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Introduction

Today, we will talk about learning algorithms.

These are algorithms which attempt to learn information through
repeated testing by an adversary (in particular, we are not the ones
learning any algorithms).

For example, an algorithm learning to classify different images.

Efficiency is measured by the number of mistakes that they make.

Raymond Feng, Andrew Lee, Espen Slettnes (MIT PRIMES Conference)Learning Algorithms October 16, 2021 3 / 23



The Standard Model

Standard Model

The standard model is the situation of a learner attempting to classify
inputs (in the set X ) with labels (in the set Y ) based on a number of
possible functions f ∈ F mapping X to Y .

The learning takes place in rounds, where the adversary gives the
learner a single input each round and the learner must guess the
corresponding label. The adversary then tells the learner the
correct answer.

It is guaranteed that the information given to the learner is consistent
across all rounds with some function f ∈ F . In particular, the learner
will eventually never make a mistake.

The efficiency of an algorithm can be measured by either the
algorithms worst-case performance or average performance.

This is measured by the number of mistakes that the learner makes.
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The Standard Model

The previous model is also called strong reinforcement learning.

After each round, the adversary tells the learner the correct
answer.

In weak reinforcement learning, the adversary only tells the learner
if the given answer was correct or incorrect.

This is also known as the bandit model.
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An Example

Scenario: want to learn to classify a training data set of images of
dogs, foxes, and wolves.
The set of inputs X : the data set
The set of outputs Y : {dog, fox, wolf}
The set of possible functions F : all 3|X | possible functions
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An Example

Adversary gives learner an image (shown below).
Learner says “FOX”. (This is a mistake for the learner.)
Strong reinforcement (standard model): Adversary tells the learner
that the right answer is “DOG.”
Weak reinforcement (bandit model): Adversary tells the learner that
they were wrong. The learner only knows that the correct answer was
either “DOG” or “WOLF.”
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A Different Model

Delayed, Ambiguous Reinforcement Model

This model is similar to the standard weak reinforcement model, but the
learner receives a fixed number r of inputs each round, and the adversary
only gives the learner the next input after they answer the previous
one. At the end of the round, the adversary says “YES” if all answers
during the round were correct and “NO” otherwise.

For r = 1, this model is exactly the same as the weak reinforcement
learning model.

A natural question might be whether information of future inputs is
useful.
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Modifying the Standard Weak Model

To analyze the importance of knowing future inputs, we introduce the
following model.

Modified Standard Weak Reinforcement Model

If F is a set of functions f : X → Y , we define CARTr (F ) to be a set of
functions f ′ : X r → Y r , so that each f ∈ F has a corresponding
f ′ ∈ CARTr (F ) such that for any x1, x2, . . . , xr ∈ X we have

f ′((x1, x2, . . . , xr )) = (f (x1), f (x2), . . . , f (xr )).

Running the standard weak reinforcement model on CARTr (F ) would
simulate the process of running rounds of r inputs, where the
adversary gives all inputs at the same time at the beginning of
each round.
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Examples

Consider the same scenario as earlier and let r = 2.

In the delayed, ambiguous model, the learner would receive an image,
guess an output, receive another input, and then guess another
output. The adversary would only say ”YES” if both guesses were
correct.

In the modified weak reinforcement model, the adversary gives two
images to the learner at the same time and then the learner guesses
their outputs. The adversary says ”YES” if both guesses were correct.
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Examples
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Measuring Efficiencies

Measuring efficiencies with opt(F )

In general, opt(F ) is the maximum number of mistakes that a learner
makes while learning a function from the set F . We use subscripts to
indicate which learning scenario we are referring to.

optstd(F ) = optstrong (F ) refers to the standard model/strong
reinforcement.

optbandit(F ) = optweak(F ) refers to the bandit model/weak
reinforcement.

optamb,r (F ) refers to delayed, ambiguous reinforcement.

optweak(CARTr (F )) refers to modified weak reinforcement.
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Comparing optweak(CARTr(F )) and optamb,r(F )

Is knowing all r inputs at the same time for each round of learning
helpful to the learner?

It is clearly not harmful, since it is extra information. Therefore, we
always have

optweak(CARTr (F )) ≤ optamb,r (F ).

If knowing all the inputs before the round started was not helpful, we
would expect that optweak(CARTr (F )) = optamb,r (F ) always.

Indeed, for r = 1, when the two scenarios are the same, we always have

optweak(CART1(F )) = optamb,1(F ).
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Known Results

Theorem (Auer, Long (1999))

There exist X ,Y ,F such that

optweak(CART2(F )) < optamb,2(F ).

Their example has X = 1, 2, 3,Y = 0, 1, and F containing the following 4
functions:

x f1(x) f2(x) f3(x) f4(x)

1 0 0 0 1
2 0 0 1 1
3 0 1 1 1

For this example, optamb,r (F ) ≥ 3 but optweak(CARTr (F )) = 2.
This shows that knowledge of all inputs of a round is strictly beneficial for
the learner.
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Our Results

We will now go over some of the results that we discovered regarding the
different learning situations presented.
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Modified Weak vs. Delayed Ambiguous Reinforcement

Theorem

Let X be an ordered set, Y = {0, 1}, and F be a set of non-decreasing
functions from X to Y . Then

optweak(CARTr (F )) = (1± o(1))r ln(|F |)

and
optamb,r (F ) = (1− o(1))2r ln(|F |)

Notice how the worst-case performance for the weak reinforcement
model is linear in r , but it is exponential in r for the delayed,
ambiguous reinforcement model.

This is surprising! A slight difference in the flow of information had a
large impact on the efficiency of learning algorithms.
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Maximum Factor Gap

Long (2019) proved that for all M > 1 and infinitely many k , there
always exists a family of functions with a range of size k such that
optstd(F ) = M and optweak(F ) is about k ln k optstd(F ). He also
proved this is maximum such factor gap between the models.

We generalize this result to optweak(CARTr (F )). We proved that

Theorem

The maximum factor gap for general r is between k r ln k and rk r ln k.
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Relative Position Models

We can also look at models where the learner guesses a permutation
σ ∈ F . We explored the relative position model and its variants.

Relative Position Model

In the relative position model, the adversary chooses a special input x and
set of r inputs S . The learner guesses the relative position of x in S , i.e.
the number of elements y of S such that σ(x) > σ(y).

Delayed Relative Position Model

Instead of giving all of S at once, the adversary gives the elements one by
one, and for each input the learner guesses if it is higher or lower. The
learner is correct if the number of “lower”s equals x ’s relative position.

We denote the maximum number of mistakes in the nondelayed version by
opt(RPOSr (F )) and in the delayed version by optRPOS

amb,r (F ).
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Relative Position Models

If F = Sn, an optimal strategy for the adversary is to force the learner to
do an insertion sort. For the learner, the insertion step is then to guess
σ(n), the value of the last input.

If we represent a lower value as a 0 and a greater value as a 1, we see that
this is equivalent to guessing a non-decreasing function, giving:

Theorem

For the nondelayed version of the relative position model,

opt(RPOSr (Sn)) = (1 + o(1))r ln |Sn|,

whereas for the delayed version,

optRPOS
amb,r (Sn) = (1 + o(1))2r ln |Sn|.
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