Factorizations in Evaluation Monoids

Sophie Zhu
Mentor: Felix Gotti

MIT PRIMES 2021 Conference
October 16, 2021

Monoids

An (additive) monoid is a pair $(M,+)$, where M is a set and + is a binary operation on M, such that

■ + is both associative and commutative, and
■ there exists $0 \in M$ such that $x+0=x$.

Examples

- $(\{0,3,6,7,9,10,11,12, \ldots\},+)$
- every abelian group

Monoids

An (additive) monoid is a pair $(M,+)$, where M is a set and + is a binary operation on M, such that

■ + is both associative and commutative, and
■ there exists $0 \in M$ such that $x+0=x$.

Examples

- $\left(\mathbb{Z}_{\geq 0},+\right),\left(\mathbb{R}_{\geq 0},+\right)$

- every abelian group

Monoids

An (additive) monoid is a pair $(M,+)$, where M is a set and + is a binary operation on M, such that

■ + is both associative and commutative, and

- there exists $0 \in M$ such that $x+0=x$.

Examples

- $\left(\mathbb{Z}_{\geq 0},+\right),\left(\mathbb{R}_{\geq 0},+\right)$
- $(\{0\} \cup \mathbb{Q} \geq 1,+)$
- $(\{0,3,6,7,9,10,11,12, \ldots\},+)$
- every abelian group

Monoids

An (additive) monoid is a pair $(M,+)$, where M is a set and + is a binary operation on M, such that

■ + is both associative and commutative, and

- there exists $0 \in M$ such that $x+0=x$.

Examples

- $\left(\mathbb{Z}_{\geq 0},+\right),\left(\mathbb{R}_{\geq 0},+\right)$
- ($\{0\} \cup \mathbb{Q} \geq 1,+$)

■ $(\{0,3,6,7,9,10,11,12, \ldots\},+)$

- every abelian group

Monoids

Factorizations

in Evaluation
Monoids

An (additive) monoid is a pair $(M,+)$, where M is a set and + is a binary operation on M, such that

■ + is both associative and commutative, and

- there exists $0 \in M$ such that $x+0=x$.

Examples

- $\left(\mathbb{Z}_{\geq 0},+\right),\left(\mathbb{R}_{\geq 0},+\right)$
- ($\{0\} \cup \mathbb{Q} \geq 1,+$)
- $(\{0,3,6,7,9,10,11,12, \ldots\},+)$
- every abelian group

Atoms

Factorizations
in Evaluation Monoids

Sophie Zhu Mentor: Felix Gotti

Preliminaries
Overview
Atomicity

For this talk, let $(M,+)$ be an additive monoid with a unique invertible element; namely, 0.

```
- An integer p \geq2 is a
    prime if p=a\cdotb for any
    a, b\in\mp@subsup{\mathbb{Z}}{>1}{}\mathrm{ implies }a=1
    or }b=1.\quad some x,y\inM implie
    x=0 or }y=0
```

We denote the set of atoms in M by $\mathcal{A}(M)$.
Examples
- $\mathcal{A}\left(\mathbb{Z}_{>0}\right)=\{1\}$
- $\mathcal{A}(M)=\mathcal{A}(\{0,3,6,7,9,10,11,12, \ldots\})=\{3,7,11\}$. For
instance, if $7=x+y$ for $x, y \in M$, then $x=0$ or $y=0$
because $3+3=6,3+6=9$, and $6+6=12$.

Atoms

Factorizations
in Evaluation Monoids

Sophie Zhu Mentor: Felix Gotti

Preliminaries
Overview
Atomicity

For this talk, let $(M,+)$ be an additive monoid with a unique invertible element; namely, 0 .

- An integer $p \geq 2$ is a prime if $p=a \cdot b$ for any $a, b \in \mathbb{Z}_{\geq 1}$ implies $a=1$ or $b=1$.

We denote the set of atoms in M by $\mathcal{A}(M)$.

Examples

- $\mathcal{A}(M)=\mathcal{A}(\{0,3,6,7,9,10,11,12, \ldots\})=\{3,7,11\}$. For instance, if $7=x+y$ for $x, y \in M$, then $x=0$ or $y=0$ because $3+3=6,3+6=9$, and $6+6=12$.

Atoms

For this talk, let $(M,+)$ be an additive monoid with a unique invertible element; namely, 0 .

