Bounds on Symmetric Numerical Semigroups

Ilaria Seidel
Mentored by Jeffery Yu
MIT PRIMES Conference

October 16th, 2021

A Familiar Problem

Problem

What is the largest number of cents you cannot obtain using only X cent and Y cent coins?

A Familiar Problem

Problem

What is the largest number of cents you cannot obtain using only X cent and Y cent coins?

Solution

The largest amount that you cannot obtain is $X \cdot Y-X-Y$.

A Familiar Problem

Problem

What is the largest number of cents you cannot obtain using only X cent and Y cent coins?

Solution

The largest amount that you cannot obtain is $X \cdot Y-X-Y$.

Example

Given only coins worth 3 and 4 cents, the largest value that we cannot obtain is $3 \cdot 4-3-4=5$.

A Generalization

Question

What if we have more than two different types of coins?

A Generalization

Question

What if we have more than two different types of coins?
Suppose have coins worth $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ cents.

A Generalization

Question

What if we have more than two different types of coins?
Suppose have coins worth $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ cents.

- No a_{i} can be obtained from several smaller coins.

A Generalization

Question

What if we have more than two different types of coins?
Suppose have coins worth $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ cents.

- No a_{i} can be obtained from several smaller coins.
- There are only finitely many of prices which cannot be paid using these coins.

A Generalization

Question

What if we have more than two different types of coins?
Suppose have coins worth $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ cents.

- No a_{i} can be obtained from several smaller coins.
- There are only finitely many of prices which cannot be paid using these coins.

A Generalization

Question

What if we have more than two different types of coins?
Suppose have coins worth $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ cents.

- No a_{i} can be obtained from several smaller coins.
- There are only finitely many of prices which cannot be paid using these coins.
Denote by $\left\langle a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\rangle$ the set of all prices you can pay with these coins.

A Generalization

Question

What if we have more than two different types of coins?
Suppose have coins worth $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ cents.

- No a_{i} can be obtained from several smaller coins.
- There are only finitely many of prices which cannot be paid using these coins.
Denote by $\left\langle a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\rangle$ the set of all prices you can pay with these coins.

Example

We denote by $\langle 3,4\rangle$ the set $\left\{3 a+4 b \mid a, b \in \mathbb{N}_{0}\right\}=\{0,3,4,6,7,8,9,10, \ldots\}$.

A Generalization

Question

What if we have more than two different types of coins?
Suppose have coins worth $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ cents.

- No a_{i} can be obtained from several smaller coins.
- There are only finitely many of prices which cannot be paid using these coins.
Denote by $\left\langle a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\rangle$ the set of all prices you can pay with these coins.

Example

We denote by $\langle 3,4\rangle$ the set $\left\{3 a+4 b \mid a, b \in \mathbb{N}_{0}\right\}=\{0,3,4,6,7,8,9,10, \ldots\}$.

Example

The set $\langle 3,5,7\rangle=\left\{3 a+5 b+7 c \mid a, b, c \in \mathbb{N}_{0}\right\}=\{0,3,5,7,8,9,10, \ldots\}$.

Numerical Semigroups

We call $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ the numerical semigroup generated by a_{1}, \ldots, a_{n}.

Numerical Semigroups

We call $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ the numerical semigroup generated by a_{1}, \ldots, a_{n}.

Definition

Let $\Gamma \subset \mathbb{N}_{0}$. We call Γ a numerical semigroup if

- Γ is closed under + ,
- $0 \in \Gamma$,
- $\mathbb{N}_{0} \backslash \Gamma$ is finite.

Numerical Semigroups

We call $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ the numerical semigroup generated by a_{1}, \ldots, a_{n}.

Definition

Let $\Gamma \subset \mathbb{N}_{0}$. We call Γ a numerical semigroup if

- Γ is closed under + ,
- $0 \in \Gamma$,
- $\mathbb{N}_{0} \backslash \Gamma$ is finite.

Definition

The smallest set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ s.t. $\Gamma=\left\{a_{1} x_{1}+\cdots+a_{n} x_{n} \mid x_{i} \in \mathbb{N}_{0}\right\}$ consists of the minimal generators of Γ.

