
Factorizations
in Evaluation

Monoids

Sophie Zhu
Mentor : Felix

Gotti

Preliminaries

Overview

Atomicity

ACCP, BFM,
& FFM

Closing
Remarks

Factorizations in Evaluation Monoids

Sophie Zhu
Mentor : Felix Gotti

MIT PRIMES 2021 Conference

October 16, 2021



Factorizations
in Evaluation

Monoids

Sophie Zhu
Mentor : Felix

Gotti

Preliminaries

Overview

Atomicity

ACCP, BFM,
& FFM

Closing
Remarks

Monoids

An (additive) monoid is a pair (M,+), where M is a set and +
is a binary operation on M, such that

+ is both associative and commutative, and

there exists 0 ∈ M such that x + 0 = x .

Examples

(Z≥0,+), (R≥0,+)

({0} ∪Q≥1,+)

({0, 3, 6, 7, 9, 10, 11, 12, . . .},+)

every abelian group
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Atoms

For this talk, let (M,+) be an additive monoid with a unique
invertible element; namely, 0.

An integer p ≥ 2 is a
prime if p = a · b for any
a, b ∈ Z≥1 implies a = 1
or b = 1.

A nonzero element a in
(M,+) is an atom if the
equality a = x + y for
some x , y ∈ M implies
x = 0 or y = 0.

We denote the set of atoms in M by A(M).

Examples

A(Z≥0) = {1}
A(M) = A({0, 3, 6, 7, 9, 10, 11, 12, . . .}) = {3, 7, 11}. For
instance, if 7 = x + y for x , y ∈ M, then x = 0 or y = 0
because 3 + 3 = 6, 3 + 6 = 9, and 6 + 6 = 12.
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Atomicity

Fundamental Theorem of
Arithmetic : Every
n ∈ Z≥2 factors (uniquely)
into primes.

(M,+) is atomic if every
nonzero element can be
written as a sum of atoms.

Atomicity was first studied in the 1960s by Cohn in the context
of commutative ring theory and, since then, has been
systematically studied in the abstract context of commutative
monoids.
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Examples of Atomic Monoids

Z≥0 is atomic as A(Z≥0) = 1 and n =

n︷ ︸︸ ︷
1 + 1 + · · ·+ 1.

For M = {0, 3, 6, 7, 9, 10, 11, 12, . . .}, recall that
A(M) = {3, 7, 11}. One can verify that M is atomic; for
instance,

6 = 3 + 3,
9 = 3 + 3 + 3,
10 = 3 + 7, and
12 = 3 + 3 + 3 + 3.

For A = {ai | i ∈ I} ⊆ M, we let 〈A〉, or 〈ai | i ∈ I 〉, denote the
smallest monoid inside M containing A.

M = 〈 1
2k
| k ∈ Z≥0〉 is not atomic because

1
2k

= 1
2k+1 + 1

2k+1 for each k ∈ Z≥0, and so A(M) = ∅.
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Factorizations

A factorization of a nonzero x ∈ M is a decomposition
x = a1 + · · ·+ a`, where a1, . . . , a` ∈ A(M),

in which case ` is called a length of x .

Define L(x) as the set of all possible lengths of x .

Examples

In Z≥0, the decomposition n =

n︷ ︸︸ ︷
1 + 1 + · · ·+ 1 is a

factorization of n of length n. This is unique, so
L(n) = {n} for all n ≥ 1.

In {0, 3, 6, 7, 9, 10, 11, 12, . . .} the decompositions
10 = 3 + 7 and 21 = 7 + 7 + 7 are factorizations of 10 and
21 of lengths 2 and 3, resp. This factorization of 10 is
unique, so L(10) = {2}, but 21 = 3 + · · ·+ 3 (7 times) is
also a factorization of 21; indeed, L(21) = {3, 7}.
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Examples of BFMs, FFMs, and UFMs

Let M be an atomic monoid. Then

M is a bounded factorization monoid (BFM) if for each
nonzero x ∈ M, the set L(x) is bounded.

In a BFM, an element may have infinitely many
factorizations.
{0, 3, 6, 7, 9, 10, 11, 12, . . .} is a BFM. Since its elements lie
in Z≥0, the length of a factorization of n is always
bounded above by n.

M is a finite factorization monoid (FFM) if each
nonzero x ∈ M has finitely many factorizations.

{0, 3, 6, 7, 9, 10, 11, 12, . . .} is also an FFM.

M is a unique factorization monoid (UFM) if each
nonzero x ∈ M has exactly one factorization.

