Efficient Parallel Algorithm for Bi-core Decomposition

Claire Wang <u>cwang23@andover.edu</u>

> PRIMES 2021 Mentored by: Jessica Shi, Julian Shun

Michael (Yihao) Huang yhuang23@andover.edu

Knowledge Graphs: The New Type of Document for the 21st Century. (n.d.). Nodus Labs. Retrieved October 11, 2021, from https://noduslabs.com/research/knowledgegraphs-type-document/

a vertex represents an object of interest in a study or

an edge represents a relationship between two vertices.

Dense Subgraph Discovery

Knowledge Graphs: The New Type of Document for the 21st Century. (n.d.). Nodus Labs. Retrieved October 11, 2021, from https://noduslabs.com/research/knowledgegraphs-type-document/

conservative former KGB agents and "siloviki"

Liu, L., Lei, J., Sanders, S. J., Willsey, A. J., Kou, Y., Cicek, A. E., Klei, L., Lu, C., He, X., Li, M., Muhle, R.A., Ma'ayan, A., Noonan, J. P., Šestan, N., McFadden, K.A., State, M.W., Buxbaum, J. D., Devlin, B., & Roeder, K. (2014). DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics. Molecular Autism, 5(1). https://doi.org/10.1186/2040-2392-5-22

Bipartite Graphs Motivation

- a graph G made up of two mutually exclusive sets of vertices with edges that connect them
- model the relationship between two groups

Diseases and their correlated IncRNA loci

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.oo87797

(α, β) -core

every V node has at least 2 edges within the subgraph Alpha and beta maxes

(3,2) core means that every U node has at least 3 edges and

Fraudster Detection

Applications of Bi-core Decomposition

Parallelism

Preliminaries

Work-span Model

Preliminary

T_p = Runtime with *p* processors $T_1 = Work$ $T_{\infty} = \text{Span}$

Brent's Law:

$$T_p \le T_\infty + \frac{T_1 - T_\infty}{p}$$

Bi-core Decomposition

Goal: find $\alpha_{\max \beta}(v)$ for every β and v and find $\beta_{\max \alpha}(u)$ for every α and uProcess: Peeling-based—remove vertices with min degree—repeat until empty For $\beta = 1$ to δ : Peel from $\alpha = 1$ to its maximum value For $\alpha = 1$ to δ :

Peel from $\beta = 1$ to its maximum value

Liu, B., Yuan, L., Lin, X. et al. Efficient (α, β) -core computation in bipartite graphs. The VLDB Journal **29**, 1075–1099 (2020). https://doi.org/10.1007/s00778-020-00606-9

In the yellow, U partition find the vertex with minimum induced deg For each such vertex: Delete it Update blue vertex degree Check the **blue** partition for vertices with degree < β For each blue node < β : Delete node Update yellow vertex degree Update yellow

Liu, B., Yuan, L., Lin, X. et al. Efficient (α, β) -core computation in bipartite graphs. The VLDB Journal 29, 1075–1099 (2020). https://doi.org/10.1007/ s00778-020-00606-9

In the **yellow, U** partition find the vertex with minimum induced deg

For each such vertex:

Delete it

Update blue vertex degree

Check the **blue** partition for vertices with degree < β

For each blue node < β :

Delete node

Update yellow vertex degree

Update yellow

Liu, B., Yuan, L., Lin, X. et al. Efficient (α, β) -core computation in bipartite graphs. The VLDB Journal 29, 1075–1099 (2020). https://doi.org/10.1007/ s00778-020-00606-9

In the **yellow, U** partition find the vertex with minimum induced deg

For each such vertex:

Delete it

Update blue vertex degree

Check the **blue** partition for vertices with degree < β

For each blue node < β :

Delete node

Update yellow vertex degree

Update yellow

Liu, B., Yuan, L., Lin, X. et al. Efficient (α, β) -core computation in bipartite graphs. The VLDB Journal 29, 1075–1099 (2020). https://doi.org/10.1007/ s00778-020-00606-9

