Counting LU Matrices with Fixed Eigenvalues

PRIMES conference 2021

Andrew Gu ${ }^{1}$
 Mentored by Dr. Jonathan Wang²

${ }^{1}$ Tesoro High school
${ }^{2}$ Perimeter Institute

October 16-17, 2021
(1) Preliminary Definitions from Linear Algebra

2 Research Problem and Main Results
(3) Partition Definitions

4 Acknowledgements

Preliminary Definitions from Linear Algebra
Research Problem and Main Results
Partition Definitions
Acknowledgements

The Field \mathbb{F}_{q}

Definition

A field is a set that satisfies certain basic rules:

Preliminary Definitions from Linear Algebra
Research Problem and Main Results
Partition Definitions
Acknowledgements

The Field \mathbb{F}_{q}

Definition

A field is a set that satisfies certain basic rules:

- multiplication

The Field \mathbb{F}_{q}^{\prime}

Definition

A field is a set that satisfies certain basic rules:

- multiplication
- addition

The Field \mathbb{F}_{q}

Definition

A field is a set that satisfies certain basic rules:

- multiplication
- addition
- subtraction

The Field \mathbb{F}_{q}^{\prime}

Definition

A field is a set that satisfies certain basic rules:

- multiplication
- addition
- subtraction
- division

The Field \mathbb{F}_{q}

Definition

A field is a set that satisfies certain basic rules:

- multiplication
- addition
- subtraction
- division

Example

Some common examples are $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.

Preliminary Definitions from Linear Algebra
Research Problem and Main Results
Partition Definitions Acknowledgements

The Field \mathbb{F}_{q}

Definition $\left(\mathbb{F}_{q}\right)$

\mathbb{F}_{q} is a field with a finite number of elements, q to be exact.

The Field \mathbb{F}_{q}

Definition $\left(\mathbb{F}_{q}\right)$

\mathbb{F}_{q} is a field with a finite number of elements, q to be exact.

When q is any prime p, \mathbb{F}_{q} is like working modulo p. For any other q, it is slightly more complicated.

Preliminary Definitions from Linear Algebra
Research Problem and Main Results
Partition Definitions
Acknowledgements

The Group $G L_{n}\left(\mathbb{F}_{q}\right)$

Definition

A group is a set equipped with an operation. Satisfies the group axioms:

Preliminary Definitions from Linear Algebra
Research Problem and Main Results
Partition Definitions
Acknowledgements

The Group $G L_{n}\left(\mathbb{F}_{q}\right)$

Definition

A group is a set equipped with an operation. Satisfies the group axioms:

- closure

Preliminary Definitions from Linear Algebra
Research Problem and Main Results
Partition Definitions
Acknowledgements

The Group $G L_{n}\left(\mathbb{F}_{q}\right)$

Definition

A group is a set equipped with an operation. Satisfies the group axioms:

- closure
- associativity

Preliminary Definitions from Linear Algebra
Research Problem and Main Results
Partition Definitions
Acknowledgements

The Group $G L_{n}\left(\mathbb{F}_{q}\right)$

Definition

A group is a set equipped with an operation. Satisfies the group axioms:

- closure
- associativity
- identity

Preliminary Definitions from Linear Algebra
Research Problem and Main Results
Partition Definitions
Acknowledgements

The Group $G L_{n}\left(\mathbb{F}_{q}\right)$

Definition

A group is a set equipped with an operation.
Satisfies the group axioms:

- closure
- associativity
- identity
- inverse

The Group $G L_{n}\left(\mathbb{F}_{q}\right)$

Definition

A group is a set equipped with an operation.
Satisfies the group axioms:

- closure
- associativity
- identity
- inverse

Example

A common example is \mathbb{Z} under addition.

Preliminary Definitions from Linear Algebra
Research Problem and Main Results
Partition Definitions
Acknowledgements

The Group $G L_{n}\left(\mathbb{F}_{q}\right)$

Definition $\left(G L_{n}\left(\mathbb{F}_{q}\right)\right)$

$G L_{n}\left(\mathbb{F}_{q}\right)$ is the set of $n \times n$ invertible matrices whose entries are in \mathbb{F}_{q}.