Z≥0 is a UFM (thus a BFM and FFM).
Z≥0 × Z≥0 is a UFM (thus a BFM & FFM), where
A(Z≥0 × Z≥0) = {(1, 0), (0, 1)}.



Factorizations
in Evaluation

Monoids

Sophie Zhu
Mentor : Felix

Gotti

Preliminaries

Overview

Atomicity

ACCP, BFM,
& FFM

Closing
Remarks

Examples of BFMs, FFMs, and UFMs

Let M be an atomic monoid. Then

M is a bounded factorization monoid (BFM) if for each
nonzero x ∈ M, the set L(x) is bounded.

In a BFM, an element may have infinitely many
factorizations.
{0, 3, 6, 7, 9, 10, 11, 12, . . .} is a BFM. Since its elements lie
in Z≥0, the length of a factorization of n is always
bounded above by n.

M is a finite factorization monoid (FFM) if each
nonzero x ∈ M has finitely many factorizations.

{0, 3, 6, 7, 9, 10, 11, 12, . . .} is also an FFM.

M is a unique factorization monoid (UFM) if each
nonzero x ∈ M has exactly one factorization.

Z≥0 is a UFM (thus a BFM and FFM).
Z≥0 × Z≥0 is a UFM (thus a BFM & FFM), where
A(Z≥0 × Z≥0) = {(1, 0), (0, 1)}.



Factorizations
in Evaluation

Monoids

Sophie Zhu
Mentor : Felix

Gotti

Preliminaries

Overview

Atomicity

ACCP, BFM,
& FFM

Closing
Remarks

Examples of BFMs, FFMs, and UFMs

Let M be an atomic monoid. Then

M is a bounded factorization monoid (BFM) if for each
nonzero x ∈ M, the set L(x) is bounded.

In a BFM, an element may have infinitely many
factorizations.
{0, 3, 6, 7, 9, 10, 11, 12, . . .} is a BFM. Since its elements lie
in Z≥0, the length of a factorization of n is always
bounded above by n.

M is a finite factorization monoid (FFM) if each
nonzero x ∈ M has finitely many factorizations.

{0, 3, 6, 7, 9, 10, 11, 12, . . .} is also an FFM.

M is a unique factorization monoid (UFM) if each
nonzero x ∈ M has exactly one factorization.

Z≥0 is a UFM (thus a BFM and FFM).
Z≥0 × Z≥0 is a UFM (thus a BFM & FFM), where
A(Z≥0 × Z≥0) = {(1, 0), (0, 1)}.



Factorizations
in Evaluation

Monoids

Sophie Zhu
Mentor : Felix

Gotti

Preliminaries

Overview

Atomicity

ACCP, BFM,
& FFM

Closing
Remarks

Examples of BFMs, FFMs, and UFMs

Let M be an atomic monoid. Then

M is a bounded factorization monoid (BFM) if for each
nonzero x ∈ M, the set L(x) is bounded.

In a BFM, an element may have infinitely many
factorizations.
{0, 3, 6, 7, 9, 10, 11, 12, . . .} is a BFM. Since its elements lie
in Z≥0, the length of a factorization of n is always
bounded above by n.

M is a finite factorization monoid (FFM) if each
nonzero x ∈ M has finitely many factorizations.

{0, 3, 6, 7, 9, 10, 11, 12, . . .} is also an FFM.

M is a unique factorization monoid (UFM) if each
nonzero x ∈ M has exactly one factorization.

Z≥0 is a UFM (thus a BFM and FFM).
Z≥0 × Z≥0 is a UFM (thus a BFM & FFM), where
A(Z≥0 × Z≥0) = {(1, 0), (0, 1)}.



Factorizations
in Evaluation

Monoids

Sophie Zhu
Mentor : Felix

Gotti

Preliminaries

Overview

Atomicity

ACCP, BFM,
& FFM

Closing
Remarks

Examples of BFMs, FFMs, and UFMs

Let M be an atomic monoid. Then

M is a bounded factorization monoid (BFM) if for each
nonzero x ∈ M, the set L(x) is bounded.

In a BFM, an element may have infinitely many
factorizations.
{0, 3, 6, 7, 9, 10, 11, 12, . . .} is a BFM. Since its elements lie
in Z≥0, the length of a factorization of n is always
bounded above by n.

M is a finite factorization monoid (FFM) if each
nonzero x ∈ M has finitely many factorizations.

{0, 3, 6, 7, 9, 10, 11, 12, . . .} is also an FFM.