More definitions

Definition
The Frobenius number of a numerical semigroup
$\Gamma=\left\langle a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\rangle$ is $\max \left(\mathbb{N}_{0} \backslash \Gamma\right)$.

More definitions

Definition
The Frobenius number of a numerical semigroup
$\Gamma=\left\langle a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\rangle$ is $\max \left(\mathbb{N}_{0} \backslash \Gamma\right)$.

Definition

The elements of $\mathbb{N}_{0} \backslash \Gamma$ are called the gaps of Γ.

More definitions

Definition

The Frobenius number of a numerical semigroup
$\Gamma=\left\langle a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\rangle$ is $\max \left(\mathbb{N}_{0} \backslash \Gamma\right)$.

Definition

The elements of $\mathbb{N}_{0} \backslash \Gamma$ are called the gaps of Γ.

Example

The numerical semigroup $\langle 3,4\rangle=\{0,3,4,6,7,8,9,10, \ldots\}$ has gaps $1,2,5$ and Frobenius number 5.

More definitions

Definition

The Frobenius number of a numerical semigroup
$\Gamma=\left\langle a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\rangle$ is $\max \left(\mathbb{N}_{0} \backslash \Gamma\right)$.

Definition

The elements of $\mathbb{N}_{0} \backslash \Gamma$ are called the gaps of Γ.

Example

The numerical semigroup $\langle 3,4\rangle=\{0,3,4,6,7,8,9,10, \ldots\}$ has gaps $1,2,5$ and Frobenius number 5.

Example

The numerical semigroup $\langle 3,5,7\rangle=\{0,3,5,7,8,9,10, \ldots\}$ has gaps $1,2,4$ and Frobenius number 4.

Constructing a tree

Questions:

- How many numerical semigroups have exactly g gaps?

Constructing a tree

Questions:

- How many numerical semigroups have exactly g gaps?
- How fast does the number of numerical semigroups with g gaps grow?

Constructing a tree

Questions:

- How many numerical semigroups have exactly g gaps?
- How fast does the number of numerical semigroups with g gaps grow?

Known Results

Theorem (Bras-Amoros, Zhai, 2011)

Let n_{g} be the number of numerical semigroups with g gaps. Then

Known Results

Theorem (Bras-Amoros, Zhai, 2011)

Let n_{g} be the number of numerical semigroups with g gaps. Then

1. $\lim _{g \rightarrow \infty} \frac{n_{g-1}+n_{g-2}}{n_{g}}=1$,

Known Results

Theorem (Bras-Amoros, Zhai, 2011)

Let n_{g} be the number of numerical semigroups with g gaps. Then

1. $\lim _{g \rightarrow \infty} \frac{n_{g-1}+n_{g-2}}{n_{g}}=1$,
2. $\lim _{g \rightarrow \infty} \frac{n_{g}}{n_{g-1}}=\phi$, the golden ratio.

Known Results

Theorem (Bras-Amoros, Zhai, 2011)

Let n_{g} be the number of numerical semigroups with g gaps. Then

1. $\lim _{g \rightarrow \infty} \frac{n_{g-1}+n_{g-2}}{n_{g}}=1$,
2. $\lim _{g \rightarrow \infty} \frac{n_{g}}{n_{g-1}}=\phi$, the golden ratio.

Known Results

Theorem (Bras-Amoros, Zhai, 2011)

Let n_{g} be the number of numerical semigroups with g gaps. Then

1. $\lim _{g \rightarrow \infty} \frac{n_{g-1}+n_{g-2}}{n_{g}}=1$,
2. $\lim _{g \rightarrow \infty} \frac{n_{g}}{n_{g-1}}=\phi$, the golden ratio.

Conjecture (Bras-Amoros, 2008)

1. $n_{g} \geq n_{g-1}+n_{g-2}$ for $g \geq 2$,

Known Results

Theorem (Bras-Amoros, Zhai, 2011)

Let n_{g} be the number of numerical semigroups with g gaps. Then

1. $\lim _{g \rightarrow \infty} \frac{n_{g-1}+n_{g-2}}{n_{g}}=1$,
2. $\lim _{g \rightarrow \infty} \frac{n_{g}}{n_{g-1}}=\phi$, the golden ratio.

