Bounds on Symmetric Numerical Semigroups

Ilaria Seidel

Mentored by Jeffery Yu

MIT PRIMES Conference

October 16th, 2021

A Familiar Problem

Problem

What is the largest number of cents you cannot obtain using only X cent and Y cent coins?

A Familiar Problem

Problem

What is the largest number of cents you cannot obtain using only X cent and Y cent coins?

Solution

The largest amount that you cannot obtain is $X \cdot Y - X - Y$.

A Familiar Problem

Problem

What is the largest number of cents you cannot obtain using only X cent and Y cent coins?

Solution

The largest amount that you cannot obtain is $X \cdot Y - X - Y$.

Example

Given only coins worth 3 and 4 cents, the largest value that we cannot obtain is $3 \cdot 4 - 3 - 4 = 5$.

Question

What if we have more than two different types of coins?

Question

What if we have more than two different types of coins?

Suppose have coins worth $a_1, a_2, a_3, \ldots, a_n$ cents.

Question

What if we have more than two different types of coins?

Suppose have coins worth $a_1, a_2, a_3, \ldots, a_n$ cents.

• No a_i can be obtained from several smaller coins.

Question

What if we have more than two different types of coins?

Suppose have coins worth $a_1, a_2, a_3, \ldots, a_n$ cents.

- No a_i can be obtained from several smaller coins.
- There are only finitely many of prices which cannot be paid using these coins.

Question

What if we have more than two different types of coins?

Suppose have coins worth $a_1, a_2, a_3, \ldots, a_n$ cents.

- No a_i can be obtained from several smaller coins.
- There are only finitely many of prices which cannot be paid using these coins.

Question

What if we have more than two different types of coins?

Suppose have coins worth $a_1, a_2, a_3, \ldots, a_n$ cents.

- No a_i can be obtained from several smaller coins.
- There are only finitely many of prices which cannot be paid using these coins.

Denote by $\langle a_1, a_2, a_3, \ldots, a_n \rangle$ the set of all prices you can pay with these coins.

Question

What if we have more than two different types of coins?

Suppose have coins worth $a_1, a_2, a_3, \ldots, a_n$ cents.

- No a_i can be obtained from several smaller coins.
- There are only finitely many of prices which cannot be paid using these coins.

Denote by $\langle a_1, a_2, a_3, \ldots, a_n \rangle$ the set of all prices you can pay with these coins.

Example

We denote by (3, 4) the set $\{3a + 4b \mid a, b \in \mathbb{N}_0\} = \{0, 3, 4, 6, 7, 8, 9, 10, \ldots\}.$

Question

What if we have more than two different types of coins?

Suppose have coins worth $a_1, a_2, a_3, \ldots, a_n$ cents.

- No a_i can be obtained from several smaller coins.
- There are only finitely many of prices which cannot be paid using these coins.

Denote by $\langle a_1, a_2, a_3, \ldots, a_n \rangle$ the set of all prices you can pay with these coins.

Example

We denote by $\langle 3, 4 \rangle$ the set $\{3a + 4b \mid a, b \in \mathbb{N}_0\} = \{0, 3, 4, 6, 7, 8, 9, 10, \ldots\}.$

Example

The set $\langle 3, 5, 7 \rangle = \{ 3a + 5b + 7c \mid a, b, c \in \mathbb{N}_0 \} = \{ 0, 3, 5, 7, 8, 9, 10, \ldots \}.$

Numerical Semigroups

We call $\langle a_1, \ldots, a_n \rangle$ the numerical semigroup generated by a_1, \ldots, a_n .

Numerical Semigroups

We call $\langle a_1, \ldots, a_n \rangle$ the numerical semigroup generated by a_1, \ldots, a_n .

Definition

Let $\Gamma \subset \mathbb{N}_0$. We call Γ a **numerical semigroup** if

- Γ is closed under +,
- $0 \in \Gamma$,
- $\mathbb{N}_0 \setminus \Gamma$ is finite.

