Quaternion-Based Analytical Inverse Dynamics for the Human Body

Andrew Du under the mentorship of David Darrow

MIT PRIMES Conference

October 16, 2021

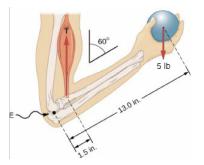
Background and Overview			
000			

Inverse Dynamics for the Human Body

Inverse dynamics is the calculation of joint forces and torques in a model, given certain known parameters.

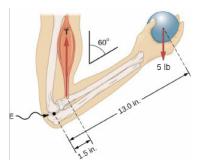
Inverse Dynamics for the Human Body

Inverse dynamics is the calculation of joint forces and torques in a model, given certain known parameters.



Inverse Dynamics for the Human Body

Inverse dynamics is the calculation of joint forces and torques in a model, given certain known parameters.



It's hard to measure these internal dynamics directly, so we need numerical models.

openoregon.pressbooks.pub

Background and Overview			
000			

Why We Should Care

Prosthetic Design

Background and Overview						
000	0000	000	00	00	00000	00

Why We Should Care

Prosthetic Design

Physical Therapy

Background and Overview						
000	0000	000	00	00	00000	00

Why We Should Care

Prosthetic Design


```
Physical Therapy
```


Human-Inspired Robots

reddit.com/r/VioletEvergarden, static01.nyt.com, engadget.com

Background and Overview			
000			

Overview

1. Existing methods and models

Background and Overview			
000			

Overview

- $1. \ {\sf Existing methods and models}$
- 2. Theoretical background

Background and Overview			
000			

Overview

- 1. Existing methods and models
- 2. Theoretical background
- 3. Our novel method

Existing Methods			
0000			

Some Terminology

Segment: A rigid part of the body that moves as one object.

000	0000	000		00000	

Some Terminology

Segment: A rigid part of the body that moves as one object.Distal, Proximal: Describing a segment or joint farther or closer to the torso, respectively.

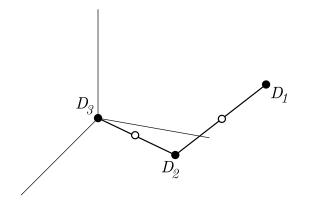
Some Terminology

Segment: A rigid part of the body that moves as one object.

- **Distal, Proximal:** Describing a segment or joint farther or closer to the torso, respectively.
- **ICS, SCS:** The *inertial coordinate system* (ICS) and *segment coordinate system* (SCS) are the global and segment-specific coordinate axes, respectively.

Existing Methods			
0000			

Normally, we start off with a diagram like this:



Existing Methods			
0000			

For each segment, starting from the one farthest from the torso and moving inwards:

1. Calculate force in the ICS at the proximal end of the segment

Existing Methods			
0000			

For each segment, starting from the one farthest from the torso and moving inwards:

- 1. Calculate force in the ICS at the proximal end of the segment
- 2. Find moment at the proximal end in the SCS

Existing Methods			
0000			

For each segment, starting from the one farthest from the torso and moving inwards:

- 1. Calculate force in the ICS at the proximal end of the segment
- 2. Find moment at the proximal end in the SCS
- 3. Transfer force and moment to next segment

Existing Methods			
0000			

For each segment, starting from the one farthest from the torso and moving inwards:

- 1. Calculate force in the ICS at the proximal end of the segment
- 2. Find moment at the proximal end in the SCS
- 3. Transfer force and moment to next segment

However, there are some shortcomings to this method.

Existing Methods			
0000			

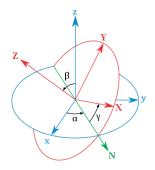
The Orientation Problem

The usual way of tracking the orientation of each segment uses Euler angles

Existing Methods			
0000			

The Orientation Problem

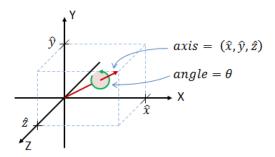
- The usual way of tracking the orientation of each segment uses Euler angles
- ▶ This structure suffers from singularities, or **gimbal lock**



en.wikipedia.org/wiki/Euler_angles

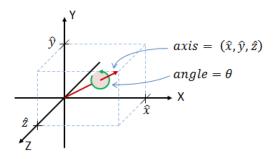
	Theoretical Background		
	000		

 Quaternions define a unique transformation and orientation in terms of an axis and an angle



	Theoretical Background		
	000		

 Quaternions define a unique transformation and orientation in terms of an axis and an angle