- An integer $p \geq 2$ is a prime if $p=a \cdot b$ for any $a, b \in \mathbb{Z}_{\geq 1}$ implies $a=1$ or $b=1$.

We denote the set of atoms in M by $\mathcal{A}(M)$.

Examples

Atoms

Factorizations in Evaluation Monoids

For this talk, let $(M,+)$ be an additive monoid with a unique invertible element; namely, 0 .

- An integer $p \geq 2$ is a prime if $p=a \cdot b$ for any $a, b \in \mathbb{Z}_{\geq 1}$ implies $a=1$ or $b=1$.
- A nonzero element a in $(M,+)$ is an atom if the equality $a=x+y$ for some $x, y \in M$ implies $x=0$ or $y=0$.

We denote the set of atoms in M by $\mathcal{A}(M)$.
Examples

Atoms

Factorizations in Evaluation Monoids

For this talk, let $(M,+)$ be an additive monoid with a unique invertible element; namely, 0 .

- An integer $p \geq 2$ is a prime if $p=a \cdot b$ for any $a, b \in \mathbb{Z}_{\geq 1}$ implies $a=1$ or $b=1$.
- A nonzero element a in $(M,+)$ is an atom if the equality $a=x+y$ for some $x, y \in M$ implies $x=0$ or $y=0$.

We denote the set of atoms in M by $\mathcal{A}(M)$.

Examples

- $\mathcal{A}\left(\mathbb{Z}_{\geq 0}\right)=\{1\}$

Atoms

For this talk, let $(M,+)$ be an additive monoid with a unique invertible element; namely, 0 .

- An integer $p \geq 2$ is a prime if $p=a \cdot b$ for any $a, b \in \mathbb{Z}_{\geq 1}$ implies $a=1$ or $b=1$.
- A nonzero element a in $(M,+)$ is an atom if the equality $a=x+y$ for some $x, y \in M$ implies $x=0$ or $y=0$.

We denote the set of atoms in M by $\mathcal{A}(M)$.

Examples

- $\mathcal{A}\left(\mathbb{Z}_{\geq 0}\right)=\{1\}$

■ $\mathcal{A}(M)=\mathcal{A}(\{0,3,6,7,9,10,11,12, \ldots\})=\{3,7,11\}$. For instance, if $7=x+y$ for $x, y \in M$, then $x=0$ or $y=0$ because $3+3=6,3+6=9$, and $6+6=12$.

Atomicity

Factorizations
in Evaluation Monoids

Sophie Zhu Mentor: Felix Gotti

Preliminaries
Overview
Atomicity

- Fundamental Theorem of Arithmetic: Every $n \in \mathbb{Z}_{\geq 2}$ factors (uniquely) into primes.

Atomicity was first studied in the 1960 s by Cohn in the context of commutative ring theory and, since then, has been systematically studied in the abstract context of commutative monoids.

- $(M,+)$ is atomic if every nonzero element can be written as a sum of atoms.

Atomicity

Factorizations
in Evaluation Monoids

- Fundamental Theorem of Arithmetic: Every $n \in \mathbb{Z}_{\geq 2}$ factors (uniquely) into primes.
- $(M,+)$ is atomic if every nonzero element can be written as a sum of atoms.

Atomicity was first studied in the 1960 s by Cohn in the context of commutative ring theory and, since then, has been systematically studied in the abstract context of commutative monoids.

Atomicity

- Fundamental Theorem of Arithmetic: Every $n \in \mathbb{Z}_{\geq 2}$ factors (uniquely) into primes.
- ($M,+$) is atomic if every nonzero element can be written as a sum of atoms.

Atomicity was first studied in the 1960s by Cohn in the context of commutative ring theory and, since then, has been systematically studied in the abstract context of commutative monoids.

Examples of Atomic Monoids

Factorizations
in Evaluation Monoids

Sophie Zhu Mentor: Felix Gotti

Preliminaries
Overview
Atomicity
ACCP, BFM, \& FFM

Closing Remarks
$\square \mathbb{Z}_{\geq 0}$ is atomic as $\mathcal{A}\left(\mathbb{Z}_{\geq 0}\right)=1$ and $n=\overbrace{1+1+\cdots+1}^{n}$.

