Counting LU Matrices with Fixed Eigenvalues

PRIMES conference 2021

Andrew Gu¹
Mentored by Dr. Jonathan Wang²

¹Tesoro High school

²Perimeter Institute

October 16 - 17, 2021

- Preliminary Definitions from Linear Algebra
- Research Problem and Main Results
- Partition Definitions
- 4 Acknowledgements

Definition

Definition

A **field** is a set that satisfies certain basic rules:

multiplication

Definition

- multiplication
- addition

Definition

- multiplication
- addition
- subtraction

Definition

- multiplication
- addition
- subtraction
- division

Definition

A **field** is a set that satisfies certain basic rules:

- multiplication
- addition
- subtraction
- division

Example

Some common examples are \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Definition (\mathbb{F}_q)

 \mathbb{F}_q is a field with a finite number of elements, q to be exact.

Definition (\mathbb{F}_q)

 \mathbb{F}_q is a field with a finite number of elements, q to be exact.

When q is any prime p, \mathbb{F}_q is like working modulo p. For any other q, it is slightly more complicated.

Definition

Definition

A **group** is a set equipped with an operation. Satisfies the *group axioms*:

closure

Definition

- closure
- associativity

Definition

- closure
- associativity
- identity

Definition

- closure
- associativity
- identity
- inverse

Definition

A **group** is a set equipped with an operation. Satisfies the *group axioms*:

- closure
- associativity
- identity
- inverse

Example

A common example is \mathbb{Z} under addition.

Definition $(GL_n(\mathbb{F}_q))$

 $GL_n(\mathbb{F}_q)$ is the set of $n \times n$ invertible matrices whose entries are in \mathbb{F}_q .

Definition $(GL_n(\mathbb{F}_q))$

 $GL_n(\mathbb{F}_q)$ is the set of $n \times n$ invertible matrices whose entries are in \mathbb{F}_q .

• Group under matrix multiplication

Definition $(GL_n(\mathbb{F}_q))$

 $GL_n(\mathbb{F}_q)$ is the set of $n \times n$ invertible matrices whose entries are in \mathbb{F}_q .

- Group under matrix multiplication
- Main group we will work with

Eigenvalues

Definition

An **eigenvalue** for a matrix $g \in GL_n(\mathbb{F}_q)$ is any scalar λ for which there exists a vector $v \in \mathbb{F}_q^n$ such that $gv = \lambda v$. v is called an *eigenvector*.

Eigenvalues

Definition

An **eigenvalue** for a matrix $g \in GL_n(\mathbb{F}_q)$ is any scalar λ for which there exists a vector $v \in \mathbb{F}_q^n$ such that $gv = \lambda v$. v is called an *eigenvector*.

Example

The eigenvalues of
$$\begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$$
 are 2 and 4 with eigenvectors $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$, respectively.

LU Decomposition

Definition

A matrix admits an **LU decomposition** if it is equal to:

Lower Triangular Matrix × Upper Triangular Matrix.

LU Decomposition

Definition

A matrix admits an **LU decomposition** if it is equal to:

Lower Triangular Matrix × Upper Triangular Matrix.

Example

$$\begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 4 & 14 \end{pmatrix}$$

LU Decomposition Cont.

Matrices with LU Decomposition are called *LU Matrices*.

LU Decomposition Cont.

Matrices with LU Decomposition are called *LU Matrices*.

$\mathsf{Theorem}$

If the Lower Triangular matrix is restricted to have 1's, the LU Decomposition is unique.

LU Decomposition Cont.

Matrices with LU Decomposition are called *LU Matrices*.

$\mathsf{Theorem}$

If the Lower Triangular matrix is restricted to have 1's, the LU Decomposition is unique.

This is a well known fact.

We would like to investigate the number of matrices with the following properties:

We would like to investigate the number of matrices with the following properties:

Admits an LU decomposition

We would like to investigate the number of matrices with the following properties:

- Admits an LU decomposition
- ullet The eigenvalues form a set $s\subset \mathbb{F}_q$

We would like to investigate the number of matrices with the following properties:

- Admits an LU decomposition
- ullet The eigenvalues form a set $s\subset \mathbb{F}_q$
- These eigenvalues are distinct i.e. |s| = n

We would like to investigate the number of matrices with the following properties:

- Admits an LU decomposition
- ullet The eigenvalues form a set $s\subset \mathbb{F}_q$
- These eigenvalues are distinct i.e. |s| = n

We call this set of matrices X_s .