Preliminary Definitions from Linear Algebra
Research Problem and Main Results
Partition Definitions
Acknowledgements

The Group $G L_{n}\left(\mathbb{F}_{q}\right)$

Definition $\left(G L_{n}\left(\mathbb{F}_{q}\right)\right)$

$G L_{n}\left(\mathbb{F}_{q}\right)$ is the set of $n \times n$ invertible matrices whose entries are in \mathbb{F}_{q}.

- Group under matrix multiplication

Preliminary Definitions from Linear Algebra
Research Problem and Main Results
Partition Definitions
Acknowledgements

The Group $G L_{n}\left(\mathbb{F}_{q}\right)$

Definition $\left(G L_{n}\left(\mathbb{F}_{q}\right)\right)$

$G L_{n}\left(\mathbb{F}_{q}\right)$ is the set of $n \times n$ invertible matrices whose entries are in \mathbb{F}_{q}.

- Group under matrix multiplication
- Main group we will work with

Eigenvalues

Definition

An eigenvalue for a matrix $g \in G L_{n}\left(\mathbb{F}_{q}\right)$ is any scalar λ for which there exists a vector $v \in \mathbb{F}_{q}^{n}$ such that $g v=\lambda v . v$ is called an eigenvector.

Eigenvalues

Definition

An eigenvalue for a matrix $g \in G L_{n}\left(\mathbb{F}_{q}\right)$ is any scalar λ for which there exists a vector $v \in \mathbb{F}_{q}^{n}$ such that $g v=\lambda v . v$ is called an eigenvector.

Example

The eigenvalues of $\left(\begin{array}{cc}3 & -1 \\ -1 & 3\end{array}\right)$ are 2 and 4 with
eigenvectors $\binom{1}{1}$ and $\binom{-1}{1}$, respectively.

LU Decomposition

Definition

A matrix admits an LU decomposition if it is equal to:

Lower Triangular Matrix \times Upper Triangular Matrix.

LU Decomposition

Definition

A matrix admits an LU decomposition if it is equal to:

Lower Triangular Matrix \times Upper Triangular Matrix.

Example

$$
\left(\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 4 \\
0 & 3
\end{array}\right)=\left(\begin{array}{cc}
2 & 4 \\
4 & 14
\end{array}\right)
$$

LU Decomposition Cont.

Matrices with LU Decomposition are called LU Matrices.

LU Decomposition Cont.

Matrices with LU Decomposition are called LU Matrices.

Theorem

If the Lower Triangular matrix is restricted to have 1's, the LU Decomposition is unique.

LU Decomposition Cont.

Matrices with LU Decomposition are called LU Matrices.

Theorem

If the Lower Triangular matrix is restricted to have 1's, the LU Decomposition is unique.

This is a well known fact.

Motivating Question

We would like to investigate the number of matrices with the following properties:

Motivating Question

We would like to investigate the number of matrices with the following properties:

- Admits an LU decomposition

Motivating Question

We would like to investigate the number of matrices with the following properties:

- Admits an LU decomposition
- The eigenvalues form a set $s \subset \mathbb{F}_{q}$

Motivating Question

We would like to investigate the number of matrices with the following properties:

- Admits an LU decomposition
- The eigenvalues form a set $s \subset \mathbb{F}_{q}$
- These eigenvalues are distinct i.e. $|s|=n$

Motivating Question

We would like to investigate the number of matrices with the following properties:

- Admits an LU decomposition
- The eigenvalues form a set $s \subset \mathbb{F}_{q}$
- These eigenvalues are distinct i.e. $|s|=n$

We call this set of matrices X_{s}.

Preliminary Definitions from Linear Algebra

Example

Example

Case $n=2$: $L U$ matrices have the form

$$
\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)\left(\begin{array}{cc}
a c & d \\
0 & c^{-1}
\end{array}\right)=\left(\begin{array}{cc}
a c & d \\
a b c & b d+c^{-1}
\end{array}\right) .
$$

Example

Example

Case $n=2$: $L U$ matrices have the form

$$
\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)\left(\begin{array}{cc}
a c & d \\
0 & c^{-1}
\end{array}\right)=\left(\begin{array}{cc}
a c & d \\
a b c & b d+c^{-1}
\end{array}\right) .
$$

The eigenvalues are roots of the polynomial $t^{2}-\left(a c+c^{-1}+b d\right) t+a$.