- For $M=\{0,3,6,7,9,10,11,12, \ldots\}$, recall that $\mathcal{A}(M)=\{3,7,11\}$. One can verify that M is atomic; for instance,

- $10=3+7$, and

For $A=\left\{a_{i} \mid i \in I\right\} \subseteq M$, we let $\langle A\rangle$, or $\left\langle a_{i} \mid i \in I\right\rangle$, denote the
smallest monoid inside M containing A.

- $\begin{aligned} M & =\left\langle\left.\frac{1}{2^{k}} \right\rvert\, k \in \mathbb{Z} \geq 0\right\rangle \text { is not atomic because } \\ \frac{1}{2^{k}} & =\frac{1}{2^{k+1}}+\frac{1}{2^{k+1}} \text { for each } k \in \mathbb{Z} \geq 0, \text { and so } \mathcal{A}(M)=\emptyset .\end{aligned}$

Examples of Atomic Monoids

■ $\mathbb{Z}_{\geq 0}$ is atomic as $\mathcal{A}\left(\mathbb{Z}_{\geq 0}\right)=1$ and $n=\overbrace{1+1+\cdots+1}^{n}$.
■ For $M=\{0,3,6,7,9,10,11,12, \ldots\}$, recall that $\mathcal{A}(M)=\{3,7,11\}$. One can verify that M is atomic; for instance,

- $6=3+3$,
- $9=3+3+3$,
- $10=3+7$, and
- $12=3+3+3+3$.

For $A=\left\{a_{i} \mid i \in I\right\} \subseteq M$, we let $\langle A\rangle$, or $\left\langle a_{i} \mid i \in I\right\rangle$, denote the
smallest monoid inside M containing A.

Examples of Atomic Monoids

■ $\mathbb{Z}_{\geq 0}$ is atomic as $\mathcal{A}\left(\mathbb{Z}_{\geq 0}\right)=1$ and $n=\overbrace{1+1+\cdots+1}^{n}$.
■ For $M=\{0,3,6,7,9,10,11,12, \ldots\}$, recall that $\mathcal{A}(M)=\{3,7,11\}$. One can verify that M is atomic; for instance,

- $6=3+3$,
- $9=3+3+3$,
- $10=3+7$, and
- $12=3+3+3+3$.

For $A=\left\{a_{i} \mid i \in I\right\} \subseteq M$, we let $\langle A\rangle$, or $\left\langle a_{i} \mid i \in I\right\rangle$, denote the smallest monoid inside M containing A.

Examples of Atomic Monoids

■ $\mathbb{Z}_{\geq 0}$ is atomic as $\mathcal{A}\left(\mathbb{Z}_{\geq 0}\right)=1$ and $n=\overbrace{1+1+\cdots+1}^{n}$.
■ For $M=\{0,3,6,7,9,10,11,12, \ldots\}$, recall that $\mathcal{A}(M)=\{3,7,11\}$. One can verify that M is atomic; for instance,

- $6=3+3$,
- $9=3+3+3$,
- $10=3+7$, and
- $12=3+3+3+3$.

For $A=\left\{a_{i} \mid i \in I\right\} \subseteq M$, we let $\langle A\rangle$, or $\left\langle a_{i} \mid i \in I\right\rangle$, denote the smallest monoid inside M containing A.

■ $M=\left\langle\left.\frac{1}{2^{k}} \right\rvert\, k \in \mathbb{Z}_{\geq 0}\right\rangle$ is not atomic because $\frac{1}{2^{k}}=\frac{1}{2^{k+1}}+\frac{1}{2^{k+1}}$ for each $k \in \mathbb{Z}_{\geq 0}$, and so $\mathcal{A}(M)=\emptyset$.

Factorizations

- A factorization of a nonzero $x \in M$ is a decomposition $x=a_{1}+\cdots+a_{\ell}$, where $a_{1}, \ldots, a_{\ell} \in \mathcal{A}(M)$,
■ in which case ℓ is called a length of x.
- Define $\mathrm{L}(x)$ as the set of all possible lengths of x.

Examples

Factorizations

- A factorization of a nonzero $x \in M$ is a decomposition $x=a_{1}+\cdots+a_{\ell}$, where $a_{1}, \ldots, a_{\ell} \in \mathcal{A}(M)$,
- in which case ℓ is called a length of x.
- Define $\mathrm{L}(x)$ as the set of all possible lengths of x.

