
Enhancing
distributed tracing

to order
events

Tanmay Gupta and Anshul Rastogi
Mentor: Dr. Raja Sambasivan,

● Facebook

Distributed systems are

Networks of devices/machines
(“nodes”), such as computers or servers
that communicate with one another to
complete tasks

Distributed systems surround us.
Some examples:
● Google

● Cellular networks*

Distributed systems today

Distributed tracing is when a
software tracks the flow of service
requests in a distributed system

This is useful for:

● Regulation
● Analyzing performance

● Debugging

What is distributed tracing?

https://www.scaleyourapp.com/difference-between-centr
alized-decentralized-distributed-systems-explained/

https://static.googleusercontent.com/media/research.goo
gle.com/en//pubs/archive/36356.pdf

https://www.uplers.com/wp-content/uploads/2020/04/Top
-5-Debugging-Tools-Your-Front-end-Developers-Should-
Have-Hands-On.jpg

● Happens-before relationship
○ As must occur for Bs to

occur

The Ideal Trace: Causality

AS

BS

AS

BS CS

BE CE

AE

● Concurrent relationship
○ Events could happen in

any order or
simultaneously

Synchronization

The Ideal Trace: Applications

AS

BS CS

BE CE

AE

3 s

3 s

4 s

2 s

1 s

2 s

5 s10 s

Critical Path: longest path in
trace

Span (definition):

“The ‘span’ is the primary building block of a distributed trace,
representing an individual unit of work done in a distributed system.”

– OpenTracing.io

Tracing: Spans

A

time

parent-child
relationship

B
AS AE

● Caller-callee relationships
○ B dependent on A
○ C dependent on A

Tracing: The Challenges

A

B C● Is C dependent on B?

Tracing: The Challenges

A

B C

● Is C dependent on B?
○ Instrumentation could help

■ Fork in threads =>
concurrent

■ Hard to do with
heterogeneous systems

C

B

Can we use big
data to get

closer to the
ideal trace?

Overview

Distributed Tracing

The MysterY Machine

01

02

Scooby Systems

Future Work

03

04

Spans

Spans, segments, & Events

A

B

AS

AE

BS

BE

B

A1

A2

A3

Segments Events

● Many relationships
between parts of A and B
○ E.g. asynchronous

concurrency missed

● Traces missing logs

The Mystery Machine produces a Global Causal Model (GCM)
● Uses a segment-based model.
● shows happens-before dependencies between every segment

across the traces such that the dependencies hold for every trace.

The Mystery Machine: GCM

● First creates all hypothetical happens-before edges
between all segments to create GCM

● Then takes happens-before relationships across the
traces and removes violated edges from GCM

● Reaches final GCM once it has iterated through all
traces

The Mystery Machine: How it Works

● Problem: Assumes enough natural variation

● Problem: Assumes that all traces are correct, leaving no
room for error such as:
○ Clock skew
○ Anomalies in structure (caused by bugs)

● The Mystery Machine assumes Facebook-specific things

The Mystery Machine: Limitations

● Problem: Mystery Machine assumes that there are no
repeats of the same segment or event

● GCM starts with interconnected B and C
○ Sees B -> C; removes C -> B from model
○ Sees C -> B; removes B -> C from model

But what if B -> C is the true structure?

The Mystery Machine: Limitations

A1

B BC C

A2 A3 A4 A5 D6 D7 D8 D9

Overview

Distributed Tracing

The MysterY Machine

01

02

Scooby Systems

Future Work

03

04

● Address rigidity of The Mystery Machine
○ Don’t eliminate edge after just one violation

User-Defined Threshold

● Chose success-based model contrary to The Mystery Machine
○ Counts successes of each relationship
○ User has freedom to choose threshold in terms of sA→B and vA→B

sA→B = # of successes of A→B
vA→B = # of violations of A→B
uA→B = A, B do not both occur

sA→B = sA→B
vA→B = sB→A+ qA→B
uA→B = T - sA→B - vA→B

A and B at same time

Total # of occurrences

Scooby Systems

● Preprocessing
○ Create Causal Model

● Main Algorithm
○ for each trace

■ for each pair of spans
● update causal model

● Apply Threshold
○ For each relationship in causal model

■ if (passes threshold) add edge to
final model

Input

Scooby Systems in Action

A

B C

100 200 400 500 800 1000Timestamps
(ms):

Trace ID: “1”

A

C B

100 150 400 550 730 1000

Trace ID: “2”

Trace 1

Scooby Systems in Action

A

B C

AEAS BS BE CECS

time

AS AE BS BE CS CE
AS

AE

BS

BE

CS

CE

Trace 2

Scooby Systems in Action

A

BC

AEAS BS BECECS

time

AS AE BS BE CS CE
AS

AE

BS

BE

CS

CE

+

Scooby Systems in Action

=

Threshold

s/T > 90%

GCM Visualized
AS

BS CS

BE
CE

AE

Overview

Distributed Tracing

The MysterY Machine

01

02

Scooby Systems

Future Work

03

04

● Implement Scooby Systems in Hadoop
○ Scalable

Next Steps

● Threshold-based determination of edges

● Proposing solutions / further analysis of Mystery
Machine limitations

● Evaluation
○ DeathStarBench

CREDITS: This presentation template was created by Slidesgo,
including icons by Flaticon, infographics & images by Freepik

AcknoWLEDGEMENTS
Thanks to Darby Huye, Max Liu, Raja
Sambasivan, & D.O.C.C. Lab for their guidance

Thanks to the PRIMES Program for providing
this opportunity

Thanks to our families

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
http://bit.ly/2PfT4lq

Thank YOU for listening!

Any Questions?

