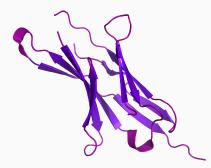
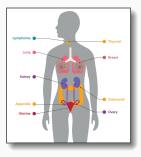
Linear classifiers and t-SNE for understanding relationships across cancer types


Ali Yang October 17th, 2021

Mentors: Alkis Gkotovos and Stefanie Jegelka

In the US, cancer is the **second** leading cause of death.

How do we treat it?


To treat cancers, we need to be able to classify them.

PD-1, a target for immunotherapies¹

¹Image source: Wikipedia

Cancers were originally classified primarily based on the organ or cell they originated from, or growth patterns.

Some of the organs from which cancer can originate²

²Image source: National Cancer Institute

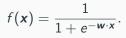
Genetic sequencing has revealed many more cancer subtypes than previously thought.

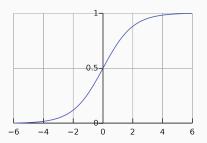
CMS1 MSI immune	CMS2 Canonical	CMS3 Metabolic	CMS4 Mesenchymal
14%	37%	13%	23%
MSI, CIMP high, hypermutation	SCNA high	Mixed MSI status, SCNA low, CIMP low	SCNA high
BRAF mutations		KRAS mutations	
Immune infiltration and activation	WNT and MYC activation	Metabolic deregulation	Stromal infiltration, TGF-β activation, angiogenesis
Worse survival after relapse			Worse relapse-free and overall surviva

The four consensus molecular subtypes of colorectal cancer³

³Image source: Guinney et al., 2015

How good are existing cancer types?

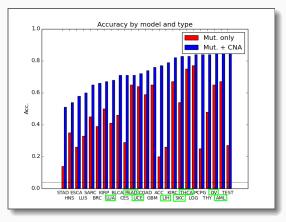


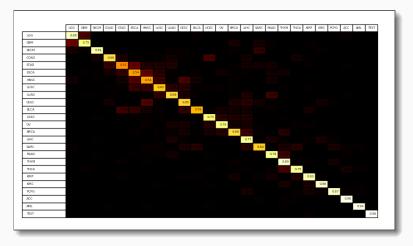

The Cancer Genome Atlas (TCGA) Dataset

- 9051 patients with known types
- Data on mutation, amplification, and deletion for 763 genes

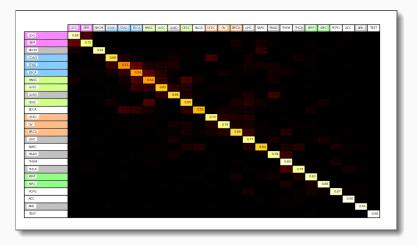
- Train a model to predict type from genetics.
- If it has good accuracy, then the types are genetically meaningful.

Logistic classifier:

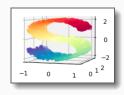


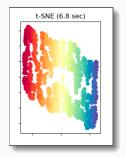

Shape of the logistic classifier's classification boundary⁴

⁴Image source: Wikipedia

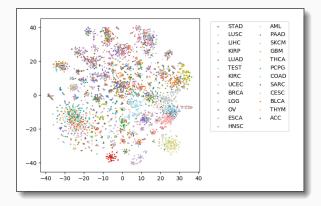

Overall accuracy: 74.4%

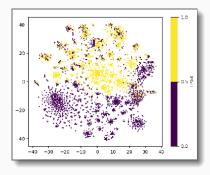
Logistic classifier accuracy on different cancer types

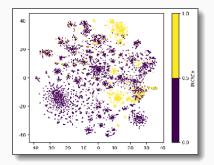

Logistic classifier confusion matrix

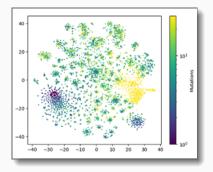

Logistic classifier confusion matrix-related organ groups colored in

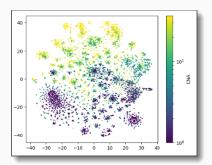
What are other ways to classify cancers?

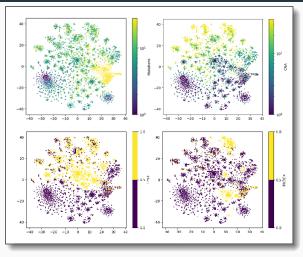

Dimensionality reduction with t-SNE


3D data


2D version with t-SNE


t-SNE of TCGA data, colored by type


TP53


PIK3CA

Mutations

Copy-number alterations

t-SNE plot of TCGA data colored four different ways.

From top left clockwise: mutation number, copy-number alteration number, TP53

mutated, PIK3CA mutated

- Existing cancer types can be easily distinguished genetically.
- Cancers from related organs are similar.
- We can classify cancers by TP53 or PIK3CA mutations, number of mutations, and number of copy-number variations.

I would like to thank my mentors, Alkis Gkotovos and Professor Stefanie Jegelka, for their guidance throughout this project.

I would also like to thank Qinghong Yang for explanations of many of the biological concepts in this project.