Example

Example

Case $n=2$: $L U$ matrices have the form

$$
\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)\left(\begin{array}{cc}
a c & d \\
0 & c^{-1}
\end{array}\right)=\left(\begin{array}{cc}
a c & d \\
a b c & b d+c^{-1}
\end{array}\right) .
$$

The eigenvalues are roots of the polynomial $t^{2}-\left(a c+c^{-1}+b d\right) t+a$.
If $s=\left\{a e, e^{-1}\right\}$, we want roots to be ae and e^{-1}. Casework gives us $q^{2}+1$ solutions.

Another Example

Example

For $n=3$, the equations are:

Another Example

Example

For $n=3$, the equations are:

- $d+e+f+a x+b y+c z=r+s+t$

Another Example

Example

For $n=3$, the equations are:

- $d+e+f+a x+b y+c z=r+s+t$
- $d e+e f+d f+c z d+a x f+$ bye $+a c x z-a c e y-b x z=$ $r s+s t+t s$

Another Example

Example

For $n=3$, the equations are:

- $d+e+f+a x+b y+c z=r+s+t$
- $d e+e f+d f+c z d+a x f+$ bye $+a c x z-a c e y-b x z=$ $r s+s t+t s$
- $\operatorname{def}=r s t$

Another Example

Example

For $n=3$, the equations are:

- $d+e+f+a x+b y+c z=r+s+t$
- $d e+e f+d f+c z d+a x f+$ bye $+a c x z-a c e y-b x z=$ $r s+s t+t s$
- def $=r s t$
if r, s, t are the eigenvalues.

Another Example

Example

For $n=3$, the equations are:

- $d+e+f+a x+b y+c z=r+s+t$
- $d e+e f+d f+c z d+a x f+$ bye $+a c x z-a c e y-b x z=$ $r s+s t+t s$
- def $=r s t$
if r, s, t are the eigenvalues. Very difficult.

Another Example

Example

For $n=3$, the equations are:

- $d+e+f+a x+b y+c z=r+s+t$
- $d e+e f+d f+c z d+a x f+$ bye $+a c x z-a c e y-b x z=$ $r s+s t+t s$
- $\operatorname{def}=r s t$
if r, s, t are the eigenvalues. Very difficult.
A computer program seems more appropriate now. That gives $q^{6}+4 q^{3}+1$.

Extrapolation

Let's see if we can find a pattern with these expressions:

Extrapolation

Let's see if we can find a pattern with these expressions:

- $n=1: 1$

Extrapolation

Let's see if we can find a pattern with these expressions:

- $n=1: 1$
- $n=2: q^{2}+1$

Extrapolation

Let's see if we can find a pattern with these expressions:

- $n=1: 1$
- $n=2: q^{2}+1$
- $n=3: q^{6}+4 q^{3}+1$

Extrapolation

Let's see if we can find a pattern with these expressions:

- $n=1: 1$
- $n=2: q^{2}+1$
- $n=3: q^{6}+4 q^{3}+1$

Is there a pattern?

Extrapolation

Let's see if we can find a pattern with these expressions:

- $n=1: 1$
- $n=2: q^{2}+1$
- $n=3: q^{6}+4 q^{3}+1$

Is there a pattern? Yes, but the formula is quite complicated.

The Formula

Theorem (G)

For all n-element subsets s of \mathbb{F}_{q}, we have

$$
\left|X_{s}\right|=\sum_{\lambda \in Y_{n}} q^{c(1)+c(\lambda)} D_{\lambda}^{2}
$$

The Formula

Theorem (G)

For all n-element subsets s of \mathbb{F}_{q}, we have

$$
\left|X_{s}\right|=\sum_{\lambda \in Y_{n}} q^{c(1)+c(\lambda)} D_{\lambda}^{2}
$$

We will not talk about the proof because it is rather lengthy and complex.

Partitions

Definition

A partition of a positive integer n is a way to write it as a sum of unordered positive integers. We can write a partition λ as $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k} \geq 1$.

Partitions

Definition

A partition of a positive integer n is a way to write it as a sum of unordered positive integers. We can write a partition λ as $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k} \geq 1$.

One common way to represent a partition is using a Young diagram. Y_{n} is then the set of Young diagrams of size n.

Partitions

Definition

A partition of a positive integer n is a way to write it as a sum of unordered positive integers. We can write a partition λ as $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k} \geq 1$.

