Representation Stability and Orthogonal Groups

Zifan Wang ${ }^{1}$
Mentor: Arun S. Kannan ${ }^{2}$
${ }^{1}$ Princeton International School of Mathematics and Science
${ }^{2}$ Department of Mathematics, Massachusetts Institute of Technology

October 16, 2021
MIT PRIMES Conference

Group representation

Definition Let G be a group. A representation of G is a vector space V along with a group homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$. Here, $\mathrm{GL}(V)$ is the group of bijective linear maps from V to itself.

Group representation

Definition Let G be a group. A representation of G is a vector space V along with a group homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$. Here, $\mathrm{GL}(V)$ is the group of bijective linear maps from V to itself.

In other words: for each $g \in G, \rho(g): V \rightarrow V$ is a bijective linear map, and for $g_{1}, g_{2} \in G, \rho\left(g_{1} g_{2}\right)=\rho\left(g_{1}\right) \rho\left(g_{2}\right)$. We often just write $g v$ for $\rho(g)(v)$.

Group representation

Definition Let G be a group. A representation of G is a vector space V along with a group homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$. Here, $\mathrm{GL}(V)$ is the group of bijective linear maps from V to itself.

In other words: for each $g \in G, \rho(g): V \rightarrow V$ is a bijective linear map, and for $g_{1}, g_{2} \in G, \rho\left(g_{1} g_{2}\right)=\rho\left(g_{1}\right) \rho\left(g_{2}\right)$. We often just write $g v$ for $\rho(g)(v)$.

Example Let $V=\mathbb{R}^{3}$. Then V is a representation of S_{3} by permuting the coordinates: for a permutation $\sigma \in S_{3}, \sigma\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}\right)$.

Group representation

Definition Let G be a group. A representation of G is a vector space V along with a group homomorphism $\rho: G \rightarrow \mathrm{GL}(V)$. Here, $\mathrm{GL}(V)$ is the group of bijective linear maps from V to itself.

In other words: for each $g \in G, \rho(g): V \rightarrow V$ is a bijective linear map, and for $g_{1}, g_{2} \in G, \rho\left(g_{1} g_{2}\right)=\rho\left(g_{1}\right) \rho\left(g_{2}\right)$. We often just write $g v$ for $\rho(g)(v)$.

Example Let $V=\mathbb{R}^{3}$. Then V is a representation of S_{3} by permuting the coordinates: for a permutation $\sigma \in S_{3}, \sigma\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}\right)$.

Fixing the standard basis on V, we can represent elements of S_{3} as matrices:

$$
\rho(123)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ; \quad \rho(321)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) ; \quad \rho(231)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) .
$$

Subrepresentations

Example, continued Let

$$
\begin{gathered}
W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+x_{2}+x_{3}=0\right\}, \\
U=\{(t, t, t) \mid t \in \mathbb{R}\}
\end{gathered}
$$

be subspaces of V, then $V=U \oplus W$. Furthermore, every $\sigma \in S_{3}$ preserves both components.

Representation theory of symmetric groups

Definition Let V be a representation of G. A subspace $W \subset V$ is a subrepresentation if it satisfies for any $w \in W$ and $g \in G, g w \in W$. If V has no proper nonzero subreps, then it is irreducible.

Representation theory of symmetric groups

Definition Let V be a representation of G. A subspace $W \subset V$ is a subrepresentation if it satisfies for any $w \in W$ and $g \in G, g w \in W$. If V has no proper nonzero subreps, then it is irreducible.

Theorem (Representation theory of S_{n}) Every rep of S_{n} over $\mathbb{Q}($ or $\mathbb{R}, \mathbb{C} \ldots)$ is a direct sum of irreps. Each distinct irrep of S_{n} corresponds naturally to an unordered integer partition of n.

Representation theory of symmetric groups

Definition Let V be a representation of G. A subspace $W \subset V$ is a subrepresentation if it satisfies for any $w \in W$ and $g \in G, g w \in W$. If V has no proper nonzero subreps, then it is irreducible.

Theorem (Representation theory of S_{n}) Every rep of S_{n} over $\mathbb{Q}($ or $\mathbb{R}, \mathbb{C} \ldots)$ is a direct sum of irreps. Each distinct irrep of S_{n} corresponds naturally to an unordered integer partition of n.

Example, continued Let

$$
\begin{gathered}
W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}+x_{2}+x_{3}=0\right\}, \\
U=\{(t, t, t) \mid t \in \mathbb{R}\},
\end{gathered}
$$

then $V=U \oplus W$ as representations. Here, U and W are both irreducible, and they correspond to the partitions $\{3\}$ and $\{2,1\}$ respectively. Because of this, we denote $U=V_{\{3\}}$ and $W=V_{\{2,1\}}$, and $V=V_{\{3\}} \oplus V_{\{2,1\}}$.