Examples

- In $\mathbb{Z}_{\geq 0}$, the decomposition $n=\overbrace{1+1+\cdots+1}^{n}$ is a factorization of n of length n. This is unique, so $\mathrm{L}(n)=\{n\}$ for all $n \geq 1$.
- In $\{0,3,6,7,9,10,11,12, \ldots\}$ the decompositions
$10=3+7$ and $21=7+7+7$ are factorizations of 10 and
21 of lengths 2 and 3 , resp. This factorization of 10 is

also a factorization of 21 ; indeed, $L(21)=\{3,7\}$

Factorizations

Factorizations

- A factorization of a nonzero $x \in M$ is a decomposition $x=a_{1}+\cdots+a_{\ell}$, where $a_{1}, \ldots, a_{\ell} \in \mathcal{A}(M)$,
- in which case ℓ is called a length of x.
- Define $\mathrm{L}(x)$ as the set of all possible lengths of x.

Examples

- In $\mathbb{Z}_{\geq 0}$, the decomposition $n=\overbrace{1+1+\cdots+1}^{n}$ is a factorization of n of length n. This is unique, so $\mathrm{L}(n)=\{n\}$ for all $n \geq 1$.
- In $\{0,3,6,7,9,10,11,12, \ldots\}$ the decompositions $10=3+7$ and $21=7+7+7$ are factorizations of 10 and 21 of lengths 2 and 3 , resp. This factorization of 10 is unique, so $\mathrm{L}(10)=\{2\}$, but $21=3+\cdots+3$ (7 times) is also a factorization of 21 ; indeed, $\mathrm{L}(21)=\{3,7\}$.

Examples of BFMs, FFMs, and UFMs

Factorizations
in Evaluation Monoids

Sophie Zhu Mentor: Felix Gotti

Preliminaries

Let M be an atomic monoid. Then
■ M is a bounded factorization monoid (BFM) if for each nonzero $x \in M$, the set $L(x)$ is bounded.

- In a BFM, an element may have infinitely many factorizations.

■ M is a finite factorization monoid (FFM) if each nonzero $x \in M$ has finitely many factorizations.

■ M is a unique factorization monoid (UFM) if each nonzero $x \in M$ has exactly one factorization
\square - $\mathbb{Z}_{>0}^{-} \times \mathbb{Z}_{>0}$ is a UFM (thus a BFM \& FFM), where

Examples of BFMs, FFMs, and UFMs

Factorizations in Evaluation Monoids

Sophie Zhu Mentor: Felix Gotti

Preliminaries Overview

Let M be an atomic monoid. Then
■ M is a bounded factorization monoid (BFM) if for each nonzero $x \in M$, the set $L(x)$ is bounded.

- In a BFM, an element may have infinitely many factorizations.
- $\{0,3,6,7,9,10,11,12, \ldots\}$ is a BFM. Since its elements lie in $\mathbb{Z}_{\geq 0}$, the length of a factorization of n is always bounded above by n.
- M is a finite factorization monoid (FFM) if each nonzero $x \in M$ has finitely many factorizations.
- M is a unique factorization monoid (UFM) if each nonzero $x \in M$ has exactly one factorization.
\square
- $\mathbb{Z}>0$ is a UFM (thus a BFM and FFM)

Examples of BFMs, FFMs, and UFMs

Let M be an atomic monoid. Then
■ M is a bounded factorization monoid (BFM) if for each nonzero $x \in M$, the set $L(x)$ is bounded.

- In a BFM, an element may have infinitely many factorizations.
- $\{0,3,6,7,9,10,11,12, \ldots\}$ is a BFM. Since its elements lie in $\mathbb{Z}_{\geq 0}$, the length of a factorization of n is always bounded above by n.
- M is a finite factorization monoid (FFM) if each nonzero $x \in M$ has finitely many factorizations.
- $\{0,3,6,7,9,10,11,12, \ldots\}$ is also an FFM.
- M is a unique factorization monoid (UFM) if each nonzero $x \in M$ has exactly one factorization

Examples of BFMs, FFMs, and UFMs

Factorizations
in Evaluation
Monoids
Sophie Zhu Mentor: Felix Gotti

Preliminaries

Let M be an atomic monoid. Then
■ M is a bounded factorization monoid (BFM) if for each nonzero $x \in M$, the set $L(x)$ is bounded.