M is a unique factorization monoid (UFM) if each
nonzero x ∈ M has exactly one factorization.

Z≥0 is a UFM (thus a BFM and FFM).
Z≥0 × Z≥0 is a UFM (thus a BFM & FFM), where
A(Z≥0 × Z≥0) = {(1, 0), (0, 1)}.



Factorizations
in Evaluation

Monoids

Sophie Zhu
Mentor : Felix

Gotti

Preliminaries

Overview

Atomicity

ACCP, BFM,
& FFM

Closing
Remarks

Question

The phenomenon of non-uniqueness of factorizations naturally
appears in algebraic number theory (for instance, the ring of
integers Z[

√
−5] is not a UFD) and has been the main

motivation for the development of factorization theory in the
abstract context of commutative monoids. As a crucial part of
this development, BFMs and FFMs were introduced in 1992.

Question

What can we say about the existence and non-uniqueness of
factorizations in monoids in general?

The following follows directly from the definitions.

UFM ⇒ FFM ⇒ BFM ⇒ atomicity
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Overview

Definition

For α ∈ R>0, the (Laurent) evaluation monoid of α is

Mα := {f (α) | f (x) ∈ Z≥0[x , x−1]}
= {f (α) | f (x) = c−nx

−n + · · ·+ cnx
n, ci ∈ Z≥0}.

We discuss the following classes of Mα.

1 Atomic monoids

2 Bounded and finite factorization monoids (in connection
with the ascending chain condition on principal ideals)

3 A class of FFMs that are not UFMs
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n, ci ∈ Z≥0}.

We discuss the following classes of Mα.

1 Atomic monoids

2 Bounded and finite factorization monoids (in connection
with the ascending chain condition on principal ideals)
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Atomicity

Proposition (Z., 2021)

For each α ∈ R>0, the following statements are equivalent.

(a) 1 ∈ A(Mα).

(b) A(Mα) = {αn | n ∈ Z}.

(c) Mα is atomic.

If α ∈ R>0 is transcendental, then Mα is atomic.

Example (Mα not atomic)
Consider the monic irreducible polynomial m(x) =
x3 − 2x2 + 3x − 7, which has a real root α ∈ (2, 3). As
m(x)(x + 2) = x4 − x2 − x − 14, we note α4 = α2 + α + 14.
Then α is not an atom in M, implying Mα is not atomic.
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ACCP

One of the most relevant classes of atomic monoids are those
satisfying the ACCP.

A monoid (M,+) satisfies the ascending chain condition on
principal ideals (ACCP) if every sequence {xn}n∈Z>0 ⊆ M
satisfying xn − xn+1 ∈ M for each n ∈ N, is constant after some
point.

Example (Mα does not satisfy ACCP)

α = 2/3. Take the sequence {xn}n∈Z>0 defined by
xn = 2 · (2/3)n: xn − xn+1 = 2 · (2/3)n − 2 · (2/3)n+1

= (2/3)n+1 ∈ M for each n ∈ Z≥0, so the sequence does
not become constant. Hence, it does not satisfy the
ACCP.
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Nested Classes of Atomic Monoids

The following result is well-known.

Proposition

Every BFM satisfies the ACCP.

Therefore,

UFM ⇒ FFM ⇒ BFM ⇒ ACCP ⇒ atomicity

We established the following main result for the class of
Laurent evaluation monoids Mα.

Theorem (Z., 2021)

For α ∈ R>0, the following holds for Mα.

FFM ⇔ BFM ⇔ ACCP
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A Class of FFMs that are not UFMs

Theorem (Z., 2021)

Suppose that α1 and α2 are the roots of an irreducible
quadratic polynomial in Q[x ] such that 0 < α1 < 1 < α2.
Then Mα1 is an FFM and, therefore, satisfies the ACCP.

Example (Mα is FFM but not UFM)
Consider the polynomial p(x) := x2 − 2x + 1

2 . It is irreducible,

with roots α1 := 1−
√
2
2 and α2 := 1 +

√
2
2 . Since

0 < α1 < 1 < α2, the Theorem implies Mα is an FFM.
However, it is not a UFM: since Mα is atomic, we have
1, α, α2 ∈ A(Mα). Then the two sides of the equality
4α1 = 2α2

1 + 1 yield distinct factorizations of the same element
in Mα.
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Diagram Summarizing Our Results

[UFM ⇔ HFM ⇔ LFM]

⇓

[FFM ⇔ BFM ⇔ ACCP]

⇓

atomicity
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