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Group representation

Definition Let G be a group. A representation of G is a vector space V along
with a group homomorphism ρ : G → GL(V ). Here, GL(V ) is the group of
bijective linear maps from V to itself.

In other words: for each g ∈ G , ρ(g) : V → V is a bijective linear map, and for
g1, g2 ∈ G , ρ(g1g2) = ρ(g1)ρ(g2). We often just write gv for ρ(g)(v).

Example Let V = R3. Then V is a representation of S3 by permuting the
coordinates: for a permutation σ ∈ S3, σ(x1, x2, x3) = (xσ(1), xσ(2), xσ(3)).

Fixing the standard basis on V , we can represent elements of S3 as matrices:

ρ(123) =

1 0 0
0 1 0
0 0 1

 ; ρ(321) =

0 0 1
0 1 0
1 0 0

 ; ρ(231) =

0 1 0
0 0 1
1 0 0

 .
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Subrepresentations

Example, continued Let

W = {(x1, x2, x3) ∈ R3 | x1 + x2 + x3 = 0},

U = {(t, t, t) | t ∈ R}

be subspaces of V , then V = U ⊕W . Furthermore, every σ ∈ S3 preserves both
components.
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Representation theory of symmetric groups

Definition Let V be a representation of G . A subspace W ⊂ V is a
subrepresentation if it satisfies for any w ∈W and g ∈ G , gw ∈W . If V has no
proper nonzero subreps, then it is irreducible.

Theorem (Representation theory of Sn) Every rep of Sn over Q (or R,C . . . ) is a
direct sum of irreps. Each distinct irrep of Sn corresponds naturally to an
unordered integer partition of n.

Example, continued Let

W = {(x1, x2, x3) ∈ R3 | x1 + x2 + x3 = 0},

U = {(t, t, t) | t ∈ R},

then V = U ⊕W as representations. Here, U and W are both irreducible, and
they correspond to the partitions {3} and {2, 1} respectively. Because of this, we
denote U = V{3} and W = V{2,1}, and V = V{3} ⊕ V{2,1}.
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Representation stability: Motivating example

Terminology Pure braid groups PBn (picture credit [6])
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Representation stability: Motivating example

Terminology Pure braid groups PBn, group cohomology H i (PBn;Q)

The cohomologies H i (PBn;Q) are Sn-representations.

Examples

H1(PB2;Q) ∼= V{2};

H1(PB3;Q) ∼= V{3} ⊕ V{2,1};

H1(PB4;Q) ∼= V{4} ⊕ V{3,1} ⊕ V{2,2};

H1(PB5;Q) ∼= V{5} ⊕ V{4,1} ⊕ V{3,2};

H1(PB6;Q) ∼= V{6} ⊕ V{5,1} ⊕ V{4,2}; etc . . .

Theorem (Church–Farb [1]) For each i ≥ 0, the sequence of Sn–representations
H i (PBn;Q) is multiplicity stable, stabilizing for n ≥ 4i .
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Representation stability: General setup

Fix a sequence of groups with natural inclusions

G0 ↪→ G1 ↪→ G2 ↪→ G3 ↪→ . . .

Examples Symmetric groups Sn, braid groups Bn, general linear groups GLn,
symplectic groups Sp2n, orthogonal groups On, . . .

Fix a ring K and consider a sequence of K -modules

A0 → A1 → A2 → A3 → . . . ,

such that Gn has a K -linear action on An, and the maps between An are
compatible with the action of Gn. This is a generalization of An being a Gn-rep.

We often want to show that the sequence An stabilizes in some sense.
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Orthogonal groups

Definition Let V be a finite-rank free R-module. A bilinear form B : V × V → R
is symmetric if B(v ,w) = B(w , v). It is nondegenerate if B(v ,w) = 0 for all w
implies v = 0. An orthogonal module is such a pair (V ,B) where B is
nondegenerate and symmetric.

Definition An R-linear map between orthogonal modules ϕ : (V ,BV )→ (W ,BW )
is an isometry if BV (v ,w) = BW (ϕ(v), ϕ(w)). It is necessarily injective. The
orthogonal group OV ,B is the group of isometries from (V ,B) to itself.

Theorem Let R be a finite local ring (where 2 is a unit), and let (V ,B) be an
orthogonal R-module. Then there exists a basis of V such that the matrix of B is
either 1) the identity matrix, or 2) the diagonal matrix diag(1, . . . , 1, x), where
x ∈ R is such that π(x) is a nonsquare in F×, and where different choices of x
yield isometric forms.
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Main result

Theorem (Stability with untwisted and twisted coefficients)
Let M be a finitely generated OrI(R)-module over K . Then for a fixed k ≥ 0, an
isometry (V ,BV )→ (W ,BW ) induces maps

Hk(OV ,BV
(R);K )→ Hk(OW ,BW

(R);K )

and
Hk(OV ,BV

(R);M(V ,BV ))→ Hk(OW ,BW
(R);M(W ,BW )).

These are eventually isomorphisms for rankV � 0.
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