Numerical Semigroups

We call $\langle a_1, \ldots, a_n \rangle$ the numerical semigroup generated by a_1, \ldots, a_n .

Definition

Let $\Gamma \subset \mathbb{N}_0$. We call Γ a **numerical semigroup** if

- Γ is closed under +,
- $0 \in \Gamma$,
- $\mathbb{N}_0 \setminus \Gamma$ is finite.

Definition

The smallest set $\{a_1, a_2, \ldots, a_n\}$ s.t. $\Gamma = \{a_1x_1 + \cdots + a_nx_n \mid x_i \in \mathbb{N}_0\}$ consists of the **minimal generators** of Γ .

Definition

The **Frobenius number** of a numerical semigroup $\Gamma = \langle a_1, a_2, a_3, \dots, a_n \rangle$ is max $(\mathbb{N}_0 \setminus \Gamma)$.

Definition

The **Frobenius number** of a numerical semigroup $\Gamma = \langle a_1, a_2, a_3, \dots, a_n \rangle$ is max $(\mathbb{N}_0 \setminus \Gamma)$.

Definition

The elements of $\mathbb{N}_0 \setminus \Gamma$ are called the **gaps** of Γ .

Definition

The **Frobenius number** of a numerical semigroup $\Gamma = \langle a_1, a_2, a_3, \dots, a_n \rangle$ is max $(\mathbb{N}_0 \setminus \Gamma)$.

Definition

The elements of $\mathbb{N}_0 \setminus \Gamma$ are called the **gaps** of Γ .

Example

The numerical semigroup $\langle 3, 4 \rangle = \{0, 3, 4, 6, 7, 8, 9, 10, \ldots\}$ has gaps 1, 2, 5 and Frobenius number 5.

Definition

The **Frobenius number** of a numerical semigroup $\Gamma = \langle a_1, a_2, a_3, \dots, a_n \rangle$ is max $(\mathbb{N}_0 \setminus \Gamma)$.

Definition

The elements of $\mathbb{N}_0 \setminus \Gamma$ are called the **gaps** of Γ .

Example

The numerical semigroup $\langle 3, 4 \rangle = \{0, 3, 4, 6, 7, 8, 9, 10, \ldots\}$ has gaps 1, 2, 5 and Frobenius number 5.

Example

The numerical semigroup $\langle 3, 5, 7 \rangle = \{0, 3, 5, 7, 8, 9, 10, \ldots\}$ has gaps 1, 2, 4 and Frobenius number 4.

Constructing a tree

Questions:

• How many numerical semigroups have exactly g gaps?

Constructing a tree

Questions:

- How many numerical semigroups have exactly g gaps?
- How fast does the number of numerical semigroups with g gaps grow?

Constructing a tree

Questions:

- How many numerical semigroups have exactly g gaps?
- How fast does the number of numerical semigroups with g gaps grow?

Theorem (Bras-Amoros, Zhai, 2011)

Let n_g be the number of numerical semigroups with g gaps. Then

Theorem (Bras-Amoros, Zhai, 2011)

Let n_g be the number of numerical semigroups with g gaps. Then 1. $\lim_{g\to\infty} \frac{n_{g-1}+n_{g-2}}{n_g} = 1$,

Theorem (Bras-Amoros, Zhai, 2011)

Let n_g be the number of numerical semigroups with g gaps. Then

- 1. $\lim_{g \to \infty} \frac{n_{g-1} + n_{g-2}}{n_g} = 1$,
- 2. $\lim_{g\to\infty} \frac{n_g}{n_{g-1}} = \phi$, the golden ratio.

Theorem (Bras-Amoros, Zhai, 2011)

Let n_g be the number of numerical semigroups with g gaps. Then

1. $\lim_{g \to \infty} \frac{n_{g-1} + n_{g-2}}{n_g} = 1$, 2. $\lim_{g \to \infty} \frac{n_g}{n_{g-1}} = \phi$, the golden ratio.