Representation stability: Motivating example

Terminology Pure braid groups PB_{n} (picture credit [6])

Representation stability: Motivating example

Terminology Pure braid groups PB_{n}, group cohomology $H^{i}\left(\mathrm{~PB}_{n} ; \mathbb{Q}\right)$

Representation stability: Motivating example

Terminology Pure braid groups PB_{n}, group cohomology $H^{i}\left(\mathrm{~PB}_{n} ; \mathbb{Q}\right)$
The cohomologies $H^{i}\left(\mathrm{~PB}_{n} ; \mathbb{Q}\right)$ are S_{n}-representations.

Representation stability: Motivating example

Terminology Pure braid groups PB_{n}, group cohomology $H^{i}\left(\mathrm{~PB}_{n} ; \mathbb{Q}\right)$
The cohomologies $H^{i}\left(\mathrm{~PB}_{n} ; \mathbb{Q}\right)$ are S_{n}-representations.
Examples

- $H^{1}\left(\mathrm{~PB}_{2} ; \mathbb{Q}\right) \cong V_{\{2\}}$;
- $H^{1}\left(\mathrm{~PB}_{3} ; \mathbb{Q}\right) \cong V_{\{3\}} \oplus V_{\{2,1\}} ;$
- $H^{1}\left(\mathrm{~PB}_{4} ; \mathbb{Q}\right) \cong V_{\{4\}} \oplus V_{\{3,1\}} \oplus V_{\{2,2\}} ;$
- $H^{1}\left(\mathrm{~PB}_{5} ; \mathbb{Q}\right) \cong V_{\{5\}} \oplus V_{\{4,1\}} \oplus V_{\{3,2\}} ;$
- $H^{1}\left(\mathrm{~PB}_{6} ; \mathbb{Q}\right) \cong V_{\{6\}} \oplus V_{\{5,1\}} \oplus V_{\{4,2\}} ;$ etc \ldots

Representation stability: Motivating example

Terminology Pure braid groups PB_{n}, group cohomology $H^{i}\left(\mathrm{~PB}_{n} ; \mathbb{Q}\right)$
The cohomologies $H^{i}\left(\mathrm{~PB}_{n} ; \mathbb{Q}\right)$ are S_{n}-representations.

Examples

- $H^{1}\left(\mathrm{~PB}_{2} ; \mathbb{Q}\right) \cong V_{\{2\}}$;
- $H^{1}\left(\mathrm{~PB}_{3} ; \mathbb{Q}\right) \cong V_{\{3\}} \oplus V_{\{2,1\}} ;$
- $H^{1}\left(\mathrm{~PB}_{4} ; \mathbb{Q}\right) \cong V_{\{4\}} \oplus V_{\{3,1\}} \oplus V_{\{2,2\}} ;$
- $H^{1}\left(\mathrm{~PB}_{5} ; \mathbb{Q}\right) \cong V_{\{5\}} \oplus V_{\{4,1\}} \oplus V_{\{3,2\}} ;$
- $H^{1}\left(\mathrm{~PB}_{6} ; \mathbb{Q}\right) \cong V_{\{6\}} \oplus V_{\{5,1\}} \oplus V_{\{4,2\}} ;$ etc \ldots

Theorem (Church-Farb [1]) For each $i \geq 0$, the sequence of S_{n}-representations $H^{i}\left(\mathrm{~PB}_{n} ; \mathbb{Q}\right)$ is multiplicity stable, stabilizing for $n \geq 4 i$.

Representation stability: General setup

Representation stability: General setup

Fix a sequence of groups with natural inclusions

$$
G_{0} \hookrightarrow G_{1} \hookrightarrow G_{2} \hookrightarrow G_{3} \hookrightarrow \ldots
$$

Examples Symmetric groups S_{n}, braid groups B_{n}, general linear groups GL_{n}, symplectic groups $\mathrm{Sp}_{2 n}$, orthogonal groups O_{n}, \ldots

Representation stability: General setup

Fix a sequence of groups with natural inclusions

$$
G_{0} \hookrightarrow G_{1} \hookrightarrow G_{2} \hookrightarrow G_{3} \hookrightarrow \ldots
$$

Examples Symmetric groups S_{n}, braid groups B_{n}, general linear groups GL_{n}, symplectic groups $\mathrm{Sp}_{2 n}$, orthogonal groups O_{n}, \ldots

Fix a ring K and consider a sequence of K-modules

$$
A_{0} \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow \ldots,
$$

such that G_{n} has a K-linear action on A_{n}, and the maps between A_{n} are compatible with the action of G_{n}. This is a generalization of A_{n} being a G_{n}-rep.

