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Pretrained Models
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Transformers

Architecture

Attention

o Tokens interact directly
o  Query, Key, Value

o  Multiple heads

Attention(Q, K, V) = softmax(
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Transformer Models

Encoder Encoder + Decoder Decoder
BERT BART GPT
RoBERTa 15
ALBERT
DistilBERT
Differences:
Architecture
Size

Pre-training objective
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oLMpics Overview

Task Name

Example Question

Choices

Age Comparison
Always Never
Object Comparison
Antonym Negation

Taxonomy Conjunction

Multi-hop Composition

A 41 year old person age is [MASK] than a 42 year old person.

A lizard [MASK] has a wing.

The size of a nail is usually much [MASK] than the size of a fork.

It was [MASK] a fracture, it was really a break.

A ferry and a biplane are both a type of [MASK].

What is related to vertical and is related to honest?

Where is the headquarters of the company that Giovanni Agusta established located?

When comparing a 21 year old, 15 year old, and 19 year old, the [MASK] is oldest.
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Masked LM

Question Answering

oLMpics Evaluation Methods @
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oLMpics Results

Always Object Antoynm Taxonomy Multi-hop Encyclopedia Property

Never Comparison  Negation  Conjunction Composition  Composition  Conjunction
Random Baseline 20 50 50 33.3 33.3 33.3 33.3
BERT a5 133 55.4 53.8 46.7 33.2 56.1 62.6
BERTarge 225 52.4 51.0 53.9 33.8 57.1 58.3
BERT arge WWM 10.7 55.6 572 46.2 338 56.4 60.1
RoBERTajarge 135 87.4 74.4 45.4 28.0 55.5 555
DistilBERT base 15.0 50.8 50.8 46.9 334 33.9 56.2
AIBERT a:rge 10.7 55.6 572 46.2 33.8 572 60.2
BARTarge 14.3 50.8 53.8 42.6 33.8 - -
TH1arge 25.7 79.8 59.2 44.2 33.8 - -
GPT2 50.1+1.54 5011 5284193  48.4+1.01 3221237 322 42.9
GPTZmedinm 40.8+2.24  49.6x0.92  54.7+238  49.1*1.65 29.6%2.12 31.8 47
GPT 2550 20.2+1.73  50.4+0.97  50.1£2.68  46.9+1.47 33.5+1.34 47.5 3.2
UniLMpase 15.5+1.49  47.8+1.25  43.5+0.71 - 34.9+0.78 - -
UniLMijarge 19:242.1 61.12+1.43  50.8+0.77 - 38.1E1.21 - -




Attention Norms

Attention weights can be useful in understanding
what a model looks at

However, more recently attention norms have
been shown to be more accurate

o Attention formula can be rearranged

o The norm of this product between the
attention weights and transformed value
vectors is the “attention norm”
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Attention Norm Patterns
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Age-Age and Age-MASK Importance

To determine whether heads are important, we compare the effect of disabling
the heads to disabling the same amount of random heads

Modification BERT (20-40) RoBERTa (20-40) | BERT (40-60) RoBERTa (40-60)
Normal (Age Comparison) 76.0 (0) 98.6 (0) 36.6 (0) 99.2 (0)
Age-Age 66.2 (20) 64.2 (20) 32.2.(20) 98.2 (20)
Age-Mask 67.4 (5) 98.6 (3) 68 (5) 99.2 (3)
Random (20 heads) 76.3 + 5.4 (20) 92 + 8.6 (20) 26.9 4+ 5.3 (20) 97.8 + 1.7 (20)
Random (5 or 3 heads) 127 3.5 (5) 97.0 = 1.1(3) 39.94+2.5 (5) 99.1 =0.3 (3)

Table 6: Results after disabling heads. The number in parentheses is the number of heads disabled.



Conclusion

We analyzed the differences between pre-trained models
o Zero-shot evaluation on oLMpics tasks
m Different models perform well on different tasks, there’s no clear leader
m  None of the models can solve composition task
o Hidden representation analysis - attention norms

m Intuitive features like Age-MASK do not contribute to performance

Adapted oLMpics zero-shot setup for autoregressive models
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