- In a BFM, an element may have infinitely many factorizations.
- $\{0,3,6,7,9,10,11,12, \ldots\}$ is a BFM. Since its elements lie in $\mathbb{Z}_{\geq 0}$, the length of a factorization of n is always bounded above by n.
■ M is a finite factorization monoid (FFM) if each nonzero $x \in M$ has finitely many factorizations.
- $\{0,3,6,7,9,10,11,12, \ldots\}$ is also an FFM.

■ M is a unique factorization monoid (UFM) if each nonzero $x \in M$ has exactly one factorization.

- $\mathbb{Z}_{\geq 0}$ is a UFM (thus a BFM and FFM).

Examples of BFMs, FFMs, and UFMs

Factorizations in Evaluation Monoids

Sophie Zhu Mentor: Felix Gotti

Preliminaries

Let M be an atomic monoid. Then
$\square M$ is a bounded factorization monoid (BFM) if for each nonzero $x \in M$, the set $L(x)$ is bounded.

- In a BFM, an element may have infinitely many factorizations.
- $\{0,3,6,7,9,10,11,12, \ldots\}$ is a BFM. Since its elements lie in $\mathbb{Z}_{\geq 0}$, the length of a factorization of n is always bounded above by n.

■ M is a finite factorization monoid (FFM) if each nonzero $x \in M$ has finitely many factorizations.

- $\{0,3,6,7,9,10,11,12, \ldots\}$ is also an FFM.

■ M is a unique factorization monoid (UFM) if each nonzero $x \in M$ has exactly one factorization.

- $\mathbb{Z}_{\geq 0}$ is a UFM (thus a BFM and FFM).
- $\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$ is a UFM (thus a BFM \& FFM), where $\mathcal{A}\left(\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}\right)=\{(1,0),(0,1)\}$.

Question

The phenomenon of non-uniqueness of factorizations naturally appears in algebraic number theory (for instance, the ring of integers $\mathbb{Z}[\sqrt{-5}]$ is not a UFD) and has been the main motivation for the development of factorization theory in the abstract context of commutative monoids. As a crucial part of this development, BFMs and FFMs were introduced in 1992.

Question
What can we say about the existence and non-uniqueness of factorizations in monoids in general?

The following follows directly from the definitions.

$$
\mathrm{UFM} \Rightarrow \mathrm{FFM} \Rightarrow \mathrm{BFM} \Rightarrow \text { atomicity }
$$

Question

Factorizations

in Evaluation
Monoids
Sophie Zhu Mentor: Felix Gotti

Preliminaries
Overview
Atomicity

The phenomenon of non-uniqueness of factorizations naturally appears in algebraic number theory (for instance, the ring of integers $\mathbb{Z}[\sqrt{-5}]$ is not a UFD) and has been the main motivation for the development of factorization theory in the abstract context of commutative monoids. As a crucial part of this development, BFMs and FFMs were introduced in 1992.

Question

What can we say about the existence and non-uniqueness of factorizations in monoids in general?

The following follows directly from the definitions.

$$
\mathrm{UFM} \Rightarrow \mathrm{FFM} \Rightarrow \mathrm{BFM} \Rightarrow \text { atomicity }
$$

Question

Factorizations

in Evaluation
Monoids
Sophie Zhu Mentor: Felix Gotti

Preliminaries
Overview
Atomicity
ACCP, BFM,
\& FFM

The phenomenon of non-uniqueness of factorizations naturally appears in algebraic number theory (for instance, the ring of integers $\mathbb{Z}[\sqrt{-5}]$ is not a UFD) and has been the main motivation for the development of factorization theory in the abstract context of commutative monoids. As a crucial part of this development, BFMs and FFMs were introduced in 1992.

Question

What can we say about the existence and non-uniqueness of factorizations in monoids in general?

The following follows directly from the definitions.

$$
\mathrm{UFM} \Rightarrow \mathrm{FFM} \Rightarrow \mathrm{BFM} \Rightarrow \text { atomicity }
$$

Overview

Monoids
Sophie Zhu Mentor: Felix Gotti

Preliminaries
Overview
Atomicity

Definition

For $\alpha \in \mathbb{R}_{>0}$, the (Laurent) evaluation monoid of α is

$$
\begin{aligned}
M_{\alpha} & :=\left\{f(\alpha) \mid f(x) \in \mathbb{Z}_{\geq 0}\left[x, x^{-1}\right]\right\} \\
& =\left\{f(\alpha) \mid f(x)=c_{-n} x^{-n}+\cdots+c_{n} x^{n}, c_{i} \in \mathbb{Z}_{\geq 0}\right\}
\end{aligned}
$$