Conjecture (Bras-Amoros, 2008)

1. $n_{g} \geq n_{g-1}+n_{g-2}$ for $g \geq 2$,
2. $n_{g} \geq n_{g-1}$.

Symmetric Numerical Semigroups

Definition

Suppose the semigroup Γ has Frobenius number F. Then Γ is symmetric if it contains exactly $\frac{F+1}{2}$ elements less than $F+1$.

Symmetric Numerical Semigroups

Definition

Suppose the semigroup Γ has Frobenius number F. Then Γ is symmetric if it contains exactly $\frac{F+1}{2}$ elements less than $F+1$.

Example

Consider the semigroup $\langle 3,4\rangle$.

- Frobenius number 5
- Contains 0,3 , and 4 , but not 1,2 , or 5
- Thus, it's symmetric!

Symmetric Numerical Semigroups

Definition

Suppose the semigroup Γ has Frobenius number F. Then Γ is symmetric if it contains exactly $\frac{F+1}{2}$ elements less than $F+1$.

Example

Consider the semigroup $\langle 3,4\rangle$.

- Frobenius number 5
- Contains 0,3 , and 4 , but not 1,2 , or 5
- Thus, it's symmetric!

Motivation

- Any semigroup contains at most one of $(k, F-k)$. Thus, a symmetric semigroup contains the maximum number of elements below its Frobenius number.

Symmetric Numerical Semigroups

How does the number of symmetric semigroups grow as the number of gaps g grows?

Symmetric Numerical Semigroups

How does the number of symmetric semigroups grow as the number of gaps g grows?

- Let $N(g)$ be the number of symmetric semigroups with g gaps.
- Examine the ratio $\frac{N(g+1)}{N(g)}$.

Symmetric Numerical Semigroups

How does the number of symmetric semigroups grow as the number of gaps g grows?

- Let $N(g)$ be the number of symmetric semigroups with g gaps.
- Examine the ratio $\frac{N(g+1)}{N(g)}$.

Conjecture

Generalizing the Conjecture

What happens if we try to generalize this conjecture?

Definition

Define $N(g, F)$ to be the number of numerical semigroups with g gaps and Frobenius number F.

Generalizing the Conjecture

What happens if we try to generalize this conjecture?

Definition

Define $N(g, F)$ to be the number of numerical semigroups with g gaps and Frobenius number F.

- The number of symmetric semigroups with g gaps is $N(g, 2 g-1)$.
- Generalization: $N(g, 2 g-k)$ for $1 \leq k \leq g$.

Generalizing the Conjecture

What happens if we try to generalize this conjecture?

Definition

Define $N(g, F)$ to be the number of numerical semigroups with g gaps and Frobenius number F.

- The number of symmetric semigroups with g gaps is $N(g, 2 g-1)$.
- Generalization: $N(g, 2 g-k)$ for $1 \leq k \leq g$.

Generalized Conjecture

Generalizing the Conjecture

Generalized Conjecture

Generalizing the Conjecture

Generalized Conjecture

Growth of $\mathrm{N}(\mathrm{g}+1,2(\mathrm{~g}+1)-\mathrm{k}) / \mathrm{N}(\mathrm{g}, 2 \mathrm{~g}-\mathrm{k})$

Acknowledgements

I would like to thank

- Jeffery Yu
- Dr. Minh-Tam Trinh
- MIT PRIMES

Bibliography

显
Maria Bras－Amoros．
Bounds on the number of numerical semigroups of a given genus， 2008.

Maria Bras－Amoros and Stanislav Bulygin．
Towards a better understanding of the semigroup tree， 2008.
圊
Maria Bras－Amorós．
Fibonacci－like behavior of the number of numerical semigroups of a given genus．
Semigroup Forum，76（2）：379－384，Oct 2007.
R Nathan Kaplan．
Counting numerical semigroups， 2017.
击 Alex Zhai．
Fibonacci－like growth of numerical semigroups of a given genus， 2011.

