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The Field Fq

Definition
A field is a set that satisfies certain basic rules:

multiplication

addition

subtraction

division

Example

Some common examples are Q, R, C.
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The Field Fq

Definition (Fq)

Fq is a field with a finite number of elements, q to
be exact.

When q is any prime p, Fq is like working modulo p.
For any other q, it is slightly more complicated.
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The Group GLn(Fq)

Definition
A group is a set equipped with an operation.
Satisfies the group axioms:

closure

associativity

identity

inverse

Example

A common example is Z under addition.
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The Group GLn(Fq)

Definition (GLn(Fq))

GLn(Fq) is the set of n × n invertible matrices whose entries
are in Fq.

Group under matrix multiplication

Main group we will work with
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Eigenvalues

Definition

An eigenvalue for a matrix g ∈ GLn(Fq) is any
scalar λ for which there exists a vector v ∈ Fn

q such
that gv = λv . v is called an eigenvector.

Example

The eigenvalues of

(
3 −1
−1 3

)
are 2 and 4 with

eigenvectors

(
1
1

)
and

(
−1
1

)
, respectively.
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LU Decomposition

Definition
A matrix admits an LU decomposition if it is
equal to:

Lower Triangular Matrix× Upper Triangular Matrix.

Example(
1 0
2 2

)(
2 4
0 3

)
=

(
2 4
4 14

)
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LU Decomposition Cont.

Matrices with LU Decomposition are called LU
Matrices.

Theorem
If the Lower Triangular matrix is restricted to have
1’s, the LU Decomposition is unique.

This is a well known fact.
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Motivating Question

We would like to investigate the number of matrices
with the following properties:

Admits an LU decomposition

The eigenvalues form a set s ⊂ Fq

These eigenvalues are distinct i.e. |s| = n

We call this set of matrices Xs .
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Example

Example

Case n = 2: LU matrices have the form(
1 0
b 1

)(
ac d
0 c−1

)
=

(
ac d
abc bd + c−1

)
.

The eigenvalues are roots of the polynomial
t2 − (ac + c−1 + bd)t + a.
If s = {ae, e−1}, we want roots to be ae and e−1. Casework
gives us q2 + 1 solutions.
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Another Example

Example

For n = 3, the equations are:

d + e + f + ax + by + cz = r + s + t

de + ef + df + czd + axf + bye + acxz − acey − bxz =
rs + st + ts

def = rst

if r , s, t are the eigenvalues. Very difficult.

A computer program seems more appropriate now. That gives
q6 + 4q3 + 1.
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Extrapolation

Let’s see if we can find a pattern with these
expressions:

n = 1 : 1

n = 2 : q2 + 1

n = 3 : q6 + 4q3 + 1

Is there a pattern? Yes, but the formula is quite
complicated.
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The Formula

Theorem (G)

For all n-element subsets s of Fq, we have

|Xs| =
∑
λ∈Yn

qc(1)+c(λ)D2
λ.

We will not talk about the proof because it is rather lengthy
and complex.

Andrew Gu, Mentored by Dr. Jonathan Wang Counting LU Matrices with Fixed Eigenvalues
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Partitions

Definition

A partition of a positive integer n is a way to write it as a
sum of unordered positive integers. We can write a partition λ
as (λ1, λ2, . . . , λk) where λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1.

One common way to represent a partition is using a Young
diagram. Yn is then the set of Young diagrams of size n.

Example

λ is (4, 2, 1) in this example.
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The Hook Length Formula

Definition

For (i , j) the square in row i , column j , we let h(i , j) denote
the number of squares (i ′, j ′) in the Young diagram λ such
that i ′ ≥ i , j ′ = j or i ′ = i , j ′ ≥ j . Then, the Hook Length

Formula says Dλ =
n!∏

i ,j h(i , j)
.

Example

Dλ is 7!
6·4·2·1·3·1·1 = 35 in this example.
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Content

Definition

The content of a partition c(λ) is defined as
k∑

i=1

λi∑
j=1

j − i .

Note: similar to subtracting the sum of y -coordinates from the
sum of x-coordinates.

Example

The content is 3 in this example.
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Using The Formula

Theorem (G)

For all n-element subsets s of Fq, we have

|Xs | =
∑
λ∈Yn

qc(1)+c(λ)D2
λ.

After some work, we find for n = 4:

q12 + 3q10 + 2q6 + 3q2 + 1.
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