We discuss the following classes of M_{α}.
1 Atomic monoids
$\boxed{2}$ Bounded and finite factorization monoids (in connection with the ascending chain condition on principal ideals)
3 A class of FFMs that are not UFMs

Overview

Monoids

Preliminaries
Overview
Atomicity

Definition

For $\alpha \in \mathbb{R}_{>0}$, the (Laurent) evaluation monoid of α is

$$
\begin{aligned}
M_{\alpha} & :=\left\{f(\alpha) \mid f(x) \in \mathbb{Z}_{\geq 0}\left[x, x^{-1}\right]\right\} \\
& =\left\{f(\alpha) \mid f(x)=c_{-n} x^{-n}+\cdots+c_{n} x^{n}, c_{i} \in \mathbb{Z}_{\geq 0}\right\}
\end{aligned}
$$

We discuss the following classes of M_{α}.
1 Atomic monoids
乙 Bounded and finite factorization monoids (in connection with the ascending chain condition on principal ideals) 3 A class of FFMs that are not UFMs

Overview

Factorizations
in Evaluation
Monoids
Sophie Zhu Mentor: Felix Gotti

Preliminaries
Overview
Atomicity

Definition

For $\alpha \in \mathbb{R}_{>0}$, the (Laurent) evaluation monoid of α is

$$
\begin{aligned}
M_{\alpha} & :=\left\{f(\alpha) \mid f(x) \in \mathbb{Z}_{\geq 0}\left[x, x^{-1}\right]\right\} \\
& =\left\{f(\alpha) \mid f(x)=c_{-n} x^{-n}+\cdots+c_{n} x^{n}, c_{i} \in \mathbb{Z}_{\geq 0}\right\}
\end{aligned}
$$

We discuss the following classes of M_{α}.
1 Atomic monoids
2 Bounded and finite factorization monoids (in connection with the ascending chain condition on principal ideals)
3 A class of FFMs that are not UFMs

Overview

Definition

For $\alpha \in \mathbb{R}_{>0}$, the (Laurent) evaluation monoid of α is

$$
\begin{aligned}
M_{\alpha} & :=\left\{f(\alpha) \mid f(x) \in \mathbb{Z}_{\geq 0}\left[x, x^{-1}\right]\right\} \\
& =\left\{f(\alpha) \mid f(x)=c_{-n} x^{-n}+\cdots+c_{n} x^{n}, c_{i} \in \mathbb{Z}_{\geq 0}\right\}
\end{aligned}
$$

We discuss the following classes of M_{α}.
1 Atomic monoids
2 Bounded and finite factorization monoids (in connection with the ascending chain condition on principal ideals)

3 A class of FFMs that are not UFMs

Overview

Definition

For $\alpha \in \mathbb{R}_{>0}$, the (Laurent) evaluation monoid of α is

$$
\begin{aligned}
M_{\alpha} & :=\left\{f(\alpha) \mid f(x) \in \mathbb{Z}_{\geq 0}\left[x, x^{-1}\right]\right\} \\
& =\left\{f(\alpha) \mid f(x)=c_{-n} x^{-n}+\cdots+c_{n} x^{n}, c_{i} \in \mathbb{Z}_{\geq 0}\right\}
\end{aligned}
$$

We discuss the following classes of M_{α}.
1 Atomic monoids
2 Bounded and finite factorization monoids (in connection with the ascending chain condition on principal ideals)

3 A class of FFMs that are not UFMs

Atomicity

 MonoidsSophie Zhu Mentor: Felix Gotti

Preliminaries
Overview
Atomicity

Proposition (Z., 2021)

For each $\alpha \in \mathbb{R}_{>0}$, the following statements are equivalent.
(a) $1 \in \mathcal{A}\left(M_{\alpha}\right)$.
(b) $\mathcal{A}\left(M_{\alpha}\right)=\left\{\alpha^{n} \mid n \in \mathbb{Z}\right\}$.
(c) M_{α} is atomic.

If $\alpha \in \mathbb{R}_{>0}$ is transcendental, then M_{α} is atomic.
Example (M_{α} not atomic)
Consider the monic irreducible polynomial $m(x)=$ $x^{3}-2 x^{2}+3 x-7$, which has a real root $\alpha \in(2,3)$. As $m(x)(x+2)=x^{4}-x^{2}-x-14$, we note $\alpha^{4}=\alpha^{2}+\alpha+14$. Then α is not an atom in M, implying M_{α} is not atomic.