Example

Example

Case n = 2: LU matrices have the form

$$\begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} \begin{pmatrix} ac & d \\ 0 & c^{-1} \end{pmatrix} = \begin{pmatrix} ac & d \\ abc & bd + c^{-1} \end{pmatrix}.$$

Example

Example

Case n = 2: LU matrices have the form

$$\begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} \begin{pmatrix} ac & d \\ 0 & c^{-1} \end{pmatrix} = \begin{pmatrix} ac & d \\ abc & bd + c^{-1} \end{pmatrix}.$$

The eigenvalues are roots of the polynomial $t^2 - (ac + c^{-1} + bd)t + a$.

Example

Example

Case n = 2: LU matrices have the form

$$\begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} \begin{pmatrix} \mathsf{ac} & \mathsf{d} \\ 0 & c^{-1} \end{pmatrix} = \begin{pmatrix} \mathsf{ac} & \mathsf{d} \\ \mathsf{abc} & \mathsf{bd} + c^{-1} \end{pmatrix}.$$

The eigenvalues are roots of the polynomial $t^2 - (ac + c^{-1} + bd)t + a$.

If $s = \{ae, e^{-1}\}$, we want roots to be ae and e^{-1} . Casework gives us $q^2 + 1$ solutions.

Another Example

Example

For n = 3, the equations are:

Another Example

Example

For n = 3, the equations are:

•
$$d + e + f + ax + by + cz = r + s + t$$

Example

For n = 3, the equations are:

•
$$d + e + f + ax + by + cz = r + s + t$$

•
$$de + ef + df + czd + axf + bye + acxz - acey - bxz = rs + st + ts$$

Example

For n = 3, the equations are:

- d + e + f + ax + by + cz = r + s + t
- de + ef + df + czd + axf + bye + acxz acey bxz = rs + st + ts
- def = rst

Example

For n = 3, the equations are:

•
$$d + e + f + ax + by + cz = r + s + t$$

•
$$de + ef + df + czd + axf + bye + acxz - acey - bxz = rs + st + ts$$

•
$$def = rst$$

if r, s, t are the eigenvalues.

Example

For n = 3, the equations are:

•
$$d + e + f + ax + by + cz = r + s + t$$

•
$$de + ef + df + czd + axf + bye + acxz - acey - bxz = rs + st + ts$$

•
$$def = rst$$

if r, s, t are the eigenvalues. Very difficult.

Example

For n = 3, the equations are:

•
$$d + e + f + ax + by + cz = r + s + t$$

•
$$de + ef + df + czd + axf + bye + acxz - acey - bxz = rs + st + ts$$

• def = rst

if r, s, t are the eigenvalues. Very difficult.

A computer program seems more appropriate now. That gives $q^6 + 4q^3 + 1$.

Let's see if we can find a pattern with these expressions:

Let's see if we can find a pattern with these expressions:

• n = 1:1

Let's see if we can find a pattern with these expressions:

- n = 1:1
- $n = 2 : q^2 + 1$

Let's see if we can find a pattern with these expressions:

- n = 1:1
- $n=2: q^2+1$
- n = 3: $q^6 + 4q^3 + 1$

Let's see if we can find a pattern with these expressions:

- n = 1:1
- $n = 2 : q^2 + 1$
- $n = 3 : q^6 + 4q^3 + 1$

Is there a pattern?

Let's see if we can find a pattern with these expressions:

- n = 1:1
- $n = 2 : q^2 + 1$
- $n = 3 : q^6 + 4q^3 + 1$

Is there a pattern? Yes, but the formula is quite complicated.

The Formula

Theorem (G)

For all n-element subsets s of \mathbb{F}_q , we have

$$|X_s| = \sum_{\lambda \in Y_n} q^{c(1)+c(\lambda)} D_{\lambda}^2.$$

The Formula

Theorem (G)

For all n-element subsets s of \mathbb{F}_q , we have

$$|X_s| = \sum_{\lambda \in Y_n} q^{c(1)+c(\lambda)} D_{\lambda}^2.$$

We will not talk about the proof because it is rather lengthy and complex.

Definition

A **partition** of a positive integer n is a way to write it as a sum of unordered positive integers. We can write a partition λ as $(\lambda_1, \lambda_2, \dots, \lambda_k)$ where $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_k \geq 1$.

Definition

A **partition** of a positive integer n is a way to write it as a sum of unordered positive integers. We can write a partition λ as $(\lambda_1, \lambda_2, \dots, \lambda_k)$ where $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_k \geq 1$.