The corresponding quaternion to such a transformation is

$$q = \cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right) \vec{u}$$

danceswithcode.net/engineeringnotes/quaternions/

	Theoretical Background		
	000		

While Euler angles use three coordinates, quaternions use four—but they avoid gimbal lock

	Theoretical Background		
	000		

- While Euler angles use three coordinates, quaternions use four—but they avoid gimbal lock
 - ▶ No three coordinate system can do this, for geometric reasons

	Theoretical Background		
	000		

- While Euler angles use three coordinates, quaternions use four—but they avoid gimbal lock
 - No three coordinate system can do this, for geometric reasons
- Quaternions are also very convenient for rotating vectors, as we simply conjugate them

	Theoretical Background		
	000		

- While Euler angles use three coordinates, quaternions use four—but they avoid gimbal lock
 - No three coordinate system can do this, for geometric reasons
- Quaternions are also very convenient for rotating vectors, as we simply conjugate them
 - Conjugating a vector simply entails multiplying it by the quaternion and its conjugate, in order: qvq*

	Theoretical Background		
	000		

We can use screws to reduce the number of steps per segment

	Theoretical Background		
	000		

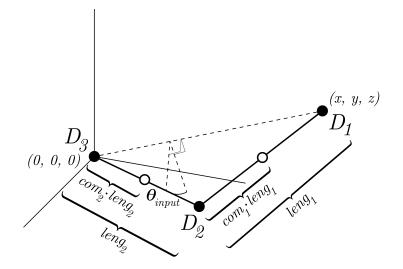
- We can use screws to reduce the number of steps per segment
- Screws are really just a concatenation of two specific kinds of vectors: a linear one and a related angular one

- ▶ We can use screws to reduce the number of steps per segment
- Screws are really just a concatenation of two specific kinds of vectors: a linear one and a related angular one
- In our case, we use the wrench, which is a force and moment vector combined.

- ▶ We can use screws to reduce the number of steps per segment
- Screws are really just a concatenation of two specific kinds of vectors: a linear one and a related angular one
- In our case, we use the wrench, which is a force and moment vector combined.
- Screw algebra gives a single step method of calculating the wrench at each subsequent joint (Dumas, 2004):

$$\begin{bmatrix} \vec{F}_i \\ \vec{M}_i \end{bmatrix} = \begin{bmatrix} m_i \mathbf{E}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ m_i \tilde{\mathbf{c}}_i & \mathbf{I}_i \end{bmatrix} \begin{bmatrix} \vec{a}_i - \vec{g} \\ \vec{\alpha}_i \end{bmatrix} + \begin{bmatrix} \mathbf{0}_{3 \times 1} \\ \vec{\omega}_i \times \mathbf{I}_i \vec{\omega}_i \end{bmatrix} \\ + \begin{bmatrix} \mathbf{E}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ \tilde{\mathbf{d}}_i & \mathbf{E}_{3 \times 3} \end{bmatrix} \begin{bmatrix} \vec{F}_{i-1} \\ \vec{M}_{i-1} \end{bmatrix}$$

The Basic Model: A Diagram and a Brief Explanation



	Basic Model		
	00		

The Basic Model: Equations

We assume for now that the arm is not in motion. Then in this framework, all moments and forces can be obtained from a sequence of matrix products:

$$\begin{aligned} & \text{Wrist:} \quad \begin{bmatrix} \vec{F}_1 \\ \vec{M}_1 \end{bmatrix} = \begin{bmatrix} \vec{m_0 g} \\ \vec{0} \end{bmatrix} \\ & \text{Elbow:} \quad \begin{bmatrix} \vec{F}_2 \\ \vec{M}_2 \end{bmatrix} = \begin{bmatrix} m_1 \mathbf{E}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ m_1 \tilde{\mathbf{c}}_1 & \mathbf{I}_1 \end{bmatrix} \begin{bmatrix} -\mathbf{g} \\ 0 \end{bmatrix} + \begin{bmatrix} \mathbf{E}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ \tilde{\mathbf{d}}_1 & \mathbf{E}_{3 \times 3} \end{bmatrix} \begin{bmatrix} \vec{F}_1 \\ \vec{M}_1 \end{bmatrix} \\ & \text{Shoulder:} \quad \begin{bmatrix} \vec{F}_3 \\ \vec{M}_3 \end{bmatrix} = \begin{bmatrix} m_2 \mathbf{E}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ m_2 \tilde{\mathbf{c}}_2 & \mathbf{I}_2 \end{bmatrix} \begin{bmatrix} -\mathbf{g} \\ 0 \end{bmatrix} + \begin{bmatrix} \mathbf{E}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ \tilde{\mathbf{d}}_2 & \mathbf{E}_{3 \times 3} \end{bmatrix} \begin{bmatrix} \vec{F}_2 \\ \vec{M}_2 \end{bmatrix} \end{aligned}$$

