# Square Tilings of Translation Surfaces 

Kevin Cong<br>Under the Direction of Professor Sergiy Merenkov, CCNY-CUNY MIT PRIMES Conference

October 16, 2021

## An Introduction: Square Tilings

## Definition

A square tiling of $\mathcal{P}$ is a set of non-overlapping squares which cover $\mathcal{P}$ and which are all contained by $\mathcal{P}$.


An example of a square tiling

## How to Analyze Tilings? The Contacts Graph

Definition (Contacts Graph)

- Graph G
- Vertices $S$ correspond to squares $Z_{S}$
- Edge between $U$ and $V$ if and only if squares $Z_{U}$ and $Z_{V}$ share a side


A square tiling (right) with its contacts graph (left)

## Contacts Graphs and Triangulations, Part I

## Definition

A triangulation of $\mathcal{P}$ is a covering of $\mathcal{P}$ by non-overlapping triangles

## Contacts Graphs and Triangulations, Part I

## Definition

A triangulation of $\mathcal{P}$ is a covering of $\mathcal{P}$ by non-overlapping triangles

Lemma
The contacts graph is always a triangulation.


## Contacts Graphs and Triangulations, Part II

Main Questions

- Given a triangulation, is there always a tiling with it as contacts graph?
- Is it unique?
- Can we construct such a tiling?


## Contacts Graphs and Triangulations, Part II

Main Questions

- Given a triangulation, is there always a tiling with it as contacts graph?
- Is it unique?
- Can we construct such a tiling?

Answer [Schramm 1993]
Yes!
Main Proof Idea:

- Extremal Metric!


## From Squares to Translation Surfaces: Step I, the Torus!

## Definition

The torus:

- donut
- square with opposite sides identified as the same


Torus


Torus as a square with identified edges.

## Example Tiling of a Torus



Doubly Periodic / Torus Tiling

## Theorems on the Torus

Theorem (Schramm 1996, C. 2020)

- For any triangulation, a square tiling with it as contacts graph always exists! [Schramm]
- It is unique up to horizontally translating each square, or vertically translating each square. We can construct it if we know the square sizes. [Our result!]


## Theorems on the Torus

Theorem (Schramm 1996, C. 2020)

- For any triangulation, a square tiling with it as contacts graph always exists! [Schramm]
- It is unique up to horizontally translating each square, or vertically translating each square. We can construct it if we know the square sizes. [Our result!]


## Proof Sketch

- Existence: proved by Oded Schramm via conformal geometry methods
- Uniqueness and Construction Method: obtained by adapting the extremal metric


## Translation Surfaces (Finally!)

## Definition (Translation Surface)

- Take polygon with pairs of parallel sides
- Identify the opposite sides

Example
The torus!


A square on a torus.

## The Generalized Problems: Tiling on Translation Surfaces!

Questions

- When can we tile a translation surface with squares?
- Does every triangulation correspond to a tiling?
- Is the tiling unique?
- How can we construct the tiling?


## The Generalized Problems: Tiling on Translation Surfaces!

Questions

- When can we tile a translation surface with squares?
- Does every triangulation correspond to a tiling?
- Is the tiling unique?
- How can we construct the tiling?

Our general problem is very difficult, so let's look at a particular case!

## Octagonal Translation Surfaces

- An octagonal translation surface is formed by identifying opposite edges of an octagon with four pairs of parallel sides.
- The surface encloses a region of genus 2 .



## Square Tiling Octagonal Translation Surfaces, Part I

Theorem (C. 2020)

- We cannot square tile the translation surface generated by the regular octagon.
- There exists a vertical stretch of the regular octagon, $R$, such that the translation surface generated by $R$ is square tileable.


## Square Tiling Octagonal Translation Surfaces, Part I

Theorem (C. 2020)

- We cannot square tile the translation surface generated by the regular octagon.
- There exists a vertical stretch of the regular octagon, $R$, such that the translation surface generated by $R$ is square tileable.


Regular Octagon
Translation Surface


Moving Triangles


Rectangle Tiling

## Square Tiling Octagonal Translation Surfaces, Part II

## Proof Ideas:

- Define a notion of special side length and area
- Length is an additive function
- Area is product of width and height
- Choose function so the total area is negative


## Square Tiling Octagonal Translation Surfaces, Part II

## Proof Ideas:

- Define a notion of special side length and area
- Length is an additive function
- Area is product of width and height
- Choose function so the total area is negative
- Tile the octagonal surface with rectangles and then apply a vertical stretch


Three rectangles tiling the regular octagonal translation surface. Applying a vertical stretch with a factor of $1+\sqrt{2}$ makes them squares.

## Summary and Future Work

Our work:

- Proof that the square tiling corresponding to any triangulation
- Algorithm to construct such tilings
- Octagonal translation surface can be tiled in certain cases


## Summary and Future Work

Our work:

- Proof that the square tiling corresponding to any triangulation
- Algorithm to construct such tilings
- Octagonal translation surface can be tiled in certain cases

Natural continuations:

- Triangulations/contacts graphs
- Other translation surfaces
- Adapt metric idea


## Acknowledgements

- Prof. Sergiy Merenkov, my mentor
- PRIMES-USA Program, Prof. Etingof, Prof. Gerovitch
- Dr. Tanya Khovanova
- My parents