Atomicity

Factorizations

in Evaluation
Monoids
Sophie Zhu Mentor: Felix Gotti

Preliminaries
Overview
Atomicity

Proposition (Z., 2021)

For each $\alpha \in \mathbb{R}_{>0}$, the following statements are equivalent.
(a) $1 \in \mathcal{A}\left(M_{\alpha}\right)$.
(b) $\mathcal{A}\left(M_{\alpha}\right)=\left\{\alpha^{n} \mid n \in \mathbb{Z}\right\}$.
(c) M_{α} is atomic.

If $\alpha \in \mathbb{R}_{>0}$ is transcendental, then M_{α} is atomic.
Example (M_{α} not atomic)
Consider the monic irreducible polynomial $m(x)=$ $x^{3}-2 x^{2}+3 x-7$, which has a real root $\alpha \in(2,3)$. As $m(x)(x+2)=x^{4}-x^{2}-x-14$, we note $\alpha^{4}=\alpha^{2}+\alpha+14$.
Then α is not an atom in M, implying M_{α} is not atomic.

ACCP

One of the most relevant classes of atomic monoids are those satisfying the ACCP.

A monoid $(M,+)$ satisfies the ascending chain condition on principal ideals (ACCP) if every sequence $\left\{x_{n}\right\}_{n \in \mathbb{Z}}^{>0}$ $\subseteq M$ satisfying $x_{n}-x_{n+1} \in M$ for each $n \in \mathbb{N}$, is constant after some point.

Example (M_{α} does not satisfy ACCP)

- $\alpha=2 / 3$. Take the sequence $\left\{x_{n}\right\}_{n \in \mathbb{Z}_{>0}}$ defined by $=(2 / 3)^{n+1} \in M$ for each $n \in \mathbb{Z} \geq 0$, so the sequence does not become constant. Hence, it does not satisfy the ACCP.

ACCP

One of the most relevant classes of atomic monoids are those satisfying the ACCP.

A monoid $(M,+)$ satisfies the ascending chain condition on principal ideals (ACCP) if every sequence $\left\{x_{n}\right\}_{n \in \mathbb{Z}}{ }_{>0} \subseteq M$ satisfying $x_{n}-x_{n+1} \in M$ for each $n \in \mathbb{N}$, is constant after some point.

Example (M_{α} does not satisfy ACCP)
■ $\alpha=2 / 3$. Take the sequence $\left\{x_{n}\right\}_{n \in \mathbb{Z}_{>0}}$ defined by $x_{n}=2 \cdot(2 / 3)^{n}: x_{n}-x_{n+1}=2 \cdot(2 / 3)^{n}-2 \cdot(2 / 3)^{n+1}$ $=(2 / 3)^{n+1} \in M$ for each $n \in \mathbb{Z}_{\geq 0}$, so the sequence does not become constant. Hence, it does not satisfy the ACCP.

Nested Classes of Atomic Monoids

Factorizations
in Evaluation Monoids \& FFM

The following result is well-known.

Proposition

Every BFM satisfies the ACCP.
Therefore,

$$
\mathrm{UFM} \Rightarrow \mathrm{FFM} \Rightarrow \mathrm{BFM} \Rightarrow \mathrm{ACCP} \Rightarrow \text { atomicity }
$$

We established the following main result for the class of Laurent evaluation monoids M_{α}

Theorem (7 , 2021)
For $\alpha \in \mathbb{R}_{>0}$, the following holds for M_{α}.

$$
\mathrm{FFM} \Leftrightarrow \mathrm{BFM} \Leftrightarrow \mathrm{ACCP}
$$

Nested Classes of Atomic Monoids

Factorizations
in Evaluation
Monoids
Sophie Zhu Mentor: Felix Gotti

Preliminaries
Ovenview
Atomicity
ACCP, BFM, \& FFM

The following result is well-known.

Proposition

Every BFM satisfies the ACCP.
Therefore,

$$
\mathrm{UFM} \Rightarrow \mathrm{FFM} \Rightarrow \mathrm{BFM} \Rightarrow \mathrm{ACCP} \Rightarrow \text { atomicity }
$$

We established the following main result for the class of Laurent evaluation monoids M_{α}.

