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GUAVA JUICE!
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TRANSPORTING GUAVA JUICE

We must transport guava juice stored in warehouses from the
first distribution to the second distribution via roads.




TRANSPORTING GUAVA JUICE
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Transporting 1 gallon of guava juice along 1 road costs $1.
Let's try transporting the juice and see how much it costs!




TRANSPORTING GUAVA JUICE
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TRANSPORTING GUAVA JUICE

-4

2.5 2 0.5

2.5 15
0.5 1.5 2.5 0.5




TRANSPORTING GUAVA JUICE
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cost=2-2+1:-1=5




TRANSPORTING GUAVA JUICE

Here's a more cost-effective way of transporting the guava juice:
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cost=15-1+05:-2+1-1+05:-1=4




WASSERSTEIN DISTANCE

A natural question:
What is the most cost-effective way of transporting the juice?
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Wasserstein distance = minimum cost of transportation.
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RANDOM WALKS WITH LAZINESS

We study the Wasserstein distance between the k-step
probability distributions of random walks with laziness on a

finite graph.
u
L
a=0.2

m starting vertex u

m laziness a € [0,1]:
probability of staying
put



R-STEP PROBABILITY DISTRIBUTIONS

We study the Wasserstein distance between the k-step
probability distributions of random walks with laziness on a

finite graph.

0 307 0.267
0.107
0-step 1- step 2- step

a=0.2

At each vertex, the proportion « of the mass stays while the rest
of the mass splits evenly among its neighbors.




DEFINING THE GUVAB

The following definition captures our object of study.

Definition

We define a Guvab to be a tuple (G, u, v, o, 8) where G is a finite
simple connected graph, u,v € V(G), and «, 8 € [0,1] with a < .

Given a Guvab and a nonnegative integer R, consider the k-step
probability distributions of the two random walks with starting
vertices u,v and lazinesses «, 3, respectively. We denote by W,
the Wasserstein distance between these two k-step probability
distributions.



Motivation:

m W, is used to determine Lin-Lu-Yau-Ollivier-Ricci curvature
([LLY11])

m Applications in drug design, cancer networks, and economic
risk ((SGR*15], [SGT16], [WX21])

Our Question:

m What about W, as k gets larger and larger?
m Does it converge? When? To what? How fast?




MAIN RESULT #1: CLASSIFYING END BEHAVIOR

When lim W, is well-defined, call it W.

kR— o0

Theorem (Classifying End Behavior)

All Guvabs fit into one of four categories, and we know when they
fit into each category:
1. W=1and o, < 1
» G bipartite, « = 8 = 0, d(u, V) is odd
2 W=Jand o, 3 <1
» G bipartite, « =0 < 3 < 1
3. W=o0and o, <1
» all other Guvabs with «, 3 < 1

4 B =1



MAIN RESULT #2: EXPONENTIAL CONVERGENCE

For any Guvab, lim W, and lim W, are well-defined (due to
kR—o0 kR—o0

Main Result 1).

Theorem (Exponential Convergence of W-Dist)

For any Guvab, we have that:
m either {W,} is eventually constant, or there exists a constant
Aeven € (—1,1) and a positive constant Ceyen > O such that
War — limp_so0 War| ~ Ceven - [Aeven|*®
m either {W, .} is eventually constant, or there exists a
constant \,qq € (—1,1) and a positive constant c,qq > O such
that |Wapq — limp_yoo Wokia| ~ Codd - [Nodd

|2k+1



MAIN RESULT #3: CHARACTERIZATION OF CONSTANCY

Theorem (Characterization of Constancy)

When «, 8 < 1, we have that {W,} is eventually constant if and
only if one of the following holds:

1.
2. « =0, 8 =3, and G is bipartite (here W = ),

3.

4. a=f = é, the edge (u,v) € E(G), and if the edge

a = 3 =0, G is bipartite, and d(u, v) is odd (here W = 1),

a=pB=o0andN(u) = N(v) (here W = 0),

degu +1
(u,v) were removed from E(G) then u,v would have

N(u) = N(v) (here W = 0),
a =B and u = v (here W = 0).




MAIN RESULT #3: CHARACTERIZATION OF CONSTANCY

1. a = =0, G is bipartite, and d(u, v) is odd (here W = 1),
2. a =0, 3 =3, and G is bipartite (here W = ),




MAIN RESULT #3: CHARACTERIZATION OF CONSTANCY

3. a =B =o0and N(u) = N(v) (here W = 0),

1 :
4 a == AP the edge (u,v) € E(G), and if the edge

(u,v) were removed from E(G) then u, v would have
N(u) = N(v) (here W = 0),

o

5. a =S and u = v (here W = 0).
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THANKS FOR LISTENING! ANY QUESTIONS?
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