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Motivation

Quantum mechanics is the theory of physics governing
everything on very small scales such as atoms.

Quantum computers can be exponentially faster than
classical computers.

Simulating quantum computation on classical computers can be
used for testing large quantum circuits without having to build
them physically. Also, we can better understand why, how, and
in what situations quantum computers are faster than classical
computers.
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Quantum mechanical postulates

The state of a quantum system can be represented by a
normalized complex vector, |ψ⟩ (“ket” psi), and |ψ⟩ ∈ H, where
H is a complex inner product space called the state space.

If quantum system A has state space HA and quantum system
B has state space HB , then the quantum system consisting of
A and B together has state space HA ⊗HB .

The evolution of a closed quantum system over time can be
described by a unitary linear operator on H, U.∣∣ψ′〉 = U |ψ⟩ .
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Qubits

A qubit is a quantum system with dimH = 2. The two basis
vectors are |0⟩ and |1⟩.

|ψ⟩ = α |0⟩+ β |1⟩ =
[
α
β

]
,

where α, β ∈ C, |α|2 + |β|2 = 1.

n-qubits has state space H = H1 ⊗H2 ⊗ · · · ⊗ Hn, and H has

2n orthonormal basis vectors of the form |x⟩, where x ∈ {0, 1}n.

|ψ⟩ =
∑

x∈{0,1}n
cx |x⟩ ,

where cx ∈ C and
∑
x
|cx |2 = 1.

A quantum circuit performs computations on qubits through a
series of quantum logic gates.
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Quantum logic gates

n-qubits travel through quantum logic gates along n wires.
Quantum logic gates are equivalent to unitary linear operators.

Classical simulation of quantum computers is, in general, slow,
since state vectors have 2n components.∣∣ψ′〉 = UmUm−1 . . .U3U2U1 |ψ⟩ .

|ψ⟩

U1

. . . Um |ψ′⟩
U2 U3
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Pauli group

The Pauli matrices are defined as

X =

(
0 1
1 0

)
,Y =

(
0 −i
i 0

)
,Z =

(
1 0
0 −1

)
.

α |0⟩+ β |1⟩ X β |0⟩+ α |1⟩

α |0⟩+ β |1⟩ Y −iβ |0⟩+ iα |1⟩

α |0⟩+ β |1⟩ Z α |0⟩ − β |1⟩

P = {±I ,±X ,±Y ,±Z ,±iI ,±iX ,±iY ,±iZ} is the Pauli group.

P
⊗n

is the Pauli group on n qubits or the Pauli group.

iX ⊗ Y ⊗ Z = iX1Y2Z3 ∈ P
⊗3

.
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Clifford group

The Clifford group on n qubits, C2, is the normalizer of P
⊗n

. They

are the set of operators C such that CP
⊗n

C−1 ⊆ P
⊗n

. Examples
include the Hadamard, Phase, and Controlled-Z (“Zed”) operators.

H =
1√
2

(
1 1
1 −1

)
S =

(
1 0
0 i

)
CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

α |0⟩+ β |1⟩ H
α+β√

2
|0⟩+ α−β√

2
|1⟩

α |0⟩+ β |1⟩ S α |0⟩+ iβ |1⟩

c00 |00⟩+ c01 |01⟩+ c10 |10⟩+ c11 |11⟩ c00 |00⟩+ c01 |01⟩+ c10 |10⟩ − c11 |11⟩

Theorem (Gottesman)

Up to a global constant factor, C2 is generated by products of H,
S , and CZ operators applied to various qubits.
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Stabilizer states

|0⟩

. . .

S

|ψ⟩
|0⟩ S

|0⟩ S H

|0⟩ H S

Let |ψ⟩ be a stabilizer state iff |ψ⟩ = U |0⟩
⊗n

for some U ∈ C2.
Let a circuit consisting of Clifford gates be a Clifford circuit.

Clifford circuits have many applications, including quantum
error-correction.

(Gottesman-Knill) Clifford circuits can be classically simulated
in O(n2m), where n is the number of qubits and m is the
number of gates, because stabilizer states have efficient
representations on classical computers enabling O(n2) Clifford
gate updates.
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Efficient representation of stabilizer states

A stabilizer state is the unique eigenvector of n commuting

Pauli operators g1, g2, . . . gn ∈ P
⊗n

.
Examples of stabilizer states:

|ψ⟩ = |00⟩+ |01⟩+ |10⟩ − |11⟩
2

∼
[
X Z
Z X

]
because X1Z2 |ψ⟩ = |ψ⟩ and Z1X2 |ψ⟩ = |ψ⟩.

|ψ⟩ = |00⟩+ |11⟩√
2

∼
[
X X
−Y Y

]
because X1X2 |ψ⟩ = |ψ⟩ and −Y1Y2 |ψ⟩ = |ψ⟩.
Example of non-stabilizer state:

|ψ⟩ = |0⟩+ e i
π
4 |1⟩√

2
The generators are stored in matrix. Row multiplication and
swapping not change state. Need unique representation of
stabilizer states.
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Extended graph state representation

A graph state is a stabilizer state with generators
gi = Xi

∏
j∈N(i)

Zj . Let |+⟩ = |0⟩+|1⟩√
2

.

|G ⟩ =
∏

(i ,j)∈E(G)

CZi ,j |+⟩
⊗n

Can get any stabilizer state by applying H and S to graph
states (Van de Nest, 2004).

|ψ⟩ = C |G ⟩ ,

where C is a tensor product of local Clifford operators (⟨H,S⟩).
C |G ⟩ is the extended graph state representation.

