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Manifolds

Definition
An n-dimensional manifold, or n-manifold, is a space such that each point has
a small region around it that looks like Rn.

Some 1-manifolds:

R1. A line. Any region
around a point on a line
looks like a line.

looks like R1

S1. The 1-dimensional circle. A small
ant sitting on a circle looks around and
sees a line.
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Manifolds

Definition
An n-dimensional manifold, or n-manifold, is a space such that each point has
a small region around it that looks like Rn.

Some 2-manifolds:

S2. The 2-dimensional surface
of a sphere. A human standing
on the Earth looks around and
sees a plane.

T 2 = S1 × S1. The 2-
dimensional surface of a torus.
An ant sitting on a torus looks
around and sees a plane.
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Non-Manifolds

These spaces are not manifolds:

The figure-eight is not a mani-
fold, since an ant sitting at its
center looks around and sees a
cross, not R1.

Two intersecting planes do not
form a manifold, since an ant
sitting on the line of intersec-
tion looks around and sees two
intersecting planes, not R2.
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Manifolds with Boundary

Definition
A manifold–with–boundary is an extension of the notion of a manifold with a
section called a boundary, where each point in the boundary has a small region
around it that looks like the half-space Rn−1 × R≥0. The boundary is a
manifold (without boundary) of one lower dimension.

Here are some examples:

The filled-in discD2 has
boundary S1.

The filled-in ball B3 has
boundary S2.

The filled-in torus D2×
S1 has boundary S1 ×
S1.
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Classifying Boundaries

Here’s a natural question:

Classifying boundaries

Which n-dimensional manifolds (without boundary) are the boundary of some
(n+ 1)-dimensional manifold–with–boundary?

It isn’t obvious that this question is interesting at all. In fact, if you think
about various 2-manifolds (a sphere, torus, or g-holed torus), they all appear
to bound some 3-manifold. Does any n-manifold not bound an
(n+ 1)-manifold?

Turns out, for n = 1, 2, the answer is
indeed all manifolds.

Very nontrivial fact: this holds true for
n = 3 as well.

n = 4 is when we get our first example of
an n-dimensional manifold that isn’t the
boundary of some (n+ 1)-dimensional
manifold, e.g. CP 2.
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Cobordisms

There’s a way to reframe this question in a more generalized sense using the
notion of cobordisms.

Definition

Two manifolds M and N (of the same dimension) are cobordant if their
disjoint union is the boundary of some manifold W (of one higher dimension).

This concept is best illustrated through some examples.
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Examples of Cobordism

Definition

Two manifolds M and N (of the same dimension) are cobordant if their
disjoint union is the boundary of some manifold W (of one higher dimension).

a b

The closed interval [a, b] dis-
plays a cobordism between the
0-dimensional manifolds {a}
and {b}.

Let M = S1 and N = S1 t S1.
Then, the “pair of pants” man-
ifold displays a cobordism be-
tween the M and N .
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Cobordism

Cobordisms are hard to visualize and draw. In general, a cobordism looks
something like the below, with two manifolds M and N connected by some
manifold W . It is extremely hard to visualize what is going on in higher
dimensions, so the figure is more of a schematic.

The study of cobordisms has been of intense interest the last few decades.
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Cobordisms and the Boundary Classification Problem

If M bounds some manifold Y and M and N are cobordant through W , then
N also bounds a manifold, specficially Y ∪W .

Bringing back the pair of pants analogy:

Note that the top circle S1 bounds a disc D2. Since the S1 on top is
cobordant to the S1 t S1 on the bottom through the pair of pants, S1 t S1

also bounds a 2-dimensional manifold, specifically the pair of pants with the
top capped off with a disc.
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Cobordism Classes of 3-manifolds

Note that cobordism is an equivalence relation (in particular, if X and Y are
cobordant and Y and Z are cobordant, then we can see X and Z are
cobordant). Therefore, it makes sense to talk about the cobordism class of a
manifold X (it’s simply the set of all manifolds cobordant to X).

The problem of classifying manifolds up to cobordism (i.e. determining all
cobordism classes) is well studied for all dimensions.

Cobordism classes of 3-manifolds

In 3-dimensions, all manifolds are cobordant to S3 (the three dimensional
sphere, i.e. the boundary of the four dimensional ball). Therefore, all
3-manifolds bound some 4-manifold.

Because of this, we will actually study a slight specialization of cobordism
called homology cobordism between 3-manifolds, which we will define later. In
this case, there are infinitely many homology cobordism classes of 3-manifolds,
and the classification problem is far from solved.
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3-Dimensional Manifolds

We study the homology cobordisms between 3-dimensional manifolds, or
3-manifolds.

The only examples we have seen so far are the solid sphere and solid torus,
but what are some examples of 3-manifolds without boundary (which you
usually have to think of as embedded in 4-dimensions)?