Theorem (Z., 2021)
For $\alpha \in \mathbb{R}_{>0}$, the following holds for M_{α}.

$$
\mathrm{FFM} \Leftrightarrow \mathrm{BFM} \Leftrightarrow \mathrm{ACCP}
$$

A Class of FFMs that are not UFMs

Factorizations in Evaluation Monoids

Sophie Zhu Mentor: Felix Gotti

Preliminaries
Overview
Atomicity
ACCP, BFM, \& FFM

Closing Remarks

Theorem (Z., 2021)

Suppose that α_{1} and α_{2} are the roots of an irreducible quadratic polynomial in $\mathbb{Q}[x]$ such that $0<\alpha_{1}<1<\alpha_{2}$. Then $M_{\alpha_{1}}$ is an FFM and, therefore, satisfies the ACCP.

Example (M_{α} is FFM but not UFM) Consider the polynomial $p(x):=x^{2}-2 x+\frac{1}{2}$. It is irreducible, with roots $\alpha_{1}:=1-\frac{\sqrt{2}}{2}$ and $\alpha_{2}:=1+\frac{\sqrt{2}}{2}$. Since $0<\alpha_{1}<1<\alpha_{2}$, the Theorem implies M_{α} is an FFM However, it is not a UFM: since M_{α} is atomic, we have $1, \alpha, \alpha^{2} \in \mathcal{A}\left(M_{\alpha}\right)$. Then the two sides of the equality $4 \alpha_{1}=2 \alpha_{1}^{2}+1$ yield distinct factorizations of the same element in M_{α}

A Class of FFMs that are not UFMs

Theorem (Z., 2021)

Suppose that α_{1} and α_{2} are the roots of an irreducible quadratic polynomial in $\mathbb{Q}[x]$ such that $0<\alpha_{1}<1<\alpha_{2}$. Then $M_{\alpha_{1}}$ is an FFM and, therefore, satisfies the ACCP.

Example (M_{α} is FFM but not UFM)
Consider the polynomial $p(x):=x^{2}-2 x+\frac{1}{2}$. It is irreducible, with roots $\alpha_{1}:=1-\frac{\sqrt{2}}{2}$ and $\alpha_{2}:=1+\frac{\sqrt{2}}{2}$. Since $0<\alpha_{1}<1<\alpha_{2}$, the Theorem implies M_{α} is an FFM. However, it is not a UFM: since M_{α} is atomic, we have $1, \alpha, \alpha^{2} \in \mathcal{A}\left(M_{\alpha}\right)$. Then the two sides of the equality $4 \alpha_{1}=2 \alpha_{1}^{2}+1$ yield distinct factorizations of the same element in M_{α}.

Diagram Summarizing Our Results

```
Factorizations
in Evaluation
    Monoids
Sophie Zhu Mentor: Felix Gotti
[UFM \(\Leftrightarrow \mathbf{H F M} \Leftrightarrow\) LFM]
\(\Downarrow\)
[FFM \(\Leftrightarrow \mathbf{B F M} \Leftrightarrow \mathbf{A C C P}]\)
\(\Downarrow\)
atomicity

\section*{References}

■ D. D. Anderson, D. F. Anderson, and M. Zafrullah: Factorization in integral domains, J. Pure Appl. Algebra 69 (1990) 1-19.
■ F. Campanini and A. Facchini: Factorizations of polynomials with integral non-negative coefficients, Semigroup Forum 99 (2019) 317-332.
■ P. M. Cohn: Bezout rings and and their subrings, Proc. Cambridge Philos. Soc. 64 (1968) 251-264.
■ J. Correa-Morris and F. Gotti: On the additive structure of algebraic valuations of cyclic free semirings. Available on arXiv: https://arxiv.org/pdf/2008.13073.pdf.
■ F. Halter-Koch: Finiteness theorems for factorizations, Semigroup Forum 44 (1992) 112-117.

\section*{Acknowledgements}

Factorizations
in Evaluation
Monoids
Sophie Zhu Mentor: Felix Gotti

Many thanks go to
- my mentor Dr. Felix Gotti (MIT) for his invaluable guidance, feedback, and encouragement.
- Dr. Pavel Etingof, Dr. Slava Gerovitch, Dr. Tanya Khovanova, the MIT Math Department, and the MIT PRIMES program, for providing us with the opportunity to work on this project.
■ my mother for her constant support.
- you for listening.```

