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A Familiar Problem

Problem

What is the largest number of cents you cannot obtain using only X
cent and Y cent coins?

Solution

The largest amount that you cannot obtain is X · Y −X − Y .

Example

Given only coins worth 3 and 4 cents, the largest value that we
cannot obtain is 3 · 4− 3− 4 = 5 .
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A Generalization

Question

What if we have more than two different types of coins?

Suppose have coins worth a1, a2, a3, . . . , an cents.

• No ai can be obtained from several smaller coins.

• There are only finitely many of prices which cannot be paid using
these coins.

Denote by 〈a1, a2, a3, . . . , an〉 the set of all prices you can pay with
these coins.

Example

We denote by 〈3, 4〉 the set
{3a+ 4b | a, b ∈ N0} = {0, 3, 4, 6, 7, 8, 9, 10, . . .}.

Example

The set 〈3, 5, 7〉 = {3a+ 5b+ 7c | a, b, c ∈ N0} = {0, 3, 5, 7, 8, 9, 10, . . .}.
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Numerical Semigroups

We call 〈a1, . . . , an〉 the numerical semigroup generated by a1, . . . , an.

Definition

Let Γ ⊂ N0. We call Γ a numerical semigroup if

• Γ is closed under +,

• 0 ∈ Γ,

• N0 \ Γ is finite.

Definition

The smallest set {a1, a2, . . . , an} s.t. Γ = {a1x1 + · · ·+anxn | xi ∈ N0}
consists of the minimal generators of Γ.
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More definitions

Definition

The Frobenius number of a numerical semigroup
Γ = 〈a1, a2, a3, . . . , an〉 is max (N0 \ Γ).

Definition

The elements of N0 \ Γ are called the gaps of Γ.

Example

The numerical semigroup 〈3, 4〉 = {0, 3, 4, 6, 7, 8, 9, 10, . . .} has gaps
1, 2, 5 and Frobenius number 5.

Example

The numerical semigroup 〈3, 5, 7〉 = {0, 3, 5, 7, 8, 9, 10, . . .} has gaps
1, 2, 4 and Frobenius number 4.
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Constructing a tree

Questions:

• How many numerical semigroups have exactly g gaps?

• How fast does the number of numerical semigroups with g gaps
grow?

〈1〉

〈2, 3〉

〈3, 4, 5〉 〈2, 5〉

〈3, 5, 7〉〈4, 5, 6, 7〉 〈3, 4〉 〈2, 7〉

〈5, 6, 7, 8, 9〉 〈4, 6, 7, 9〉 〈4, 5, 7〉 〈4, 5, 6〉 〈3, 7, 8〉 〈3, 5〉 〈2, 9〉
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Known Results

Theorem (Bras-Amoros, Zhai, 2011)

Let ng be the number of numerical semigroups with g gaps. Then

1. limg→∞
ng−1+ng−2

ng
= 1,

2. limg→∞
ng

ng−1
= φ, the golden ratio.

Conjecture (Bras-Amoros, 2008)

1. ng ≥ ng−1 + ng−2 for g ≥ 2,

2. ng ≥ ng−1.
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Symmetric Numerical Semigroups

Definition

Suppose the semigroup Γ has Frobenius number F . Then Γ is
symmetric if it contains exactly F+1

2 elements less than F + 1.

Example

Consider the semigroup 〈3, 4〉.
• Frobenius number 5

• Contains 0, 3, and 4, but not 1, 2, or 5

• Thus, it’s symmetric!

Motivation

• Any semigroup contains at most one of (k, F − k). Thus, a
symmetric semigroup contains the maximum number of
elements below its Frobenius number.
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Symmetric Numerical Semigroups
How does the number of symmetric semigroups grow as the number of
gaps g grows?

• Let N(g) be the number of symmetric semigroups with g gaps.

• Examine the ratio N(g+1)
N(g) .

Conjecture
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Generalizing the Conjecture
What happens if we try to generalize this conjecture?

Definition

Define N(g, F ) to be the number of numerical semigroups with g gaps
and Frobenius number F .

• The number of symmetric semigroups with g gaps is N(g, 2g− 1).
• Generalization: N(g, 2g − k) for 1 ≤ k ≤ g.

Generalized Conjecture
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