Example (3-Sphere)

As we saw earlier, x2 + y2 + z2 = 1 in 3-dimensional space is S2, the surface of
a sphere. Generalizing, w2 + x2 + y2 + z2 = 1 in 4-dimensional hyperspace is
S3, the 3-dimensional sphere.

Note that you can think of the circle S1 as a segment except you grab the
two ends and fuse them together.
Similarly, you can think of the sphere S2 as a square except you grab all
the points at the perimeter of the square and fuse them together into the
same point.
You can also think of S3 as a cube except you grab all the points on the
faces and fuse them together into a single point. Therefore, S3 is roughly
R3, just the outside points are wrapped around and fused together.
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3-Dimensional Manifolds

Here’s another example of a 3-manifold, the 3-torus T 3 = S1 × S1 × S1. It’s
the 3-dimensional analog of a torus.

A torus T 2 = S1×S1 can be created
by folding the opposite edges of a
square into each other.

If you live in this space, you’re basi-
cally living in the square, except ev-
ery time you pass through an edge
of the square, you appear on the op-
posite edge.

We can generalize this by imagin-
ing folding all three pairs of oppo-
site faces of a cube into each other.

If you live in this space, you’re ba-
sically living in a cube, except ev-
ery time you pass through a face of
the cube, you appear on the oppo-
site face.
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Surgery

These are some toy examples of 3-manifolds. Are there more? Are they
interesting? How can we construct them?

Most 3-manifolds are practically impossible to visualize, but a process called
surgery can allow us to construct more of them.

Definition
1 Given some 3-manifold M with some link L (collection of knots) inside it,

thicken the link to a group of tori and rip them out.

2 Glue the tori back in in some way (not necessarily the same way you
ripped them out). The number of ways you can glue a single torus back
can be parameterized using a rational number p/q.

3 The resulting manifold is obtained from M via surgery along L.
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Surgery

Surgery is a very weird process that is practically impossible to visualize, but
it is important since basically all 3-manifolds can be obtained via this process:

Theorem (Lickorish and Wallace)

Every closed orientable 3-manifold M can be obtained by surgery along some
link in S3.

To represent the process in a better way, we can use surgery diagrams: we
draw the link in S3 (which is basically R3), and then label each with a number
representing how we twist each solid torus (from thickening each knot in the
link) when we glue it back in.
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Seifert Homology Spheres

We are interested in Seifert homology spheres, a special class of 3-manifolds
who have a specific surgery diagram:

Definition
Seifert homology spheres are 3-manifolds with some special surgery diagram
that can be parameterized by pairwise coprime integers a1, a2, . . . , an ≥ 2 for
n ≥ 3. We notate them as Σ(a1, a2, . . . , an).
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Homology

Before, we noted that the problem of cobordisms between 3-manifolds is not
very interesting, as they are all cobordant to each other. Therefore, we instead
study a variant of cobordism called homology cobordism, which is much more
interesting. To introduce this notion, we must first define homology.

Definition

The homology group Hi(X) of a manifold X roughly counts the number of
nontrivial i-dimensional holes in a manifold X.

Definition
We say that a 3-manifold X is an homology 3-sphere if X has the same
homology groups Hi as S3 for all i ≥ 0.

Definition
We say that a 4-manifold X is an homology 4-cylinder if X has the same
homology groups Hi as S3 × [0, 1] for all i ≥ 0.
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Homology Cobordism

Now, we are interested in this specialization of cobordism:

Definition
Two homology spheres M and N are homology cobordant if there exists some
homology cylinder W such that the disjoint union of M and N bounds W .
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Homology Cobordism Invariants

Visualizing examples of homology spheres and homology cobordisms is very
hard, so we turn to invariants to help us understand them.

The d-invariant, which assigns an even integer to each homology sphere.
It is a homology cobordism invariant, which means if two homology
spheres are homology cobordant, then they share the same d-invariant.

The lattice homology is an invariant which assigns a graded root to
each homology sphere. A graded root is a symmetric rooted tree with an
infinite stem of nodes pointing upwards. It is not a homology cobordism
invariant.

The maximal monotone subroot is a graded root derived from the
lattice homology. Like the d-invariant, it is also a homology cobordism
invariant.

... ...
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Our Results

These invariants repeat when it comes to Seifert homology spheres!

Theorem
Let a1, a2, . . . , an ≥ 2 be pairwise coprime integers, and let α = a1a2 · · · an−1.
Then,

d(Σ(a1, a2, . . . , an)) = d(Σ(a1, a2, . . . , an−1, an + α)).

Theorem
Let a1, a2, . . . , an ≥ 2 be pairwise coprime integers, and let α = a1a2 · · · an−1.
Then, the maximal monotone subroots of the lattice homologies of
Σ(a1, a2, . . . , an) and Σ(a1, a2, . . . , an−1, an + 2α) are the same.

Remark
In general, the maximal monotone subroots of the lattice homologies of
Σ(a1, a2, . . . , an) and Σ(a1, a2, . . . , an−1, an + α) are not the same.
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