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Guavas?
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Guava Juice!
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Transporting Guava Juice

We must transport guava juice stored in warehouses from the
first distribution to the second distribution via roads.
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Transporting Guava Juice

Transporting 1 gallon of guava juice along 1 road costs $1.
Let’s try transporting the juice and see how much it costs!
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Transporting Guava Juice
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Transporting Guava Juice
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Transporting Guava Juice
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Transporting Guava Juice

Here’s a more cost-e�ective way of transporting the guava juice:
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Wasserstein Distance

A natural question:
What is the most cost-e�ective way of transporting the juice?

Wasserstein distance = minimum cost of transportation.
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Random Walks with Laziness

We study the Wasserstein distance between the k-step
probability distributions of random walks with laziness on a
finite graph.

starting vertex u

laziness α ∈ [0, 1]:
probability of staying
put
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k-step Probability Distributions

We study the Wasserstein distance between the k-step
probability distributions of random walks with laziness on a
finite graph.

At each vertex, the proportion α of the mass stays while the rest
of the mass splits evenly among its neighbors.
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Defining the Guvab

The following definition captures our object of study.

Definition
We define a Guvab to be a tuple (G,u, v, α, β) where G is a finite
simple connected graph, u, v ∈ V(G), and α, β ∈ [0, 1] with α ≤ β.

Given a Guvab and a nonnegative integer k, consider the k-step
probability distributions of the two random walks with starting
vertices u,v and lazinesses α, β, respectively. We denote by Wk
the Wasserstein distance between these two k-step probability
distributions.
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Our Project

Motivation:

W1 is used to determine Lin-Lu-Yau-Ollivier-Ricci curvature
([LLY11])
Applications in drug design, cancer networks, and economic
risk ([SGR+15], [SGT16], [WX21])

Our Question:

What about Wk as k gets larger and larger?
Does it converge? When? To what? How fast?
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Main Result #1: Classifying End Behavior

When lim
k→∞

Wk is well-defined, call it W.

Theorem (Classifying End Behavior)
All Guvabs fit into one of four categories, and we know when they
fit into each category:

1. W = 1 and α, β < 1
I G bipartite, α = β = 0, d(u, v) is odd

2. W = 1
2 and α, β < 1

I G bipartite, α = 0 < β < 1
3. W = 0 and α, β < 1

I all other Guvabs with α, β < 1
4. β = 1
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Main Result #2: Exponential Convergence

For any Guvab, lim
k→∞

W2k and lim
k→∞

W2k+1 are well-defined (due to
Main Result 1).

Theorem (Exponential Convergence of W-Dist)
For any Guvab, we have that:

either {W2k} is eventually constant, or there exists a constant
λeven ∈ (−1, 1) and a positive constant ceven > 0 such that
|W2k − limk→∞ W2k| ∼ ceven · |λeven|2k

either {W2k+1} is eventually constant, or there exists a
constant λodd ∈ (−1, 1) and a positive constant codd > 0 such
that |W2k+1 − limk→∞ W2k+1| ∼ codd · |λodd|2k+1
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Main Result #3: Characterization of Constancy

Theorem (Characterization of Constancy)
When α, β < 1, we have that {Wk} is eventually constant if and
only if one of the following holds:

1. α = β = 0, G is bipartite, and d(u, v) is odd (here W = 1),
2. α = 0, β = 1

2 , and G is bipartite (here W = 1
2 ),

3. α = β = 0 and N(u) = N(v) (here W = 0),

4. α = β =
1

deg u + 1 , the edge (u, v) ∈ E(G), and if the edge
(u, v) were removed from E(G) then u, v would have
N(u) = N(v) (here W = 0),

5. α = β and u = v (here W = 0).
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Main Result #3: Characterization of Constancy

3. α = β = 0 and N(u) = N(v) (here W = 0),
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deg u + 1 , the edge (u, v) ∈ E(G), and if the edge
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Thanks for listening! Any questions?

20 21



References

Yong Lin, Linyuan Lu, and Shing-Tung Yau.
Ricci curvature of graphs.
Tohoku Math. J., 63(4):605–627, 2011.

Romeil Sandhu, Tryphon Georgiou, Ed Reznik, Liangjia Zhu, Ivan
Kolesov, Yasin Senbabaoglu, and Allen Tannenbaum.
Graph curvature for differentiating cancer networks.
Sci. Rep., 5(1):1–13, 2015.

Romeil S Sandhu, Tryphon T Georgiou, and Allen R Tannenbaum.
Ricci curvature: An economic indicator for market fragility and
systemic risk.
Sci. Adv., 2(5):e1501495, 2016.

JunJie Wee and Kelin Xia.
Ollivier persistent ricci curvature-based machine learning for
the protein–ligand binding affinity prediction.
J Chem Inf Model, 61(4):1617–1626, 2021.

21 / 21