Algorithm

In the yellow, U partition find all vertices with minimum induced deg

Parfor each such vertex:

Delete it

Update blue neighbor vertex's degree in parallel

Obtain vertices in **blue**, V partition with degree < β

Parfor each blue node < β :

Delete node

Update yellow vertex degree in parallel

Liu, B., Yuan, L., Lin, X. et al. Efficient (α, β) -core computation in bipartite graphs. The VLDB Journal 29, 1075–1099 (2020). https:// doi.org/10.1007/s00778-020-00606-9

In the **yellow**, **U** partition find all vertices with minimum induced deg Parfor each such vertex: Delete it Update blue neighbor vertex's degree in parallel

Obtain vertices in **blue**, V partition with degree < β

Parfor each blue node < β :

Delete node

Update yellow vertex degree in parallel

Liu, B., Yuan, L., Lin, X. et al. Efficient (α, β) -core computation in bipartite graphs. The VLDB Journal 29, 1075–1099 (2020). https:// doi.org/10.1007/s00778-020-00606-9

In the **yellow**, **U** partition find all vertices with minimum induced deg Parfor each such vertex: Delete it

Update blue neighbor vertex's degree in parallel

Obtain vertices in **blue**, V partition with degree < β

Parfor each blue node < β :

Delete node

Update yellow vertex degree in parallel

Liu, B., Yuan, L., Lin, X. et al. Efficient (α, β) -core computation in bipartite graphs. The VLDB Journal 29, 1075–1099 (2020). https:// doi.org/10.1007/s00778-020-00606-9

Complexity Results

(α, β) -core decomposition is P-complete when $\alpha \geq 3$ or $\beta \geq 3$

Peeling-space Pruning

Optimization

Evaluation

- 30-core, 2-way hyperthreading, CPU @3.1
 GHz
 - has 60 vCPUs and 240 GB of memory
- We used the GBBS (graph based benchmark suite) to implement our parallel code
- Graphs were from the KONECT graph database
- Largest graph run: orkut (327 million edges)

KONECT -- The Koblenz Network Collection. Jerone Kunegis 2013. konect.cc/networks

_									
ſ	Graph Name	Туре	U	V	n	m	dmax	δ	ρ
ĺ	Orkut	Membership	2.78M	8.73M	11.51M	327M	318K	466	1
	Web Trackers	Inclusion	27.7M	284K	40.43M	140.6M	11.57M	437	4
	LiveJournal	Membership S	3.20M	7.49M	13.89M	112M	1.05M	108	6
	TREC	Inclusion	556K	1.17M	1.73M	83.6M	457K	508	6
ĺ	Reuters	Inclusion	781K	284K	1.06M	60.6M	345K	192	4
	Epinions	Rating	120K	755K	880k	13.67M	162K	151	3
	Flickr	Membership	396K	104K	500k	8.55M	35K	147	2

Table 2. Graphs Statistics

Google Cloud Platform

Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable: <u>https://github.com/ParAlg/gbbs</u>, 2018

Runtime comparison

• 4.1 x speedup over Liu et al.'s parallelization • 16.2—35.5x self-relative speedup

sequential vs parallel run times

Log scale

Parallel Speedup

Thread Count

- Livejournal
- **D** Epinions
- Web Trackers
- Orkut
- Reuters
- ➡ Flickr
- TREC О.

Parallel speedup for different graphs (self-relative ratios).

Conclusion

- A work-efficient shared memory algorithm that Dynamic bi-core peeling improves upon the span of previous work
- We achieve 35.5x max self-relative speedup
- Github: <u>https://github.com/clairebookworm/gbbs</u> Study the tradeoff between work-efficiency and practical speed

Future Work

• Extrapolate to bi-clique decomposition (which is a generalization of butterfly decomposition)

Acknowledgements

We'd like to thank Jessica Shi and Prof. Julian Shun for their support and mentorship, as well as the MIT PRIMES program for this opportunity.

Any questions?