkut (327 million

edges)

KONECT -- The Koblenz Network Collection.
Jerone Kunegis 201 3. konect.cc/networks

Graph Name Type |U| V| n m dmax 0  Pmax
Orkut Membership 2.78M 8.73M 11.51M 327M 318K 466 12100
Web Trackers Inclusion 27.7M 284K 4043M 140.6M 11.57TM 437 4542
LiveJournal = MembershipS 3.20M 7.49M 13.89M 112M 1.0SM 108 6831
TREC Inclusion 556K 1.17M 1.73M  83.6M 457K 508 6029
Reuters Inclusion 781K 284K 1.06M 60.6M 345K 192 4767
Epinions Rating 120K 755K 880k 13.67TM 162K 151 3049
Flickr Membership 306K 104K 500k 8.55M 35K 147 2300

20

Table 2. Graphs Statistics

Google Cloud Platform

Theoretically Efficient Parallel Graph Algorithms Can Be Fast

and Scalable: https://github.com/ParAlg/gbbs, 2018
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® 4.1x speedup over Liu et al’s parallelization
® 16.2—35.5x self-relative speedup

Runtime comparison

B seg-baseline seqg-optimized par-baseline par-optimized

1000 .

N sequential vs
S .

parallel run times

100 Log scale

50

10

3

Orkut Web Trackers TREC Livejournal Reuters Epinions Flickr
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Parallel Speedup
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Future Work

Conclusion

® A work-efficient shared memory algorithm that ® Dynamic bi-core peeling

improves upon the span of previous work
P P P P ® Extrapolate to bi-clique decomposition (which is

® We achieve 35.5x max self-relative speedup a generalization of butterfly decomposition)

® Github: https://github.com/clairebookworm/gbbs ® Study the tradeoff between work-efficiency and
practical speed

23


https://github.com/clairebookworm/gbbs

Acknowledgements

We'd like to thank Jessica Shi and Prof. Julian Shun for their support and
mentorship, as well as the MIT PRIMES program for this opportunity.

Any questions/?

24