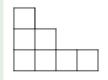
One common way to represent a partition is using a *Young diagram*. Y_n is then the set of Young diagrams of size n.

Definition

A **partition** of a positive integer n is a way to write it as a sum of unordered positive integers. We can write a partition λ as $(\lambda_1, \lambda_2, \dots, \lambda_k)$ where $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_k \geq 1$.

One common way to represent a partition is using a *Young diagram*. Y_n is then the set of Young diagrams of size n.

Example

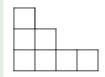


Definition

A **partition** of a positive integer n is a way to write it as a sum of unordered positive integers. We can write a partition λ as $(\lambda_1, \lambda_2, \dots, \lambda_k)$ where $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_k \geq 1$.

One common way to represent a partition is using a *Young diagram*. Y_n is then the set of Young diagrams of size n.

Example



 λ is (4,2,1) in this example.

The Hook Length Formula

Definition

For (i,j) the square in row i, column j, we let h(i,j) denote the number of squares (i',j') in the Young diagram λ such that $i' \geq i, j' = j$ or $i' = i, j' \geq j$. Then, the **Hook Length** Formula says $D_{\lambda} = \frac{n!}{\prod_{i,j} h(i,j)}$.

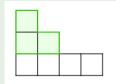
The Hook Length Formula

Definition

For (i,j) the square in row i, column j, we let h(i,j) denote the number of squares (i',j') in the Young diagram λ such that $i' \geq i, j' = j$ or $i' = i, j' \geq j$. Then, the **Hook Length** n!

Formula says
$$D_{\lambda} = \frac{n!}{\prod_{i,j} h(i,j)}$$
.

Example



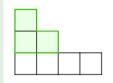
The Hook Length Formula

Definition

For (i,j) the square in row i, column j, we let h(i,j) denote the number of squares (i',j') in the Young diagram λ such that $i' \geq i, j' = j$ or $i' = i, j' \geq j$. Then, the **Hook Length** n!

Formula says
$$D_{\lambda} = \frac{n!}{\prod_{i,j} h(i,j)}$$
.

Example



$$D_{\lambda}$$
 is $\frac{7!}{6\cdot4\cdot2\cdot1\cdot3\cdot1\cdot1}=35$ in this example.

Definition

The **content** of a partition $c(\lambda)$ is defined as $\sum_{i=1}^k \sum_{j=1}^{\lambda_i} j - i$.

Definition

The **content** of a partition $c(\lambda)$ is defined as $\sum_{i=1}^k \sum_{j=1}^{\lambda_i} j - i$.

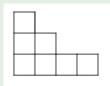
Note: similar to subtracting the sum of y-coordinates from the sum of x-coordinates.

Definition

The **content** of a partition $c(\lambda)$ is defined as $\sum_{i=1}^k \sum_{j=1}^{\lambda_i} j - i$.

Note: similar to subtracting the sum of y-coordinates from the sum of x-coordinates.

Example

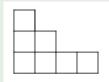


Definition

The **content** of a partition $c(\lambda)$ is defined as $\sum_{i=1}^k \sum_{j=1}^{\lambda_i} j - i$.

Note: similar to subtracting the sum of y-coordinates from the sum of x-coordinates.

Example



The content is 3 in this example.

Using The Formula

Theorem (G)

For all n-element subsets s of \mathbb{F}_q , we have

$$|X_s| = \sum_{\lambda \in Y_n} q^{c(1)+c(\lambda)} D_{\lambda}^2.$$

Using The Formula

Theorem (G)

For all n-element subsets s of \mathbb{F}_q , we have

$$|X_s| = \sum_{\lambda \in Y_n} q^{c(1)+c(\lambda)} D_{\lambda}^2.$$

After some work, we find for n = 4:

Using The Formula

Theorem (G)

For all n-element subsets s of \mathbb{F}_q , we have

$$|X_s| = \sum_{\lambda \in Y_n} q^{c(1)+c(\lambda)} D_{\lambda}^2.$$

After some work, we find for n = 4:

$$q^{12} + 3q^{10} + 2q^6 + 3q^2 + 1$$
.

Acknowledgements

I would like to thank

- Dr. Jonathan Wang, for mentoring me.
- PRIMES USA, for the research opportunity.
- Professor Bezrukavnikov, for suggesting my project.
- Dr. Minh-Tam Trinh, for sharing ideas.
- My parents, for their support.