	Basic Model		
	00		

The Basic Model: Equations

We assume for now that the arm is not in motion. Then in this framework, all moments and forces can be obtained from a sequence of matrix products:

$$\begin{aligned} & \text{Wrist:} \quad \begin{bmatrix} \vec{F}_1 \\ \vec{M}_1 \end{bmatrix} = \begin{bmatrix} \vec{m_0 g} \\ \vec{0} \end{bmatrix} \\ & \text{Elbow:} \quad \begin{bmatrix} \vec{F}_2 \\ \vec{M}_2 \end{bmatrix} = \begin{bmatrix} m_1 \mathbf{E}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ m_1 \tilde{\mathbf{c}}_1 & \mathbf{I}_1 \end{bmatrix} \begin{bmatrix} -\mathbf{g} \\ 0 \end{bmatrix} + \begin{bmatrix} \mathbf{E}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ \tilde{\mathbf{d}}_1 & \mathbf{E}_{3 \times 3} \end{bmatrix} \begin{bmatrix} \vec{F}_1 \\ \vec{M}_1 \end{bmatrix} \\ & \text{Shoulder:} \quad \begin{bmatrix} \vec{F}_3 \\ \vec{M}_3 \end{bmatrix} = \begin{bmatrix} m_2 \mathbf{E}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ m_2 \tilde{\mathbf{c}}_2 & \mathbf{I}_2 \end{bmatrix} \begin{bmatrix} -\mathbf{g} \\ 0 \end{bmatrix} + \begin{bmatrix} \mathbf{E}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ \tilde{\mathbf{d}}_2 & \mathbf{E}_{3 \times 3} \end{bmatrix} \begin{bmatrix} \vec{F}_2 \\ \vec{M}_2 \end{bmatrix} \end{aligned}$$

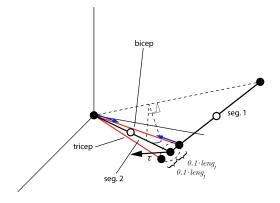
The middle wrench is gone, as are both acceleration vectors:

$$\begin{bmatrix} \vec{F}_i \\ \vec{M}_i \end{bmatrix} = \begin{bmatrix} m_i \mathbf{E}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ m_i \tilde{\mathbf{c}}_i & \mathbf{I}_i \end{bmatrix} \begin{bmatrix} \vec{a}_i - \vec{g} \\ \vec{g}_i \end{bmatrix} + \begin{bmatrix} \mathbf{0}_{3 \times 1} \\ \vec{\omega}_i \times \mathbf{I}_i \vec{\omega}_i \end{bmatrix} + \begin{bmatrix} \mathbf{E}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ \tilde{\mathbf{d}}_i & \mathbf{E}_{3 \times 3} \end{bmatrix} \begin{bmatrix} \vec{F}_{i-1} \\ \vec{M}_{i-1} \end{bmatrix}$$

		Muscles •0	

Adding Musculature

Before adding additional segments, we introduce a framework for incorporating muscles into the model.



Each muscle is treated as a tension between two fixed endpoints.

		Muscles	
		00	

Changes to the Algorithm

We now calculate the wrenches twice.

1. Muscle-free wrench calculation

		Muscles	
		00	

Changes to the Algorithm



We now calculate the wrenches twice.

- 1. Muscle-free wrench calculation
- 2. Find muscle tension

$$\begin{bmatrix} \vec{F}_i \\ \vec{M}_i \end{bmatrix}_m = \sum_{\substack{1 \le j \le M, \\ n_d(j)+1=i}} \begin{bmatrix} \vec{u}_j \cdot \mu_j \\ \vec{d}_{n_d(j)} \cdot (1 - r_d(j)) \times \vec{u}_j \cdot \mu_j \end{bmatrix}$$

		Muscles	
		00	

Changes to the Algorithm



We now calculate the wrenches twice.

