A Minkowski-type inequality in AdS-Melvin space

Daniel Xia Mentor: Prof. Pei-Ken Hung

Ridge High School

October 16, 2021 MIT PRIMES Conference

Daniel Xia A Minkowski-type inequality in AdS-Melvin space

・ 同 ト ・ ヨ ト ・ ヨ ト

Curvature

- How can we tell the difference between a straight line and a curve?
- We can define the *curvature* κ , which measures how fast the curve changes direction.

< 回 > < 回 > < 回 >

Curvature

- To define the curvature at a point *P*, we can try comparing the curve to a circle.
- Circles with larger radii change direction less rapidly, so the radius is a good metric.
- Pick two points close to *P*, and draw the circle through the three points.

Curvature

• As the two points move closer to *P*, the circle approaches the *osculating* circle.

Definition

The *curvature* κ at *P* is the reciprocal of the radius of the osculating circle.

< 回 > < 回 > < 回 >

- Suppose the curvature at *P* is positive, and consider a small segment containing *P*.
- We *expand* the curve outwards, mapping the old segment to a new segment.
- The new segment is longer than the old segment when $\kappa > 0$.
- If $\kappa < 0$ the opposite holds.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- When we *expand* the curve, we move each point a distance $\Delta \rho$ along the outward normal.
- Suppose our old segment has length ℓ , and our new segment has length $\ell + \Delta \ell$.

Definition

The curvature κ is the limit of $\frac{\Delta \ell}{\ell \cdot \Delta \rho}$ as ℓ and $\Delta \rho$ go to zero.

イロト イヨト イヨト

Corollary

Suppose we expand a curve by a distance $\Delta\rho,$ changing its length from L to $\Delta L.$ Then

$$\lim_{\Delta \rho \to 0} \frac{\Delta L}{\Delta \rho} = \int \kappa \, ds.$$

伺 ト イ ヨ ト イ ヨ

• This motivates us to consider the integral $\int \kappa \, ds$.

Theorem

For any closed curve, we have

$$\int \kappa \, ds = 2\pi.$$

Daniel Xia A Minkowski-type inequality in AdS-Melvin space

Mean Curvature

- We can extend this new definition into higher dimensions.
- We expand a surface by moving each point a distance $\Delta \rho$ along the unit outward normal.
- This maps a small patch of area A around point P to a new patch of area $A + \Delta A$.

Definition

The mean curvature H is the limit of $\frac{\Delta A}{A \cdot \Delta \rho}$ as A and $\Delta \rho$ go to zero.

(日)

- Similar to the two-dimensional case, let's try integrating the mean curvature over a surface in \mathbb{R}^3 .
- Unfortunately, the integral of mean curvature over different spheres is not constant.

伺下 イヨト イヨト

 We can normalize: for any sphere Σ, the surface integral of H is equal to √16π|Σ|, where |Σ| is its surface area.

< 回 > < 回 > < 回 >

• This doesn't hold for other surfaces, however.

★ Ξ →

Theorem

For a surface $\Sigma \subset \mathbb{R}^3$ with area $|\Sigma|,$ we have the inequality

$$\int_{\Sigma} H \, \mathrm{dA} \geq \sqrt{16\pi |\Sigma|}.$$

• This holds for any dimension \mathbb{R}^n .

伺下 イヨト イヨ

- So far, we've only worked in Euclidean spaces: \mathbb{R}^2 and \mathbb{R}^3 .
- We can work in more general spaces as well, but we need to introduce the concept of a *Riemannian metric*.
- A Riemannian metric is, roughly speaking, a method of assigning lengths to curves.

Example (metric of \mathbb{R}^2)

- The metric of \mathbb{R}^2 is $dx^2 + dy^2$.
- If we cut a curve into differential pieces, each piece has a length $\sqrt{dx^2 + dy^2}$.
- So a curve defined by (x(t), y(t)) has length

$$\int \sqrt{(x'(t))^2 + (y'(t))^2} \, dt.$$

伺 ト イヨ ト イヨト

Example (polar \mathbb{R}^2)

- The metric of \mathbb{R}^2 is $dr^2 + r^2 d\theta^2$.
- If we cut a curve into differential pieces, each piece has a length $\sqrt{dr^2 + r^2 d\theta^2}$.
- So a curve defined by (r(t), θ(t)) has length

$$\int \sqrt{(r'(t))^2 + (r\theta'(t))^2} \, dt.$$

伺下 イヨト イヨト

Example (torus)

• We can equip a torus with the metric

|▲□|▶||▲ □|▶|||▲ □|▶|

Daniel Xia A Minkowski-type inequality in AdS-Melvin space

Daniel Xia A Minkowski-type inequality in AdS-Melvin space

イロト イボト イヨト イヨト

э

Example (torus)

• *Identify* the top and bottom edges:

$$dx^2 + dy^2$$

Daniel Xia A Minkowski-type inequality in AdS-Melvin space

- 4 回 ト 4 国 ト 4 国 ト

э

Example (torus)

• Identify the left and right edges:

|▲□|▶||▲ □|▶|||▲ □|▶|

æ

ヘロト 人間 とくほ とくほ とう

2

Example (hyperbolic space)

• The hyperbolic space is given by the metric

$$\frac{dx^2+dy^2+dz^2}{z^2}.$$

< 同 > < 国 > < 国 >

э

A Minkowski-type inequality in AdS-Melvin space

Example (hyperbolic space)

• Constant z cross-sections have the metric

$$\frac{dx^2+dy^2}{z^2}.$$

• These cross-sections get smaller for larger z.

伺 ト イヨト イヨト

Example (hyperbolic space)

• The space is *toroidal*: cross-sections are toruses.

同 ト 4 ヨ ト 4 ヨ ト

AdS-Melvin space

Definition

The AdS-Melvin space is given by the metric

$$z^{-2}F(z)^{-1}dz^2 + z^{-2}dx^2 + z^{-2}F(z)dy^2$$

where $F(r) = 1 - z^3 - bz^4$ for some b > 0.

Properties:

- toroidal
- negative mass

< 同 > < 国 > < 国 >

Main Question

Conjecture

For a surface Σ embedded in the AdS-Melvin space enclosing a region $\Omega,$ we have the inequality

$$\underbrace{\int_{\Sigma} Hz^{-1} \, dA - 6 \int_{\Omega} z^{-1} \, dvol}_{Q(\Sigma)} + \text{mass} \geq 0.$$

()

Main Question

• We assume that Σ is a *graph*; that is, it is defined by $z^{-1} = s(x, y)$ for some function *s*.

Theorem

If $\boldsymbol{\Sigma}$ is a graph embedded in the AdS-Melvin space, then we have the inequality

$$Q(\Sigma) + mass \ge 0.$$

Daniel Xia A Minkowski-type inequality in AdS-Melvin space

э

I would like to thank:

- My mentor, Prof. Pei-Ken Hung
- The PRIMES-USA program, Dr. Gerovitch, Prof. Etingof, and Dr. Khovanova
- My parents

э