Let G be the complete graph on two vertices. If |ψ⟩ = |00⟩+|11⟩√
2

,

H1 |G ⟩ = |ψ⟩.
From the above example, H1 |G ⟩ = H2 |G ⟩. It would be nice to
represent each stabilizer state in terms of a graph uniquely.
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Unique canonical form

Definition

Let an extended graph state C |G ⟩ be in canonical form if there
exist n-tuples c ≡ (c1, . . . cn) and z ≡ (z1, . . . zn) with

ci ∈ {I , S ,H} and zi ∈ {I ,Z} such that C =
n⊗

i=1
cizi , and for all

(i , j) ∈ E (G ) such that ci = H, we have j > i .

Theorem (Hu, Khesin)

Any stabilizer state |ψ⟩ can be expressed uniquely in canonical
form up to a constant factor.
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Visualizing the canonical form
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Figure: An illustration of |ψ⟩ = H1H2S3Z3Z5S6H7Z7 |G ⟩.

Each H cannot be slid down further.

Can explore the connection between stabilizer states and graphs.
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Graph state stabilizer simulation

Figure: Kerzner 2021. Best runtimes for various methods of stabilizer
simulation. They all improve the original Gottesman-Knill algorithm.

Each method of stabilizer simulation works best for certain
types of circuits. Can runtime of applying CZ to extended
graph states be improved from O(n2) to O(n) (Kerzner)?
We improve the runtime in some cases by deriving multi-case
formulas to directly compute the updated state upon CZ gate
application

Theorem (Hu, Khesin)

There exists a family of extended graph states such that applying a
CZ gate requires Ω(n2) edges of G to be toggled.

Improved Graph Formalism for Quantum Circuit Simulation Our discoveries 15 / 23



Working with linear combinations of stabilizer states

Extended work of Elliot et. al 2010 and Garcia et al. 2014.

Theorem (Hu, Khesin)

Let k = 2m + 1. Let A ⊆ {1, 2 . . . n} be an arbitrary set. Then

(I + i2m+1
∏
p∈A

Zp) |G ⟩ = (1+ i2m+1)
∏
p∈A

Zm+1
p

∏
p,q∈A

CSp,q |G ⟩ .

Theorem (Hu, Khesin)

Let S ≡ {|ψ1⟩ , |ψ2⟩ , |ψ3⟩} be a set of linearly dependent stabilizer
states that are not all parallel. Then, either
S = {|ϕ⟩ ,P |ϕ⟩ , I+P√

2
|ϕ⟩} for some Pauli operator P or by

adjusting each stabilizer state by constant factors,
|ψ1⟩+ |ψ2⟩+ |ψ3⟩ = 0 and
⟨ψ2|ψ3⟩ = ⟨ψ3|ψ1⟩ = ⟨ψ1|ψ2⟩ ∈ { i−1

2 ,−1
2}.
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Stabilizer rank of magic states

A n-qubit magic state |Tn⟩ is the state (T |+⟩)
⊗n

, where

T =

(
1 0

0 e i
π
4

)
. The stabilizer rank χ(|ψ⟩) is the smallest

integer χ such that there exists a set of χ stabilizer states S
such that |ψ⟩ ∈ span(S).

The upper bound for the time complexity of simulating
universal quantum computation scales with χ(|Tm⟩).

Figure: From Qassim et al. 2021. These are the best known upper
bounds for m ≤ 8. Not much is known about the stabilizer rank of magic
states even for small number of qubits.
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Improving upper bounds on χ(|Tn⟩)

Number of stabilizer states is 2
n2

2
+o(n), so brute force search is

infeasible for n ≥ 7.

Possible approach:

Start with |+⟩
⊗n

and apply T1,T2, . . .Tn. Applying Ti will split
each stabilizer state into two stabilizer states.
Teach computer how to combine and split stabilizer states.

Characterizing linear dependence of stabilizer states is useful
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Small case stabilizer decompositions

Difficult to find structure even in small cases

Even for n = 3, many possible stabilizer decompositions. Can
all orbits of stabilizer decompositions be characterized up to
swapping of qubits?

For n = 3, all stabilizer decompositions have complete graph,
star graph, and empty graph.

(T |+⟩)
⊗3

=
i − e i

π
4

2
Z1Z2Z3 |I3⟩

− i + e
πi
4

2
Z1Z2Z3 |K3⟩+

1 + e i
π
4

2
H1H2S3 |S3,3⟩
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Research journey and lessons learned

Worked on improving upper bounds on stabilizer rank of magic
states for 3 months and didn’t work— don’t give up

After discovering canonical form, found another paper written
in 2007 that did very similar work— do good literature review
early on

Overall, doing math research felt rewarding
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