One common way to represent a partition is using a Young diagram. Y_{n} is then the set of Young diagrams of size n.
Example

Partitions

Definition

A partition of a positive integer n is a way to write it as a sum of unordered positive integers. We can write a partition λ as $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k} \geq 1$.

One common way to represent a partition is using a Young diagram. Y_{n} is then the set of Young diagrams of size n.

Example

λ is $(4,2,1)$ in this example.

The Hook Length Formula

Definition

For (i, j) the square in row i, column j, we let $h(i, j)$ denote the number of squares (i^{\prime}, j^{\prime}) in the Young diagram λ such that $i^{\prime} \geq i, j^{\prime}=j$ or $i^{\prime}=i, j^{\prime} \geq j$. Then, the Hook Length
Formula says $D_{\lambda}=\overline{\prod_{i, j} h(i, j)}$.

The Hook Length Formula

Definition

For (i, j) the square in row i, column j, we let $h(i, j)$ denote the number of squares $\left(i^{\prime}, j^{\prime}\right)$ in the Young diagram λ such that $i^{\prime} \geq i, j^{\prime}=j$ or $i^{\prime}=i, j^{\prime} \geq j$. Then, the Hook Length
Formula says $D_{\lambda}=\frac{n!}{\prod_{i, j} h(i, j)}$.

Example

The Hook Length Formula

Definition

For (i, j) the square in row i, column j, we let $h(i, j)$ denote the number of squares (i^{\prime}, j^{\prime}) in the Young diagram λ such that $i^{\prime} \geq i, j^{\prime}=j$ or $i^{\prime}=i, j^{\prime} \geq j$. Then, the Hook Length $n!$
Formula says $D_{\lambda}=\frac{n!}{\prod_{i, j} h(i, j)}$.

Example

$$
D_{\lambda} \text { is } \frac{7!}{6 \cdot 4 \cdot 4 \cdot 1 \cdot 1 \cdot \cdot 1 \cdot 1 \cdot 1}=35 \text { in this example. }
$$

Content

Definition

The content of a partition $c(\lambda)$ is defined as $\sum_{i=1}^{k} \sum_{j=1}^{\lambda_{i}} j-i$.

Content

Definition

The content of a partition $c(\lambda)$ is defined as $\sum_{i=1}^{k} \sum_{j=1}^{\lambda_{i}} j-i$.
Note: similar to subtracting the sum of y-coordinates from the sum of x-coordinates.

Content

Definition

The content of a partition $c(\lambda)$ is defined as $\sum_{i=1}^{k} \sum_{j=1}^{\lambda_{i}} j-i$.
Note: similar to subtracting the sum of y-coordinates from the sum of x-coordinates.

Example

Content

Definition

The content of a partition $c(\lambda)$ is defined as $\sum_{i=1}^{k} \sum_{j=1}^{\lambda_{i}} j-i$.
Note: similar to subtracting the sum of y-coordinates from the sum of x-coordinates.

Example

The content is 3 in this example.

Using The Formula

Theorem (G)

For all n-element subsets s of \mathbb{F}_{q}, we have

$$
\left|X_{s}\right|=\sum_{\lambda \in Y_{n}} q^{c(1)+c(\lambda)} D_{\lambda}^{2} .
$$

Using The Formula

Theorem (G)
For all n-element subsets s of \mathbb{F}_{q}, we have

$$
\left|X_{s}\right|=\sum_{\lambda \in Y_{n}} q^{c(1)+c(\lambda)} D_{\lambda}^{2} .
$$

After some work, we find for $n=4$:

Using The Formula

Theorem (G)
For all n-element subsets s of \mathbb{F}_{q}, we have

$$
\left|X_{s}\right|=\sum_{\lambda \in Y_{n}} q^{c(1)+c(\lambda)} D_{\lambda}^{2} .
$$

After some work, we find for $n=4$:

$$
q^{12}+3 q^{10}+2 q^{6}+3 q^{2}+1
$$

Acknowledgements

would like to thank

- Dr. Jonathan Wang, for mentoring me.
- PRIMES USA, for the research opportunity.
- Professor Bezrukavnikov, for suggesting my project.
- Dr. Minh-Tam Trinh, for sharing ideas.
- My parents, for their support.