Theorem (Bras-Amoros, Zhai, 2011)

Let n_g be the number of numerical semigroups with g gaps. Then

- 1. $\lim_{g \to \infty} \frac{n_{g-1} + n_{g-2}}{n_g} = 1,$
- 2. $\lim_{g\to\infty} \frac{n_g}{n_{g-1}} = \phi$, the golden ratio.

Conjecture (Bras-Amoros, 2008)

1.
$$n_g \ge n_{g-1} + n_{g-2}$$
 for $g \ge 2$,

Theorem (Bras-Amoros, Zhai, 2011)

Let n_g be the number of numerical semigroups with g gaps. Then

- 1. $\lim_{g \to \infty} \frac{n_{g-1} + n_{g-2}}{n_g} = 1,$
- 2. $\lim_{g\to\infty} \frac{n_g}{n_{g-1}} = \phi$, the golden ratio.

Conjecture (Bras-Amoros, 2008)

1.
$$n_g \ge n_{g-1} + n_{g-2}$$
 for $g \ge 2$,
2. $n_g \ge n_{g-1}$.

Definition

Suppose the semigroup Γ has Frobenius number F. Then Γ is **symmetric** if it contains exactly $\frac{F+1}{2}$ elements less than F + 1.

Definition

Suppose the semigroup Γ has Frobenius number F. Then Γ is **symmetric** if it contains exactly $\frac{F+1}{2}$ elements less than F + 1.

Example

Consider the semigroup $\langle 3, 4 \rangle$.

- Frobenius number 5
- Contains 0, 3, and 4, but not 1, 2, or 5
- Thus, it's symmetric!

Definition

Suppose the semigroup Γ has Frobenius number F. Then Γ is **symmetric** if it contains exactly $\frac{F+1}{2}$ elements less than F + 1.

Example

Consider the semigroup $\langle 3, 4 \rangle$.

- Frobenius number 5
- Contains 0, 3, and 4, but not 1, 2, or 5
- Thus, it's symmetric!

Motivation

• Any semigroup contains at most one of (k, F - k). Thus, a symmetric semigroup contains the **maximum** number of elements below its Frobenius number.

How does the number of symmetric semigroups grow as the number of gaps g grows?

How does the number of symmetric semigroups grow as the number of gaps g grows?

- Let N(g) be the number of symmetric semigroups with g gaps.
- Examine the ratio $\frac{N(g+1)}{N(g)}$.

How does the number of symmetric semigroups grow as the number of gaps g grows?

- Let N(g) be the number of symmetric semigroups with g gaps.
- Examine the ratio $\frac{N(g+1)}{N(g)}$.

Conjecture

What happens if we try to generalize this conjecture?

Definition

Define N(g, F) to be the number of numerical semigroups with g gaps and Frobenius number F.

What happens if we try to generalize this conjecture?

Definition

Define N(g, F) to be the number of numerical semigroups with g gaps and Frobenius number F.

- The number of symmetric semigroups with g gaps is N(g, 2g-1).
- Generalization: N(g, 2g k) for $1 \le k \le g$.

What happens if we try to generalize this conjecture?

Definition

Define N(g, F) to be the number of numerical semigroups with g gaps and Frobenius number F.

- The number of symmetric semigroups with g gaps is N(g, 2g-1).
- Generalization: N(g, 2g k) for $1 \le k \le g$.

Generalized Conjecture

Generalized Conjecture

Generalized Conjecture

Acknowledgements

I would like to thank

- Jeffery Yu
- Dr. Minh-Tam Trinh
- MIT PRIMES

Bibliography

Maria Bras-Amoros.

Bounds on the number of numerical semigroups of a given genus, 2008.

Maria Bras-Amoros and Stanislav Bulygin.

Towards a better understanding of the semigroup tree, 2008.

Maria Bras-Amorós.

Fibonacci-like behavior of the number of numerical semigroups of a given genus.

Semigroup Forum, 76(2):379–384, Oct 2007.

Nathan Kaplan.

Counting numerical semigroups, 2017.

Alex Zhai.

Fibonacci-like growth of numerical semigroups of a given genus, 2011.