- 1. Muscle-free wrench calculation
- 2. Find muscle tension

$$\begin{bmatrix} \vec{F}_i \\ \vec{M}_i \end{bmatrix}_m = \sum_{\substack{1 \le j \le M, \\ n_d(j)+1=i}} \begin{bmatrix} \vec{u}_j \cdot \mu_j \\ \vec{d}_{n_d(j)} \cdot (1 - r_d(j)) \times \vec{u}_j \cdot \mu_j \end{bmatrix}$$

3. Recalculate the wrenches with a modified equation:

$$\begin{bmatrix} \vec{F}_{i+1} \\ \vec{M}_{i+1} \end{bmatrix} = \begin{bmatrix} m_i \mathbf{E}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ m_i \tilde{\mathbf{c}}_i & \mathbf{I}_i \end{bmatrix} \begin{bmatrix} -\mathbf{g} \\ 0 \end{bmatrix} + \begin{bmatrix} \mathbf{E}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ \tilde{\mathbf{d}}_i & \mathbf{E}_{3 \times 3} \end{bmatrix} \begin{bmatrix} \vec{F}_i \\ \vec{M}_i \end{bmatrix} + \begin{bmatrix} \vec{F}_{i+1} \\ \vec{M}_{i+1} \end{bmatrix}_m$$

		The Hand	
		00000	

Adding the Hand

With our current setup, adding the hand and fingers encounters a few difficulties:

		The Hand ●0000	

Adding the Hand

With our current setup, adding the hand and fingers encounters a few difficulties:

 Our current algorithm does not have a simple way to let segments converge

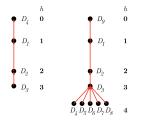
		The Hand	
		00000	

Adding the Hand

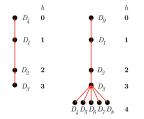
With our current setup, adding the hand and fingers encounters a few difficulties:

- Our current algorithm does not have a simple way to let segments converge
- There are exponentially more possible ways to hold an object as segments increase in number

			The Hand 0●000	
The New In	dices			

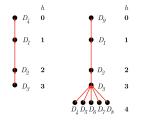


			The Hand 0●000	
The New In	dices			



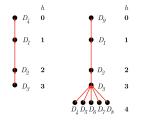
 Our indices are now simply a labelling serving as a way to distinguish points

			The Hand 0●000	
The New Ir	ndices			



- Our indices are now simply a labelling serving as a way to distinguish points
- We create a hierarchy based on the number of edges between the shoulder and each point.

			The Hand 0●000	
The New Ir	ndices			



- Our indices are now simply a labelling serving as a way to distinguish points
- We create a hierarchy based on the number of edges between the shoulder and each point.
- Calculations now iterate along each hierarchy number

		The Hand	
		00000	

 Each additional segment we add to the model creates more degrees of freedom

		The Hand	
		00000	

- Each additional segment we add to the model creates more degrees of freedom
- The human body usually uses the same orientation to hold an object

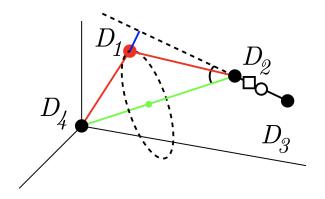
		The Hand	
		00000	

- Each additional segment we add to the model creates more degrees of freedom
- The human body usually uses the same orientation to hold an object
- We create a rudimentary way of predicting how the arm will naturally position itself

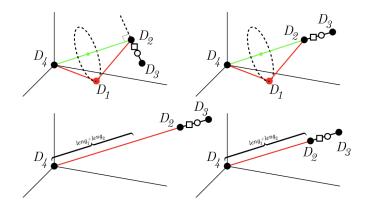
Simu Liu Stock Photo

		The Hand	
		00000	

The gist of it is that we find whatever orientation minimizes bending at the wrist:



		The Hand	
		00000	



			Conclusion
			0

Quaternions in place of Euler angles

			Conclusion
			0

- Quaternions in place of Euler angles
- Screw algebra for efficiency

			Conclusion
			0

- Quaternions in place of Euler angles
- Screw algebra for efficiency
- Muscle integration

			Conclusion
			0

- Quaternions in place of Euler angles
- Screw algebra for efficiency
- Muscle integration
- Implementation of the hand

			Conclusion
			00

Acknowledgements

I'd like to thank David Darrow as my mentor for the PRIMES project, Dr. Daniel Nolte for suggesting the topic for this project, as well as Dr. Tanya Khovanova, Prof. Pavel Etingof, and Dr. Slava Gerovitch for running the PRIMES research program.