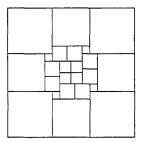
Square Tilings of Translation Surfaces

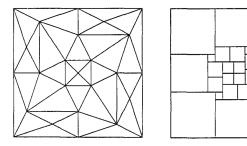

Kevin Cong Under the Direction of Professor Sergiy Merenkov, CCNY-CUNY MIT PRIMES Conference

October 16, 2021

An Introduction: Square Tilings

Definition

A square tiling of $\mathcal P$ is a set of non-overlapping squares which cover $\mathcal P$ and which are all contained by $\mathcal P.$



An example of a square tiling

How to Analyze Tilings? The Contacts Graph

Definition (Contacts Graph)

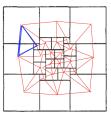
- Graph G
- Vertices S correspond to squares Z_S
- Edge between U and V if and only if squares Z_U and Z_V share a side

A square tiling (right) with its contacts graph (left)

Contacts Graphs and Triangulations, Part I

Definition

A triangulation of ${\mathcal P}$ is a covering of ${\mathcal P}$ by non-overlapping triangles


Contacts Graphs and Triangulations, Part I

Definition

A triangulation of ${\mathcal P}$ is a covering of ${\mathcal P}$ by non-overlapping triangles

Lemma

The contacts graph is always a triangulation.

Contacts Graphs and Triangulations, Part II

Main Questions

- Given a triangulation, is there always a tiling with it as contacts graph?
- Is it unique?
- Can we construct such a tiling?

Contacts Graphs and Triangulations, Part II

Main Questions

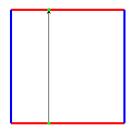
- Given a triangulation, is there always a tiling with it as contacts graph?
- Is it unique?
- Can we construct such a tiling?

Answer [Schramm 1993]

Yes!

Main Proof Idea:

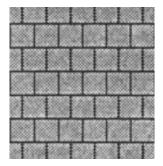
• Extremal Metric!


From Squares to Translation Surfaces: Step I, the Torus!

Definition

The torus:

- odonut
- square with opposite sides identified as the same



Torus

Torus as a square with identified edges.

Example Tiling of a Torus

Doubly Periodic / Torus Tiling

Theorems on the Torus

Theorem (Schramm 1996, C. 2020)

- For any triangulation, a square tiling with it as contacts graph always exists! [Schramm]
- It is unique up to horizontally translating each square, or vertically translating each square. We can construct it if we know the square sizes. [Our result!]

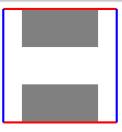
Theorems on the Torus

Theorem (Schramm 1996, C. 2020)

- For any triangulation, a square tiling with it as contacts graph always exists! [Schramm]
- It is unique up to horizontally translating each square, or vertically translating each square. We can construct it if we know the square sizes. [Our result!]

Proof Sketch

- Existence: proved by Oded Schramm via conformal geometry methods
- Uniqueness and Construction Method: obtained by **adapting the** extremal metric


Translation Surfaces (Finally!)

Definition (Translation Surface)

- Take polygon with pairs of parallel sides
- Identify the opposite sides

Example

The torus!

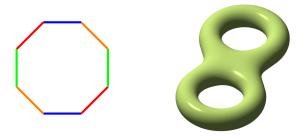
A square on a torus.

The Generalized Problems: Tiling on Translation Surfaces!

Questions

- When can we tile a translation surface with squares?
- Does every triangulation correspond to a tiling?
- Is the tiling unique?
- How can we construct the tiling?

The Generalized Problems: Tiling on Translation Surfaces!


Questions

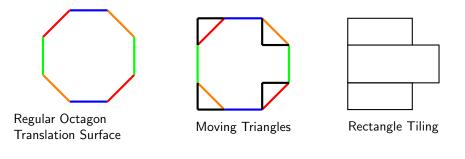
- When can we tile a translation surface with squares?
- Does every triangulation correspond to a tiling?
- Is the tiling unique?
- How can we construct the tiling?

Our general problem is very difficult, so let's look at a particular case!

Octagonal Translation Surfaces

- An octagonal translation surface is formed by identifying opposite edges of an octagon with four pairs of parallel sides.
- The surface encloses a region of genus 2.

Square Tiling Octagonal Translation Surfaces, Part I


Theorem (C. 2020)

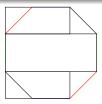
- We cannot square tile the translation surface generated by the regular octagon.
- There exists a vertical stretch of the regular octagon, R, such that the translation surface generated by R is square tileable.

Square Tiling Octagonal Translation Surfaces, Part I

Theorem (C. 2020)

- We cannot square tile the translation surface generated by the regular octagon.
- There exists a vertical stretch of the regular octagon, R, such that the translation surface generated by R is square tileable.

Square Tiling Octagonal Translation Surfaces, Part II


Proof Ideas:

- Define a notion of special side length and area
- Length is an additive function
- Area is product of width and height
- Choose function so the total area is negative

Square Tiling Octagonal Translation Surfaces, Part II

Proof Ideas:

- Define a notion of special side length and area
- Length is an additive function
- Area is product of width and height
- Choose function so the total area is negative
- Tile the octagonal surface with rectangles and then apply a vertical stretch

Three rectangles tiling the regular octagonal translation surface. Applying a vertical stretch with a factor of $1+\sqrt{2}$ makes them squares.

Kevin Cong

Summary and Future Work

Our work:

- Proof that the square tiling corresponding to any triangulation
- Algorithm to construct such tilings
- Octagonal translation surface can be tiled in certain cases

Summary and Future Work

Our work:

- Proof that the square tiling corresponding to any triangulation
- Algorithm to construct such tilings
- Octagonal translation surface can be tiled in certain cases

Natural continuations:

- Triangulations/contacts graphs
- Other translation surfaces
- Adapt metric idea

- Prof. Sergiy Merenkov, my mentor
- PRIMES-USA Program, Prof. Etingof, Prof. Gerovitch
- Dr. Tanya Khovanova
- My parents