Representation stability: General setup

Fix a sequence of groups with natural inclusions

$$
G_{0} \hookrightarrow G_{1} \hookrightarrow G_{2} \hookrightarrow G_{3} \hookrightarrow \ldots
$$

Examples Symmetric groups S_{n}, braid groups B_{n}, general linear groups GL_{n}, symplectic groups $\mathrm{Sp}_{2 n}$, orthogonal groups O_{n}, \ldots

Fix a ring K and consider a sequence of K-modules

$$
A_{0} \rightarrow A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow \ldots,
$$

such that G_{n} has a K-linear action on A_{n}, and the maps between A_{n} are compatible with the action of G_{n}. This is a generalization of A_{n} being a G_{n}-rep.

We often want to show that the sequence A_{n} stabilizes in some sense.

Orthogonal groups

Definition Let V be a finite-rank free R-module. A bilinear form $B: V \times V \rightarrow R$ is symmetric if $B(v, w)=B(w, v)$. It is nondegenerate if $B(v, w)=0$ for all w implies $v=0$. An orthogonal module is such a pair (V, B) where B is nondegenerate and symmetric.

Orthogonal groups

Definition Let V be a finite-rank free R-module. A bilinear form $B: V \times V \rightarrow R$ is symmetric if $B(v, w)=B(w, v)$. It is nondegenerate if $B(v, w)=0$ for all w implies $v=0$. An orthogonal module is such a pair (V, B) where B is nondegenerate and symmetric.

Definition An R-linear map between orthogonal modules $\varphi:\left(V, B_{V}\right) \rightarrow\left(W, B_{W}\right)$ is an isometry if $B_{V}(v, w)=B_{W}(\varphi(v), \varphi(w))$. It is necessarily injective. The orthogonal group $O_{V, B}$ is the group of isometries from (V, B) to itself.

Orthogonal groups

Definition Let V be a finite-rank free R-module. A bilinear form $B: V \times V \rightarrow R$ is symmetric if $B(v, w)=B(w, v)$. It is nondegenerate if $B(v, w)=0$ for all w implies $v=0$. An orthogonal module is such a pair (V, B) where B is nondegenerate and symmetric.

Definition An R-linear map between orthogonal modules $\varphi:\left(V, B_{V}\right) \rightarrow\left(W, B_{W}\right)$ is an isometry if $B_{V}(v, w)=B_{W}(\varphi(v), \varphi(w))$. It is necessarily injective. The orthogonal group $O_{V, B}$ is the group of isometries from (V, B) to itself.

Theorem Let R be a finite local ring (where 2 is a unit), and let (V, B) be an orthogonal R-module. Then there exists a basis of V such that the matrix of B is either 1) the identity matrix, or 2) the diagonal matrix $\operatorname{diag}(1, \ldots, 1, x)$, where $x \in R$ is such that $\pi(x)$ is a nonsquare in \mathbb{F}^{\times}, and where different choices of x yield isometric forms.

Main result

Theorem (Stability with untwisted and twisted coefficients)
Let M be a finitely generated $\operatorname{Orl}(R)$-module over K. Then for a fixed $k \geq 0$, an isometry $\left(V, B_{V}\right) \rightarrow\left(W, B_{W}\right)$ induces maps

$$
H_{k}\left(O_{V, B_{V}}(R) ; K\right) \rightarrow H_{k}\left(O_{W, B_{W}}(R) ; K\right)
$$

and

$$
H_{k}\left(O_{V, B_{V}}(R) ; M\left(V, B_{V}\right)\right) \rightarrow H_{k}\left(O_{W, B_{W}}(R) ; M\left(W, B_{W}\right)\right)
$$

These are eventually isomorphisms for rank $V \gg 0$.

Acknowledgements

I would like to thank:

- My mentor, Arun Kannan, for providing encouragement and helpful suggestions throughout the year
- My parents, for their love and support
- The PRIMES-USA program, for this great opportunity
- Prof. Steven Sam, for suggesting the project and providing helpful suggestions and references
- Prof. Pavel Etingof, Dr. Slava Gerovitch, and Dr. Tanya Khovanova, for running the PRIMES program
- Everyone listening!

References

(1) Thomas Church and Benson Farb, Representation theory and homological stability, Advances in Mathematics 245 (2013), 250-314.
(2) Jennifer C. H. Wilson, A brief introduction to representation stability, Oberwolfach workshop (2018).
(3) Thomas Church, Jordan S Ellenberg, and Benson Farb, FI-modules and stability for representations of symmetric groups, Duke Mathematical Journal 164 (2015), no. 9, 1833-1910.
(- Andrew Putman and Steven V Sam, Representation stability and finite linear groups, Duke Mathematical Journal 166 (2017), no. 13, 2521-2598.

- Jeremy Miller and Jennifer C. H. Wilson, Quantitative representation stability over linear groups, Preprint. arXiv:1709.03638.
© Picture credit: Ester Dalvit, "Braids. Chapter 1 - The group structure". https://www.youtube.com/watch?v=u3Gt578803I.

